侧风风场特征对高速列车气动性能作用的研究_毛军
- 格式:pdf
- 大小:2.31 MB
- 文档页数:9
高速列车侧风效应的数值模拟郗艳红;毛军;李明高;张念;马小云【摘要】在侧风作用下,高速列车的空气动力学性能发生显著改变.基于三维定常可压缩流动的N-S方程,采用SST k-ω两方程湍流模型和有限体积法,对某型高速列车以350 km/h的速度在25 m/s侧风环境中运行的流场结构和气动力进行了数值模拟计算,分析了不同风向角的侧风对列车全车,以及受电弓、转向架和风挡等局部区域的作用.结果表明:在侧风作用下,列车的周围包括转向架处均产生复杂的涡流,压力分布十分复杂,转向架对流场的影响不容忽视;随着风向角(0~90°)的增大,侧向力系数及倾覆力矩系数也增大,列车倾覆及脱轨的风险性增加,且头车的倾覆力矩系数远大于中间车和尾车的倾覆力矩系数,应注重对头车的气动性能研究.【期刊名称】《北京交通大学学报》【年(卷),期】2010(034)001【总页数】6页(P14-19)【关键词】高速列车;气动特性;侧风;数值模拟【作者】郗艳红;毛军;李明高;张念;马小云【作者单位】北京交通大学,土木建筑工程学院,北京,100044;北京交通大学,土木建筑工程学院,北京,100044;北车唐山轨道客车责任有限公司,唐山,063000;北京交通大学,土木建筑工程学院,北京,100044;北京交通大学,土木建筑工程学院,北京,100044【正文语种】中文【中图分类】U270.11;U211在强侧风作用下,高速列车的空气动力学性能和列车运行的稳定性将受到很大影响,由侧风效应所导致的列车失稳和倾覆事故在世界各国时有发生,强侧风已经成为影响高速列车运行安全的重要因素之一[1].国内外学者对高速列车的侧风效应进行了较多的风洞试验和数值模拟,验证了数值模拟的适用性[2-3].但一般忽略了受电弓、转向架及风挡等局部结构,并按不可压流考虑.有的虽然在计算中考虑了受电弓,但仍忽略了转向架对流场的影响[4].在列车高速运行的条件下,这些简化与实际情况的差距变得比较突出,不利于准确评估侧风效应的作用.本文作者根据某动车组的真实外形建模,考虑其细部结构,对时速350 km/h的动车组在不同风向角侧风作用下的流场进行了数值模拟,以便更准确地分析和评估侧风效应对高速列车安全运行的影响.1 流动控制方程及模型列车以350 km/h时速在25 m/s侧风中运行时,列车附近形成复杂的高雷诺数三维湍流绕流.在不同的风向角下,侧风与列车风的合成速度接近或超过1/3的音速,因此,按照可压缩流动模拟列车的外流场.流动的控制方程为[5]连续方程动量方程能量方程状态方程式中:ρ为流体的密度;t为时间;U为流体的速度矢量;ui(i=1~3)表示 x、y、z 3个方向上的速度分量;η为流体的动力黏度;Su为广义源项;T为温度;cp为比定压热容;kc为流体的传热系数;ST为黏性耗散率;p为流体微元体上的压力.在数值模拟中采用基于 RANS雷诺平均法的改进的剪切应力输运SST k-ω模型,该模型对描述近壁面自由流具有相当的精确性[6].湍流动能k和涡量脉动强度ω的输运方程为[7]式中:Gk为湍流动能;Gω表示ω方程,为正交发散项;Γk,Γω分别为k和ω的有效扩散项;Yk,Yω分别为k与ω的发散项;Sk与Sω为用户自定义项.2 计算模型及方法采用动车组3节车模型,头车、中间车和尾车的长度分别为26、25、26 m,宽度为3 m,高度为 3.9 m.头车和尾车形状相同,均为流线型.研究中考虑了转向架、受电弓和挡流板等细部结构,由于列车中间部分截面不变,缩短的模型并不会改变列车流场结构的基本特征[8].2.1 计算域设定及网格划分1)计算域.将计算域划分为来流区和尾流区,根据绕流流场的基本特性,尾流区域取较大值.列车模型前端的流场区域的纵向长度大于两倍的列车模型宽度,列车模型尾流区域的纵向长度大于两倍的列车模型总长度,计算域高度取5倍的车高[2].计算域的几何尺寸为267 m×193 m×35 m,如图1所示.图1 计算域及列车风场的速度三角形Fig.1 Computational domain and wind velocity relative to the train2)网格划分.采用六面体网格,在车体表面及地面处生成边界层网格,边界层第1层网格的厚度为0.615 mm.