复杂电力系统潮流计算高斯赛德尔法潮流计算
- 格式:pptx
- 大小:507.26 KB
- 文档页数:25
一、高斯——塞德尔法潮流计算以导纳矩阵为基础的潮流计算。
设系统中有n 个节点,其中有m 个PQ 点、n-(m+1)个PV 节点和一个平衡节点。
平衡节点不参加迭代。
从方程式可以解出:111[]ni i iijji ii ij P jQ V Y V Y V =≠-=-∑ 。
(12-14)将上式改写成高斯——塞德尔法德迭代格式,1(1)1()111[]i nk k h i iiij jij jj j i ii iP jQ V Y V Y V Y V -++==+-=--∑∑。
(12-15) 在用这个迭代公式时,PQ 节点的功率是给定的,因此只要给出节点电压的初值(0)iV ,可以进行迭代计算。
对于PV 节点,节点有功功率iP 和电压幅值iV 是给定的。
但是节点的无功功率只在迭代开始时给出初值(0)iQ ,此后的迭代值必须在迭代过程中依次的算出。
因此,在每一次迭代中,对于PV 节点,必须作以下几项计算。
1、 修正节点电压在迭代计算中,由公式(12-15)求得的节点电压,其幅值不一定等于给定的电压幅值isV 。
为满足这个条件,我们只保留节点电压的相位()k iδ,而把其幅值直接取为给定值isV ,即令()()k k i isV V δ=∠ 。
(12-16)2、 计算节点无功功率 其计算公式为:1()()()()(1)(1)1Im []Im [()]i nk k k k k k i ii iijjij jj j iQV I V Y V Y V -++====+∑∑(12-17)3、 无功功率越线检查由上式算出的无功功率须按以下的不等式进行检验:()m in m axk i ii Q Q Q << 。
(12-18)如果()m ax k ii QQ >,则令()m ax k i i Q Q =;如果()m ink ii Q Q <,则令()m ink ii QQ =。
做完上述三项计算后,才应用公式(12-15)计算节点电压的新值。
电 力 系 统 三 种 潮 流 计 算 方 法 的 比 较一、高斯 -赛德尔迭代法:以导纳矩阵为基础, 并应用高斯 -- 塞德尔迭代的算法是在电力系统中最早得到应用的潮流计算方法,目前高斯一塞德尔法已很少使用。
将所求方程 f ( x ) 0 改写为 x( x )不能直接得出方程的根,给一个猜测值x 0 得 x 1( x 0 )又可取 x1 为猜测值,进一步得:x 2 ( x 1 )反复猜测x k 1 迭代则方程的根( x k )优点:1. 原理简单,程序设计十分容易。
2. 导纳矩阵是一个对称且高度稀疏的矩阵,因此占用内存非常节省。
3. 就每次迭代所需的计算量而言,是各种潮流算法中最小的,并且和网络所包含的节点数成正比关系。
缺点:1. 收敛速度很慢。
2. 对病态条件系统,计算往往会发生收敛困难:如节点间相位角差很大的重负荷系统、包含有负电抗支路 (如某些三绕组变压器或线路串联电容等 )的系统、具有较长的辐射形线路的系统、长线路与短线路接在同一节点上,而且长短 线路的长度比值又很大的系统。
3. 平衡节点所在位置的不同选择,也会影响到收敛性能。
二、牛顿 -拉夫逊法: 求解 f ( x ) 0设 x x 0 x ,则 按牛顿二项式展开:当 △x 不大,则取线性化(仅取一次项) 则可得修正量对 得:作变量修正:x k 1xk x k ,求解修正方程 20 世纪 牛顿法是数学中求解非线性方程式的典型方法,有较好的收敛性。
自从60 年代中期采用了最佳顺序消去法以后,牛顿法在收敛性、内存要求、计算速度方面都超过了其他方法,成为直到目前仍被广泛采用的方法。
优点:1. 收敛速度快,若选择到一个较好的初值,算法将具有平方收敛特性,一般迭代 4—5 次便可以收敛到一个非常精确的解。
而且其迭代次数与所计算网络的规模基本无关。
2. 具有良好的收敛可靠性, 对于前面提到的对以节点导纳矩阵为基础的高斯一塞德尔法呈病态的系统,牛顿法均能可靠地收敛。
电力系统潮流计算方法分析1.黎曼法是最简单和最直接的计算方法。
该方法直接利用电力系统的基本方程式,即功率平衡方程式和节点电压方程式来计算潮流分布。
然而,黎曼法需要利用复杂的矩阵方程式来解决系统中节点电压的计算,计算量大且计算速度较慢,对大型复杂系统不适用。
2.高斯-赛德尔法是一种迭代法,将电网中的节电清设置为未知数,并采用全局迭代求解。
该方法通过迭代计算不断逼近潮流分布,直到满足系统中所有节点的电压和功率平衡方程为止。
