第4章 复杂电力系统潮流计算
- 格式:ppt
- 大小:3.59 MB
- 文档页数:131
第四章 复杂电力系统的潮流计算复杂电力系统是一个包括大量母线、支路的庞大系统。
对这样的系统进行潮流分析时,采用第三章中人工计算的方法已不适用。
目前,随着计算机技术的发展,计算机算法已逐渐成为分析复杂系统潮流分布的主要方法,其中包括建立数学模型、确定计算方法和编制计算程序三方面的内容。
本章主要讲述前两方面的内容,同时为了方便分析,针对计算机解法作如下规定:⑴ 所有参数(功率、电压、电流、阻抗或导纳)都以标幺值表示;⑵ 电力系统稳态运行时,可以把负荷作恒定功率处理,也可作恒定阻抗处理;⑶ 所有电源(发电机、调相机、电力电容器等)均向母线注入功率(或电流),取正号;⑷ 作恒定功率处理的负荷,均为从母线“吸取”功率,是向母线注入负的功率(或电流),取负号; ⑸ 母线总的注入功率(或电流)为电源注入功率(或电流)与负荷“吸取”功率(或电流)代数和; ⑹ 输电线路、变压器用П型等值电路表示。
第一节 电力网络的数学模型电力网络的数学模型是指将网络的有关参数和变量及其相互关系归纳起来所组成的、可反映网络性能的数学方程组。
电力网络属于线性网络, 因此,电路理论中关于线性网络的分析方法也适用于分析电力网络。
目前,普遍采用的有两种方法:一是节点电压法;二是回路电流法。
一、节点电压方程和回路电流方程1.节点电压方程是依据基尔霍夫电流定律,通过节点导纳矩阵(或节点阻抗矩阵)反映节点电流与节点电压之间关系的数学模型。
⑴ 用节点导纳矩阵描述的节点电压方程:B B B U Y I = (4-1)一般地,当网络中的独立节点数(即母线数)为n 时,在式(4-1)中:B I =(1•I ,2•I ,… i I •,… n I •)T 为节点注入电流的n 维列向量;B U =(1•U ,2•U , … i U • … n U •)T 为节点电压列向量; Y 11 Y 12 … Y 1i … Y 1nY 21 Y 22 … Y 2i … Y 2nB Y = … … … 为n ×n 阶节点导纳矩阵 (4-2)Y i1 Y i2 … Y ii … Y in… … …Y n1 Y n2 … Y ni … Y nn由以上分析可知,对n 母线电力系统有n 个独立的节点电压方程式(以大地为参考节点)。
第4章复杂电力系统的潮流计算一、填空题1。
用计算机进行潮流计算时,按照给定量的不同,可将电力系统节点分为节点、节点、节点三大类,其中,节点数目最多,节点数目很少、可有可无,节点至少要有一个。
二、选择题1.若在两个节点i、j之间增加一条支路,则下列关于节点导纳矩阵的说法正确的是()A.阶数增加1B.节点i的自导纳不变C.节点i、j间的互导纳发生变化D.节点j的自导纳不变2.若从节点i引出一条对地支路,则下列关于节点导纳矩阵的说法正确的是()A.阶数增加1B.节点i的自导纳发生变化C。
节点i和其余节点间的互导纳均发生变化D。
节点导纳矩阵的所有元素均不变3。
若从两个节点i、j之间切除掉一条支路,则下列关于节点导纳矩阵的说法正确的是()A.阶数减少1B。
节点i、j间的互导纳一定变为0C.节点i、j间的互导纳发生变化,但不一定变为0D.节点i、j的自导纳均不变4.若网络中增加一个节点k,且增加一条节点i与之相连的支路,则下列关于节点导纳矩阵的说法正确的是()(1)阶数增加1(2)节点k的自导纳等于题干中所述支路的导纳(3)节点i的自导纳等于题干中所述支路的导纳(4)节点i、k间的互导纳等于题干中所述支路的导纳A。
(1)(2)B。
(2)(3) C。
(1)(4) D.(2)(4)三、简答题1.什么是潮流计算?潮流计算的主要作用有哪些?潮流计算,电力学名词,指在给定电力系统网络拓扑、元件参数和发电、负荷参量条件下,计算有功功率、无功功率及电压在电力网中的分布。