为了和六面体网格更好的衔接,保证网格质量,提高壁面函数应用于边界层模拟的准确性,共设置3层边界层网格,增长比为2.5.加密尾流、列车表面和受电弓等流场变化较大区域的网格.整个计算区域的网格总数约为1 500万,图2和图3分别为转向架和受电弓的网格划分图,车身网格图见图4.图2 转向架处体网格Fig.2 Grid of bogies2.2 边界条件设置采用相对运动条件模拟列车附近的外流场.即假定列车静止,空气来流以与列车运行速度反向等值的速度vt绕流列车,侧风以速度vw吹向列车,二者的合成速度为 v,参见图1.图3 受电弓体网格Fig.3 Grid of pantograph1)入口边界条件.假设入口边界来流的三维速度分布没有受到模型的扰动,除运动方向外,另外两个方向的速度分量为零.流入速度取为远处的来流速度 vt,主流进口风速为vx=vt+vwcos β,侧风进口风速为vs=vwsin β.2)出口边界条件.压力边界条件,出口压力取一个标准大气压强.3)列车表面边界条件.由于在列车表面存在附面层效应的影响,故列车表面设定为有摩擦的墙边界(无滑移边界),列车表面粗糙度为0.045 mm,可较为精确的计算出列车表面的摩擦阻力等参数.4)地面边界条件.因为采用相对运动,运动的气流会在静止的地面上产生附面层;而实际列车行驶时,空气与地面相对静止,不存在地面附面层.为消除地面附面层的影响,在模拟中采用移动地板法,地面粗糙度0.3 mm,设定地面移动速度 vg与主流进口流速的大小相等、方向相同,即vg=vx.5)计算域上表面.由于选择的流场计算区域足够大,可认为外围边界对列车周围的流场的影响甚小,计算区域的外围边界设定为无摩擦的墙边界.2.3 计算方法使用CFD软件STAR-CCM+进行并行计算.为求解前述控制方程组,用有限体积法(FVM)将控制方程离散.扩散项用二阶精确中心差分格式离散,而对流项用一阶迎风格式离散.用分离式解法对离散后的控制方程组求解,使用SIMPLE法耦合压力-速度场,对压力采用迭代法修正.3 计算结果及其分析对列车速度vt=350 km/h,侧风速度vw=25 m/s,风向角β=5°及 10 ~90°(间隔为10°)的各种工况进行了数值模拟,分析了不同风向角下的列车外流场特性,以及不同风向角的侧风对列车气动特性的影响.3.1 列车周围流场分布列车的外流场直接影响到列车各个部分所受气动力的特性,需要对其进行深入研究.以风向角为90°时的工况为例.图5给出了列车沿纵向不同截面(图4)的流线图.当侧风自左向右吹向列车时,列车的背风侧产生多个漩涡,沿车身纵向,各漩涡的起始位置在底部、中部和顶部交替变化.在 x=8 m处,由列车背风侧底部首先产生一个漩涡A,沿车身向后逐渐发展和脱落,漩涡逐渐远离列车表面.在 x=18 m处漩涡A脱落完毕,并在列车背风侧的中部有新的漩涡B产生,沿车身向后,漩涡B逐渐发展,在 x=32 m处漩涡达到最大,之后开始脱落,至 x=52 m处漩涡不复存在,但是在 x=58 m处又开始形成及发展.在x=32 m处,由列车背风侧底部产生漩涡C,逐渐发展并在x=48 m处消失.在列车背风侧底部漩涡C消失之后,在 x=52 m处又产生漩涡E,漩涡E沿车身向后逐渐发展和脱落,漩涡中心向上移动并逐渐远离列车表面.另外,在x=46 m、x=48 m处受电弓所在的部位,产生了漩涡D.此外,在 x=2 、20、28、46、48 、52、70、72 m 等有转向架的部位,流场十分紊乱,都产生了多个复杂的漩涡,对高速列车的气动性能产生一定影响.在侧风作用下,列车背风侧尾迹区流动十分复杂,会生成不同尺度的脱落涡,涡的数量也在发生变化,这些涡不断地从车体产生、脱落、合并,并向下游运动,涡的运动及相互间的位置关系具有随机性.可见,在高速列车的模拟计算中,过度简化列车的几何外形,忽略转向架的作用是不恰当的.3.2 列车表面压力分布列车所受气动力的大小和受力的均匀程度可以由列车表面的压力分布规律得到.图6为列车表面压力分布图,压力显示范围为-2 000~2 000 Pa.可以看出,头车和尾车的表面压力分布较为复杂,中间车的表面压力分布的变化相对较小,说明使用3节列车模型是可行的.