高斯-赛德尔法具有迭代次数多、耗时较长的缺点,但计算稳定可靠,对于小型系统具有较好的适用性。
3.牛顿-拉夫逊法是一种基于牛顿迭代思想的高效潮流计算方法。
该方法通过利用电力系统中的雅可比矩阵,将潮流计算问题转化为解非线性方程组的问题。
牛顿-拉夫逊法的迭代速度和稳定性较高,适用于大型复杂系统的潮流计算。
综上所述,电力系统潮流计算方法可以选择黎曼法、高斯-赛德尔法和牛顿-拉夫逊法等不同的算法进行计算。
选择合适的计算方法应根据系统的规模、复杂度以及计算时间要求来综合考虑。
实际应用中,通常会根据具体情况采用不同的方法进行潮流计算,以获得准确和高效的结果。
同时,随着电力系统的发展和智能化技术的应用,也出现了一些基于机器学习和深度学习的潮流计算方法。
这些方法利用大数据和智能算法,通过学习和分析系统历史数据,能够更好地预测和计算系统潮流分布,提高计算效率和准确性。
这些方法在未来的电力系统潮流计算中具有潜力和广阔的应用前景。
总结起来,电力系统潮流计算是电力系统分析和规划的重要工作,不同的计算方法有不同的优劣势,合理选择计算方法对于准确评估系统稳定性和可靠性至关重要。
随着技术的进步和应用的发展,电力系统潮流计算方法也在不断演化和改进,以满足电力系统智能化和可持续发展的需求。
电力系统三种潮流计算方法的比较 一、高斯-赛德尔迭代法:以导纳矩阵为基础,并应用高斯--塞德尔迭代的算法是在电力系统中最早得到应用的潮流计算方法,目前高斯一塞德尔法已很少使用。
将所求方程 改写为 不能直接得出方程的根,给一个猜测值 得 又可取x1为猜测值,进一步得:反复猜测则方程的根优点:1. 原理简单,程序设计十分容易。
2. 导纳矩阵是一个对称且高度稀疏的矩阵,因此占用内存非常节省。
3. 就每次迭代所需的计算量而言,是各种潮流算法中最小的,并且和网络所包含的节点数成正比关系。
缺点:1. 收敛速度很慢。
2. 对病态条件系统,计算往往会发生收敛困难:如节点间相位角差很大的重负荷系统、包含有负电抗支路(如某些三绕组变压器或线路串联电容等)的系统、具有较长的辐射形线路的系统、长线路与短线路接在同一节点上,而且长短线路的长度比值又很大的系统。
3. 平衡节点所在位置的不同选择,也会影响到收敛性能。
二、牛顿-拉夫逊法:求解 设 ,则按牛顿二项式展开:当△x 不大,则取线性化(仅取一次项)则可得修正量对 得: 作变量修正: ,求解修正方程()0f x =()0f x =10()x x ϕ=迭代 0x 21()x x ϕ=1()k k x x ϕ+=()x x ϕ=()0f x =k k x x lim *∞→=0x x x =+∆0()0f x x +∆=23000011()()()()()()02!3!f x f x x f x x f x x ''''''+∆+∆+∆+=00()()0f x f x x '+∆=()100()()x f x f x -'∆=-10x x x =+∆00()()f x x f x '∆=-1k k k x x x +=+∆牛顿法是数学中求解非线性方程式的典型方法,有较好的收敛性。
自从20世纪60年代中期采用了最佳顺序消去法以后,牛顿法在收敛性、内存要求、计算速度方面都超过了其他方法,成为直到目前仍被广泛采用的方法。
电力系统稳态分析姓名: 学号:学院(系):自动化学院专业: 电气工程题目: 基于Matlab的高斯和高斯—赛德尔法的潮流计算指导老师:2014年12月摘要电力系统潮流计算是电力系统稳态运行分析中最基本和最重要的计算之一,是电力系统其他分析计算的基础,也是电力网规划、运行研究分析的一种方法,在电力系统中具有举足轻重的作用。
经典算法有高斯法,高斯-赛德尔迭代法及牛顿法等,近年来学者们开始应用非线性规划法及智能算法等优化方法求解潮流问题,提高了收敛的可靠性。
高斯-赛德尔迭代法开始于上世纪50年代,是一种直接迭代求解方程的算法,既可以解线性方程组,可以解非线性方程组。
高斯法求解节点电压的特点是: 在计算节点 i第k+1次的迭代电压时,前后所用的电压都是第k次迭代的结果,整个一轮潮流迭代完成后,把所有计算出的电压新值用于下一轮电压新值的计算过程中。
该计算方法简单,占用计算机内存小,能直接利用迭代求解节点电压方程,对电压初值的选取要求不是很严格。
但它的收敛性能较差,系统规模增大时,迭代次数急剧上升。
本文首先对高斯—赛德尔算法进行了综述,然后推导了该算法的计算过程,通过MATLAB软件计算了该算法的实例。
