27.1图形的相似第2课时)
- 格式:pdf
- 大小:3.09 MB
- 文档页数:25
27.1图形的相似教案篇一:27.1图形的相似教案(含1.2课时)[1]九年级数学图形的相似集体备课教案27.1图形的相似(第1课时)【教学任务分析】【教学环节安排】【当堂达标自测题】一、填空题1.观察下列图形,指出.2.形状的图形叫相似形;两个图形相似,其中一个图形可以看作由另一个图形的或而得到的.3、下面各组中的两个图形,是形状相同的图形,.二、选择题1.(1)????????;(2);(3);(4).在上述各种符号中,形状相同的符号有几组?()a.一组B.二组c.三组d.四组2.下列说法中,正确的是()a.正方形与矩形的形状一定相同B.两个直角三角形的形状一定相同c.形状相同的两个图形的面积一定相等d.两个等腰直角三角形的形状一定相同3.经历平移、旋转、轴对称变化前后的两个图形()a.形状大小都一样B.形状一样,大小不一样c.形状不一样,大小一样d.形状大小都不一样4.在平面坐标系中,一个图形各点的横坐标、纵坐标都加上或减去同一个非零数,得到一组新的对应用点,则连接所得到点的图形与原图形形状()a.不能够互相重合B.形状相同,大小也一定相同c.形状不一样d.形状相同,大小不一定相同三、解答题画一个三角形,然后把它的各边扩大2倍,画出图形,观察新图形与原图形的关系.九年级数学图形的相似集体备课教案陈军27.1图形的相似(第2课时)【教学任务分析】【教学环节安排】篇二:27.1图形的相似教学设计教案教学准备1.教学目标1.1知识与技能:1.掌握相似多边形的主要特征,即:相似多边形的对应角相等,对应边的比相等;2.会根据相似多边形的特征识别两个多边形是否相似,并会运用其性质进行相关的计算。
1.2过程与方法:在相似图形的探究过程中,让学生运用“观察—比较—猜想”分析问题。
1.3情感态度与价值观:培养学生严谨的数学思维习惯。
2.教学重点/难点教学重点:相似多边形的主要特征与识别教学难点:运用相似多边形的特征进行相关的计算。
人教版数学九年级下册教学设计27.1《图形的相似》一. 教材分析《图形的相似》是人教版数学九年级下册第27.1节的内容,本节主要让学生理解相似图形的概念,掌握相似图形的性质,以及学会运用相似图形解决实际问题。
教材通过生动的实例和丰富的练习,引导学生探索和发现相似图形的性质,培养学生的观察能力、推理能力和解决问题的能力。
二. 学情分析学生在学习本节内容前,已经掌握了平面几何的基本概念和性质,如点、线、面的关系,角度、三角形的性质等。
但是,对于相似图形的概念和性质,学生可能较为陌生,需要通过实例和练习来逐步理解和掌握。
同时,学生可能对于解决实际问题,尤其是涉及到相似图形的实际问题,感到困难,需要教师的引导和帮助。
三. 教学目标1.了解相似图形的概念,掌握相似图形的性质。
2.学会运用相似图形解决实际问题。
3.培养学生的观察能力、推理能力和解决问题的能力。
四. 教学重难点1.相似图形的概念和性质。
2.运用相似图形解决实际问题。
五. 教学方法1.实例教学:通过生动的实例,引导学生观察和发现相似图形的性质。
2.问题驱动:提出实际问题,引导学生运用相似图形进行解决。
3.分组讨论:学生分组讨论,培养学生的合作能力和解决问题的能力。
4.练习巩固:通过丰富的练习,巩固学生对相似图形的理解和掌握。
六. 教学准备1.教学课件:制作精美的教学课件,辅助讲解和展示实例。
2.练习题:准备相关的练习题,巩固学生的学习效果。
3.实物模型:准备一些实物模型,如相似的三角形、矩形等,帮助学生直观地理解相似图形。
七. 教学过程1.导入(5分钟)利用实物模型或图片,引导学生观察和比较相似的图形,引发学生对相似图形的兴趣。
提问:你们发现这些图形有什么共同的特点?学生回答:形状相同,但大小不同。
教师总结:这就是我们今天要学习的相似图形。
2.呈现(10分钟)展示教学课件,讲解相似图形的概念和性质。
通过实例和图形的变换,引导学生发现相似图形的性质,如对应边的比例关系、对应角的相等关系等。
(第2课时)【自学指导】第二节1、相似多边形的定义:两个多边形大小不等,但各角,各边这样的两个相似多边形叫做相似多边形。
注意:与相似三角形的定义的不同点。
2、叫做相似比。
3、判断:(1)各角都对应相等的两个多边形是相似多边形。
()(2)各边对应成比例的两个多边形是相似多边形。
()思考:要判断两个相似多边形相似需要满足的条件。
4、观察下列图形,它们之间是否相似?【尝试练习】5、判断:(1)所有的正三角形都相似。
( )(2)所有正方形都相似。
( )(3)所有正五边形都相似。
( )(4)所有正多边形都相似。
( )思考:所有的正n边形都相似吗?【巩固训练】1、已知菱形ABCD与菱形A′B′C′D′,若使菱形ABCD∽菱形A′B′C′D′,可添加一个条件2、如图,一个长3米,宽1.5米的矩形黑板,其外围的木质边匡宽75厘米。
边框内外边缘所成的矩形相似吗?为什么?3、四边形ABCD∽四边形A′B′C′D′,∠A′=75°,∠B=85°,∠D′=118°,AD=18, A′D′=8, A′B′=12.求∠C′的度数和AB的长度。
【达标测试】如上图,已知四边形ABCD∽四边形A′B′C′D′,∠A=70°,∠B′=60°,∠D=125° ,AD=7, A′D′=4.2,BC=8,求∠C的度数和B′C′的长度。
C D′C【开拓思维】在相似多边形中,对应对角线的比与相似比有何关系?怎样证明?。