图4 列车车身坐标及车身网格图(单位:m)Fig.4 Coordination of the train(Unit:m)图5 不同位置处列车横截面流线图Fig.5 Streamlines for different locations on the x-axis图6 列车表面压力分布Fig.6 Pressure distribution of the train surface由图6(a)、图6(b)、图6(e)可知,在列车的迎风侧,最大正压区位于头车鼻尖处,车身大部分区域为正压,且压力值沿列车高度方向逐渐减小,在尾车处出现负压.在列车的背风侧,由于大量漩涡的产生发展和脱落,头车出现大面积的负压区,车身基本为负压,压力值沿列车高度方向变化不大,尾车处出现正压.尾车正压和负压的数值均小于头车,且尾车背风侧的正压绝对值小于迎风侧的负压绝对值.由图6(c)、图6(d)可知,由于空气具有黏性,在流过头部鼻锥和导流板凹槽时被滞止,气流速度近乎为零,压力最大;在受电弓处表面压力升高;在列车连接处的端部,由于风挡和间隙的存在,使列车端部表面的压力改变;在列车尾端,空气流速加快,列车尾部的压力减小.受侧风作用时,列车迎风面宽度增加,会有更多的气流流向车身底部,造成车身底部气流阻力增大,速度降低,压力升高;流向车身顶部的气流阻力虽然也有所增加,但流经顶部的气流在与流经底部的气流汇合于列车背风侧之前所经过的路程较长,速度变快,车身顶部的压力有所降低.3.3 风向角对气动性能的影响侧向力Fz和气动力产生的倾覆力矩Mx是对列车的安全性最有影响的两个物理量,如图7所示.一般用侧向力系数和倾覆力矩系数来描述.这里定义的倾覆力矩是气动力对背风侧轨顶之矩(即对C轴取矩),顺时针为正,它是侧力与升力所产生的力矩之和.图7 列车气动力分析图Fig.7 Aerodynamic forces and moments在侧风的作用下,部分气流从车身的迎风侧经车顶绕流到背风侧.由于气流沿程受到摩擦阻力的作用且在背风侧产生涡流而消耗一部分能量,从而在迎风侧和背风侧之间产生压差,形成侧向作用力,侧向力和升力之合产生倾覆力矩,它们的大小与侧风的风向角有关.图8和图9给出了侧向力系数和倾覆力矩系数随风向角变化的曲线,其中总的侧向力系数为头车、中车、尾车、受电弓和转向架侧向力系数之和,总倾覆力矩系数亦然.图8 侧向力系数随风向角的变化曲线Fig.8 Lateral force coefficient versus the wind angle图9 倾覆力矩系数随风向角的变化曲线Fig.9 Overturning moment coefficient versus the wind angle由图8可知,列车以 350 km/h在25 m/s的横风下小于90°的风向角范围内运行时,列车各部分的侧向力系数随风向角的增大而增大.原因是风向角越大,侧风越强,产生的涡流越明显,由涡流引起的能量消耗占的比重增大,两侧压差变大,侧向力也随之增大,侧向力系数升高,这是导致列车倾覆的主要原因.此外,由图6可知,车身顶部和底部大都为负压,顶部负压较大,而底部负压较小,列车在侧风作用下仍受到较大的正升力.随着风向角的增大,车体顶部负压增加快,底部负压增加慢,压差加大,列车受到的升力增加,这是导致列车倾覆的另一原因.侧向力和升力都随风向角的增大而增大,使得倾覆力矩也随之增大.从图9中可以看出,倾覆力矩系数随风向角的增大而增大,其中当β从5°变为90°时,头车的倾覆力矩系数始终最大,由0.02增大到0.63,最容易发生倾覆.因此,风向角越大,脱轨的危险性越大.中车在β =5°时为 -0.01,在β =10°时变为正值 0.01,当β=90°时增大到0.51;而尾车由0.01增大到0.15,数值始终最小,相对较为安全.由图8可知,受电弓和转向架的侧向力系数随风向角的增大而增大,并由图10可知,受电弓的侧向力系数份额在1%左右,而转向架的份额在β=5°时为3.39%,随着风向角的增大而增大,在β=90°时转变为9.95%,对列车的运行安全造成潜在的危险.由图9和图11可知,在β =5°和β =10°时受电弓的倾覆力矩系数为负值,从β=20°开始转变为正值,在β=90°时增大到 0.154.而转向架的倾覆力矩系数在β=5°~40°时为负值,对列车的安全是有利的,占的份额值随风向角的增大而减少;从β=50°开始转变为正值,并随风向角的增大而增大,所占的份额值也随风向角的增大而增大,由此引起的列车运行安全性降低.由图11可知,在β=5°时,转向架的份额为24.1,受电弓的份额为8.82,又因为此时的倾覆力矩系数为正值,转向架和受电弓的存在保障了列车高速运行的安全.