关键字:潮流计算高斯法高斯-赛德尔法迭代AbstractPower flow calculation is the one of the most basic and the most important calculation in the steady state analysis of power system .It is the foundation of other analytical calculation of power system, a method of analysis and planning, operation of power network.So it plays a decisive role in the power system. The classical algorithm is the Gauss method, Gauss - Seidel iterative method and Newton's method, in recent years.Scholars began to applicate nonlinear programming method and intelligent algorithm optimization method for solving power flow problem, enhances the reliability of convergence.Gauss - Seidel iterative method began in the 50's of last century, is a direct iteration equation algorithm, which can solve the linear equation and nonlinear equations. Characteristics of Gauss's method to calculate the node voltage is: in the iterative calculation of node i’s K + 1-times voltage, the voltage is used the results of K-times iterative.After completing the whole round of power flow iteration, all voltage value is used to calculate the next round of new voltage value of . The method is simple and captures small memory.It also can directly use the iterative solution of the node voltage equation .the selection of initial values are not very strict. But it has poor convergence performance. The system scale increases,when the number of iterations rise.This paper gives an overview of the Gauss Seidel algorithm at the first.Then it show the calculation process of this algorithm through the MATLAB software.Keywords: Gauss Gauss - Seidel iterative method the method of power flow calculation目录1 高斯迭代法和高斯—赛德尔迭代法概述 (5)2 节点导纳矩阵 (6)2.1不定导纳矩阵 (6)2.2导纳矩阵 (6)3 高斯迭代法 (7)4 高斯-赛德尔迭代法 (8)4.1高斯-赛德尔法的原理 (8)4.2 关于高斯法和高斯-赛德尔法的讨论 (8)5实例验证 (9)5.1 案例描述 (9)5.2 模型的建立 (10)5.3 案例程序流程图 (11)5.4 案例程序 (13)5.5 程序运行步骤和结果 (17)6结果分析 (20)7总结 (21)7参考文献 (22)一高斯迭代法和高斯—赛德尔迭代法概述电力系统潮流计算是研究电力系统稳态运行情况的一种基本电气计算。