因此可见,受电弓和转向架对列车的安全性起着不容忽视的作用,在进行数值模拟计算的时候,不应该忽略.图10 侧向力系数份额随风向角的变化曲线Fig.10 Ratio of lateral force coefficient versus the wind angle图11 倾覆力矩系数份额随风向角的变化曲线Fig.11 Ratio of overturning moment coefficient versus the wind angle4 结论1)列车在侧风环境中高速运行时,在列车的背风侧会产生不同尺度的脱落涡,这些涡的运动及相互之间的位置关系是产生不同侧向气动力的主要原因,并与风向角有关.转向架周围产生复杂的涡流,在模拟计算时不能忽略转向架对流场的影响.2)侧风使列车表面的压力分布变得不对称,车体迎风面和背风面压力的叠加,使列车受到较大的侧向力,车体顶部和底部的压差使列车在大风作用下受到较大的升力,侧向力和升力产生倾覆力矩.随着风向角的增大,侧向力系数、倾覆力矩系数均增大,倾覆及脱轨危险性增大.3)随风向角的增大,头车倾覆力矩的值及增幅远大于中间车和尾车.因此,在评估列车在侧风环境中高速运行的安全性时,应该更加注重对头车的气动性能研究.参考文献:[1]Anderssonl E,Haggstrom J,Sima M.Assessment of Train-Overturning Risk Due to Strong Cross-Winds[J].Proceedings of the Institution of Mechanical Engineers,Part F:Journal of Rail and Rapid Transit,2004,218(3):213-223.[2]Krajnovic,Siniša.Optimization of Aerodynamic Properties of High-Speed Trains with CFD and Response Surface Models[J].Lecture Notes in Applied and Computational Mechanics,2009,41:197-211.[3]杨吉忠,毕海权,翟婉明.基于ALE方法的列车横风绕流动力学分析[J].铁道学报,2009,31(2):120-124.YANG Jizhong,BI Haiquan,ZHAI Wanming.Dynamic Analysis of Train in Cross-Winds with the Arbitrary Lagrangian-Eulerian Method[J].Journal of the China Railway Society,2009,31(2):120-124.(in Chinese)[4]荆江.高速列车及关键部件气动性能数值分析[D].北京:中国科学院研究生院,2009.JING Jiang.Numerical Analysis of Aerodynamic Performance on High-Speed Train and Key Components[D].Beijing:Graduate University of Chinese Academy of Sciences,2009.(in Chinese)[5]王福军.计算流体动力学分析:CFD软件原理与应用[M].北京:清华大学出版社,2004.WANG Fujun.Analysis Computional Fluid Dynamics-Theory and Application of CFD Software[M].Beijing:Tsinghua University Press,2004.(in Chinese)[6]陶文铨.数值传热学[M].2版.西安:西安交通大学出版社,2001.TAO Wenquan.Numerical Heat Transfer[M].2nd ed.Xi'an:Xi'an Jiaotong University Press,2001.(in Chinese)[7]张元辉,王强.发动机短舱内外流场与结构温度场耦合计算[J].飞机设计,2009,29(1):30-36.ZHANG Yuanhui,WANG Qian.Coupled Numerical Simulation of Flow Field and Heated Structure for the Cabin ofAircraft[J].Aircraft Design,2009,29(1):30-36.(in Chinese)[8]Khier W,Breuer M,Durst F.Flow Structure Around Trains Under Side wind Conditions:A Numerical Study[J].Computers&Fluids,2000(29):179-195.(in Chinese)。
高速列车横风效应及气动安全控制动力学1. 引言1.1 概述高速列车是现代交通领域的重要组成部分,以其快速、高效、安全的特点受到广大乘客的欢迎。
然而,在高速列车运行过程中,会面临各种风险因素,其中之一就是横风效应。
横风效应指的是列车在经过桥梁、隧道或其他开阔区域时受到侧向风力的作用所引起的动态响应问题。
1.2 研究背景随着高铁建设进一步推进,高速列车在我国铁路网中所占比例越来越大。
然而,在特定地理环境和天气条件下,如山区、河谷和海岸线等地区,强大的侧风可能对高速列车行车安全带来威胁。
因此,研究高速列车横风效应及相关的气动安全控制动力学显得尤为重要。
1.3 目的与意义本文旨在深入探讨高速列车横风效应及其对行车安全性能产生的影响,并了解气动力学安全控制技术在减轻这些影响方面的应用。
通过对横风效应现象的描述与分析,我们可以更好地了解其机理,并在此基础上提出有效的控制方法和技术手段,从而提高高速列车行车安全性能,并为相关领域的研究和实践提供参考和借鉴。
总之,研究高速列车横风效应及气动安全控制动力学对于确保高速列车行车安全、推动交通事业发展具有重要意义。
本文将从定义与原因、影响因素、风险评估等方面进行深入分析,并结合国内外研究现状和发展趋势,最终给出结论与展望部分所述的前景展望和探索方向建议。
2. 高速列车横风效应2.1 定义与原因高速列车横风效应指的是列车在高速行驶时遇到侧风所引起的一系列气动力学效应。
在高速铁路运营中,以及特殊地理条件下,如开放地区、大型桥梁等情况下,横向侧风对列车的运行安全和稳定性带来了重大挑战。
侧风主要由大气层的非均匀垂直温度分布、地表的粗糙程度、山脉等自然条件导致。
当高速列车经过这些地区或受到这些影响时,会遭受到来自侧面的风压力,从而对列车产生偏移力和倾覆力。
2.2 影响因素高速列车横风效应受多种因素影响,以下是一些主要因素:- 列车速度:随着列车速度增加, 横风效应也越明显。
- 侧面积和形状:不同类型的列车具有不同形状的外壳和窗户,在不同角度下暴露给侧面风将导致不同程度的横风效应。
第37卷第3期振动与冲击JOURNAL OF VIBRATION AND SHOCK Vol .37 No . 3 2018高速铁路风障在横风与列车风耦合作用下的气动特性研究柳润东,毛军,郗艳红(北京交通大学土木建筑工程学院,北京100044)摘要:针对单层、腔室型两种形式的开孔波纹板风障,采用滑移网格方法分别模拟横风条件下高速列车通过风 障区域的过程,分析了在横风和列车风耦合作用下风障周围的绕流流场特性、风障面板气动荷载的时域特性及横风与列 车风耦合脉动压力的频域特性。
结果表明:在高速列车行经风障区域的过程中,无横风时头车产生的冲击作用要大于尾 车的;存在横风作用时,列车头车产生的气动冲击作用与横风作用形成对冲,抵消了部分横风能量,而列车尾车则与横风 作用相叠加,放大了横风对风障的气动作用;单层风障通过改变横风流向起到挡风减载作用,而腔室型风障同时可在腔室 内部及尾流形成大量小漩涡来消耗横风能量,使用腔室风障能显著降低单个风障面板的气动荷载;该研究中,横风与列车 风耦合作用于风障的脉动压力以及气动荷载的主频谱峰值集中在0.5 ~5H i 内。
关键词#横风;高速列车;滑移网格;风障;气动荷载中图分类号:U 216文献标志码:AD O I : 10. 13465/j. c n k i. jv s. 2018.03.025A e r o d y n a m i c l o a d f e a t u r e s o f w i n d b r e a k s o f h i i j h s p e e d r a i lA v a y u n d e r c o u p l e d a c t i o n o f c r o s s w i n d a n d h i g h s p e e d t r a i n w i n dLIURundong ,MAOJun,XI Yanhong(T h e C iv il I n s titu te ,B e ijin g J ia oton g U n iv e r s it y ,B e ijin g 100044,C h in a )A b s tra c t : The sliding mesli metliod was used to simulate the process of high speed trains p a s in g through aw indbreak region under cross w in d .Thesingle layertypeandchamber t ype porousand corrugateused . The characteristics of flow fie ld around train and w indbreaks , time domain characteristics of w in d b re a ks ’aerodynamic load and frequencydomain characteristics of fluctuatingpressure caused bycoupling betwhigh speed train w ind were analyzed . The results showed that when there is no cross-w ind ,the trainaction is stronger than that ofthetripper car b e ;when there isa cross w in doffsets cross-wind todissipate itsenergy ,w hile thetripper c a r ’s aerod y namicim pacting action isto am plify cross w ind ’ s aerodynamic im pacting action against w indbreaks ; the single layer windbreak weakens cross w ind ’ s action through c hanging its d ire ctio n , w hile the chamber windbreak produces a large number of small vortexes inside chamber and wakeflowtodissipate c ross-wind ’ senergy anditobviouslyreduw indbreak plate .K ey words : cross w in d ; high speed train ; sliding m esh ; w indbreak ; aerod y namic load速列车周边流场的准确性;Ho g等[3]对风障防风效果进行了试验,发现多层风障要优于单层风障。
高速列车风荷载与动力学特性研究近年来,随着高速铁路的不断发展,高速列车作为一种重要的交通工具,受到了越来越多的关注。
然而,高速列车在运行过程中会受到各种外部力的影响,其中风荷载是一个重要的因素。
本文将重点探讨高速列车在风荷载下的动力学特性,以及相关的研究进展。
一、高速列车风荷载的产生原因高速列车在运行过程中会受到两个主要风荷载的作用:迎风荷载和侧风荷载。
迎风荷载即风向与列车运行方向相同,由于列车速度较快,风与列车的相对速度很大,因此产生的迎风荷载也较大。
侧风荷载则是指风向与列车运行方向垂直,由于列车的结构对侧风较敏感,侧风荷载也是一个重要的考虑因素。
高速列车风荷载的产生原因主要有以下几个方面:1. 空气动力学效应:当列车以高速行驶时,空气在列车周围形成了较大的压力差,产生了空气动力学效应,使得列车受到了迎风和侧风的作用。
2. 地理环境因素:列车的运行环境往往会有地理因素的限制,例如高山、大桥等地形,这些地方容易形成风洞效应,进一步增加了列车的风荷载。
3. 气象因素:气象条件也会对列车的风荷载产生一定的影响,例如风速、风向和气压等因素。
二、高速列车风荷载的计算方法高速列车风荷载的计算方法主要分为两种:试验方法和数值模拟方法。
试验方法是通过在真实环境中进行风洞试验或实车试验,测量列车在不同风速下的荷载情况。
而数值模拟方法则是通过建立数学模型和计算流体力学模型,模拟列车在风中的动力学行为,计算出列车的风荷载。
目前,国内外学者已经对高速列车的风荷载进行了大量的研究。
一些研究表明,高速列车的风荷载与列车的速度、形状、尺寸、空气动力学特性和风速等因素密切相关。
因此,在设计和运营高速列车时,需要综合考虑这些因素,以确保列车的安全性和稳定性。
三、高速列车风荷载对列车的影响高速列车风荷载对列车有着重要的影响,不仅会对列车的稳定性和安全性产生影响,还会对列车的动力学特性产生变化。
1. 列车的稳定性:高速列车在风荷载下容易出现摇晃、晃动等稳定性问题,尤其是在遇到侧风时更加明显。
收稿日期:2018-12-19作者简介:谢红太(1993—),男,助理工程师,硕士,研究方向为铁道规划及动车组行车安全设计。
强侧风对时速350km 高速列车气动性能影响分析谢红太1,2(1.中设设计集团股份有限公司铁道规划设计研究院,江苏南京210014;2.兰州交通大学机电工程学院,甘肃兰州730070)摘要:采用NURBS 曲面设计方法完成对某型高速列车头车的三维数字化设计建模,基于三维定常不可压的黏性流场N-S 及k-着方程湍流模型,利用有限体积数值模拟方法分析计算出列车的速度阻力函数关系,同时针对列车在不同风向角的强侧风环境中运行时压力场和速度场做了进一步研究。
研究发现:在无风明线上运行时列车所受空气阻力与运行速度的平方成正比,侧风运行时随着风向角的扩大空气阻力系数呈现先增大后逐渐下降的变化趋势。
流场分布结构复杂不规律,当侧风情况较为严重时正压区主要分布在迎风侧,负压区主要分布在背风侧和车顶部位,且负压表现更为强烈,列车前端滞止点向迎风侧发生偏移,致使迎风侧与背风侧产生巨大压差。
关键词:高速列车;空气动力学;流场结构;NURBS 方法中图分类号:U266.2文献标志码:A第36卷第3期2019年6月华东交通大学学报Journal of East China Jiaotong University Vol.36No.3Jun .,2019近年来,高速动车组旅客列车逐渐普及并大幅提速,2017年9月我国在京沪线相继开行350km/h “复兴号”高速动车组,并在此基础上做了大范围推广的战略性规划。
高速列车与空气存在的相对复杂无规律的快速强烈运动,致使列车气动阻力问题突出,高速列车空气动力学性能恶化[1-4]。
在高速列车设计研发过程中如何使其具有优良的空气动力学性能显得愈来愈重要,尤其在适应空气运行环境较差的地段及应对突发恶劣天气变化的能力要求越来越高。
比如列车高速运行过程中的气动阻力问题及列车在强侧风下的横向、纵向、垂向不稳定性问题等[5-8]。
强侧风对时速350 km高速列车气动性能影响分析谢红太【摘要】采用NURBS曲面设计方法完成对某型高速列车头车的三维数字化设计建模,基于三维定常不可压的黏性流场N-S及k-ε方程湍流模型,利用有限体积数值模拟方法分析计算出列车的速度阻力函数关系,同时针对列车在不同风向角的强侧风环境中运行时压力场和速度场做了进一步研究.研究发现:在无风明线上运行时列车所受空气阻力与运行速度的平方成正比,侧风运行时随着风向角的扩大空气阻力系数呈现先增大后逐渐下降的变化趋势.流场分布结构复杂不规律,当侧风情况较为严重时正压区主要分布在迎风侧,负压区主要分布在背风侧和车顶部位,且负压表现更为强烈,列车前端滞止点向迎风侧发生偏移,致使迎风侧与背风侧产生巨大压差.【期刊名称】《华东交通大学学报》【年(卷),期】2019(036)003【总页数】9页(P7-15)【关键词】高速列车;空气动力学;流场结构;NURBS方法【作者】谢红太【作者单位】中设设计集团股份有限公司铁道规划设计研究院,江苏南京 210014;兰州交通大学机电工程学院,甘肃兰州 730070【正文语种】中文【中图分类】U266.2近年来,高速动车组旅客列车逐渐普及并大幅提速,2017年9月我国在京沪线相继开行350 km/h“复兴号”高速动车组,并在此基础上做了大范围推广的战略性规划。
高速列车与空气存在的相对复杂无规律的快速强烈运动,致使列车气动阻力问题突出,高速列车空气动力学性能恶化[1-4]。
在高速列车设计研发过程中如何使其具有优良的空气动力学性能显得愈来愈重要,尤其在适应空气运行环境较差的地段及应对突发恶劣天气变化的能力要求越来越高。
比如列车高速运行过程中的气动阻力问题及列车在强侧风下的横向、纵向、垂向不稳定性问题等[5-8]。
本文重点针对350 km/h某型高速列车列车风与大风耦合作用下的列车空气动力特性进行数值分析研究,为我国自主研发高性能高速列车提供理论支撑与技术保障。
不同风速风向条件下的列车风特性韩运动;陈大伟;刘韶庆;林鹏【摘要】采用数值计算的方法,并在风洞试验验证其准确性的基础上,研究在不同横风风速和风向角条件下,列车车身周围列车风的压力分布和风速变化.结果表明:在横风条件下,近地表区域列车风的压力峰峰值和风速极值均大于较高空间处的;相对于迎风侧而言,背风侧列车风的压力峰峰值和风速极值更大;随着横风风速的增加,同一位置处列车风的压力峰峰值变化更大,不同位置处列车风的风速极值呈现逐渐上升的趋势;风向角为45°时近地表区域和较高空间处列车风的压力峰峰值达到最大,在风向角从45°增至180°的过程中,列车风的压力峰峰值呈现下降的趋势;8+8编组时,列车风随环境风场的变化和头车附近壁面的压力分布状况与2+2编组时有相近的特征.【期刊名称】《中国铁道科学》【年(卷),期】2018(039)006【总页数】8页(P104-111)【关键词】高速列车;横风;列车风;数值模拟;风洞试验;压力;风速【作者】韩运动;陈大伟;刘韶庆;林鹏【作者单位】中车青岛四方机车车辆股份有限公司国家高速动车组总成工程技术研究中心,山东青岛266111;中车青岛四方机车车辆股份有限公司国家高速动车组总成工程技术研究中心,山东青岛266111;中车青岛四方机车车辆股份有限公司国家高速动车组总成工程技术研究中心,山东青岛266111;中车青岛四方机车车辆股份有限公司国家高速动车组总成工程技术研究中心,山东青岛266111【正文语种】中文【中图分类】U271.91;U25近年来,随着高速铁路技术的不断发展,列车运行时速呈现逐步上升的趋势。
与此同时,列车高速运行带来气动效应方面的危害也日益显著。
当列车高速运行时,尤其是当列车运行与不利的环境因素(例如横风环境)耦合时,列车风以及瞬态的压力波动作用在铁路沿线的人员以及设施上,会对铁路安全造成巨大的隐患。
因此,有必要对列车在不同横风环境下运行时周围流场的结构特征进行系统性的研究。
高速列车在侧风环境中会车的空气动力特性模拟研究的开题报告一、研究背景及意义高速列车具有高速、高效、舒适等特点,是城际交通的重要组成部分。
然而,在现实的使用过程中,高速列车不可避免地会遇到复杂的侧风环境,这给列车的行驶稳定性和安全性带来了一定的挑战。
因此,对高速列车在侧风环境中的空气动力学特性进行研究,具有重要的理论和实际应用价值。
二、研究现状目前,国内外学者在高速列车侧风环境下的空气动力学研究方面已取得了一定的成果。
主要研究方面包括列车与风的相互作用、附着层风压分布、离散风效应以及列车的舒适性等。
研究方法主要包括风洞试验、数值模拟等。
三、研究目标本研究旨在针对高速列车在侧风环境中车体的空气动力特性进行数值模拟及仿真研究。
具体研究内容包括:1. 探究不同侧风角度对列车空气动力学特性的影响;2. 研究不同车型、不同速度及不同侧风角度下列车车体受力分布情况;3. 分析不同条件下列车的行驶稳定性和安全性。
四、研究方法本文将采用计算流体动力学(CFD)方法进行模拟,利用ANSYS Fluent等主流软件对高速列车在侧风环境中的空气动力学特性进行数值计算,通过建立数值模型对列车在不同侧风角度的车体压力分布、受力情况等进行仿真分析。
同时,利用MATLAB等工具对仿真结果进行进一步处理和分析。
五、研究内容与时间安排1. 文献调研:3周;2. 数值模型建立与验证:4周;3. 数值模拟及仿真分析:6周;4. 结果分析与讨论:4周;5. 论文撰写及答辩准备:3周。
六、预期成果本研究将得到高速列车在侧风环境中的空气动力学特性,探究不同侧风角度对列车空气动力学特性的影响,研究不同车型、不同速度及不同侧风角度下列车车体受力分布情况,分析不同条件下列车的行驶稳定性和安全性。
最终将形成一篇较为系统的研究论文,提供理论支持和实践应用价值。