潮流计算是电力系统非常重要的分析计算,用以研究系统规划和运行中提出的各种问题.对规划中的电力系统,通过潮流计算可以检验所提出的电力系统规划方案能否满足各种运行方式的要求;对运行中的电力系统,通过潮流计算可以预知各种负荷变化和网络结构的改变会不会危及系统的安全,系统中所有母线的电压是否在允许的范围以内,系统中各种元件(线路、变压器等)是否会出现过负荷,以及可能出现过负荷时应事先采取哪些预防措施等.2.潮流计算有哪些待求量、已知量?(已知量:1、电力系统网络结构、参数2、决定系统运行状态的边界条件待求量:系统稳态运行状态例如各母线上的电压(幅值及相角)、网络中的功率分布以及功率损耗等)3.潮流计算节点分成哪几类?分类根据是什么?(分成三类:PQ节点、PV节点和平衡节点,分类依据是给定变量的不同)4.教材牛顿—拉夫逊法及P—Q分解法是基于何种电路方程?可否采用其它类型方程?答:基于节点电压方程,还可以采用回路电流方程等.但是后者不常用。
第4章复杂电力系统潮流计算的计算机算法一、单选题1、电力系统潮流计算采用的数学模型是()。
A.节点电压方程;B.回路电流方程;C.割集方程;D.支路电流方程。
2、电力系统稳态分析时,用电设备的数学模型通常采用()。
A.恒功率模型;B.恒电压模型;C.恒电流模型;D.恒阻抗模型。
3、电力系统潮流计算时,平衡节点的待求量是()。
A.节点电压大小和节点电压相角;B.节点电压大小和发电机无功功率;C.发电机有功功率和无功功率;D.节点电压相角和发电机无功功率。
4、装有无功补偿装置,运行中可以维持电压恒定的变电所母线属于()。
A.PQ节点;B.PV节点;C.平衡结点;D.不能确定。
5、节点导纳矩阵为方阵,其阶数等于()。
A.网络中所有节点数 B.网络中除参考节点以外的节点数C.网络中所有节点数加1 D.网络中所有节点数加26、P—Q分解法和牛顿一拉夫逊法进行潮流计算时,其计算精确度是()。
A.P—Q分解法高于牛顿一拉夫逊法B.P—Q分解法低于牛顿一拉夫逊法C.两种方法一样D.无法确定,取决于网络结构7、潮流的计算机算法采用的功率是()。
A.线性方程组B.微分方程组C.积分方程组D.非线性方程组8.在电力系统潮流计算中,PV节点的待求量是()。
A.无功功率Q、电压相角δB.有功功率P、无功功率QC.电压大小V、电压相角δD.有功功率P、电压大小V9.牛顿拉夫逊法与高斯塞德尔法相比在计算潮流方面的主要优点是()。
A.收敛性好,计算速度快B.占用内存小C.对初值要求低D.简单7.解功率方程用的方法是()。
A.迭代法B.递推法C.回归法D.阻抗法11.潮流计算中的P—Q分解法是在哪一类方法的基础上简化来的?()。
A.极坐标形式的牛顿——拉夫逊法B.直角坐标形式的牛顿——拉夫逊法C.高斯——赛德尔法D.阻抗法12、计算机解潮流方程时,经常采用的方法是()。
A.递推法B.迭代法C.回归法D.替代法13、一般潮流分析中将节点分为几类()。
电力系统分析第04章复杂电力系统潮流计算潮流计算是电力系统分析的一个重要工具,用于计算电力系统中各节点的电压幅值和相角,以及各支路的功率潮流分布情况。
复杂电力系统潮流计算主要包括节点潮流计算和线路潮流计算两部分。
节点潮流计算是指计算电力系统各节点的电压幅值和相角。
节点潮流计算的基本原理是根据节点复功率方程和节点电流平衡方程,建立节点潮流计算的数学模型。
该模型可以用于计算电力系统中各节点的电压幅值和相角,并找出潮流计算过程中出现的问题。
线路潮流计算是指计算电力系统中各支路的功率潮流分布情况。
线路潮流计算的基本原理是根据支路潮流方程,建立线路潮流计算的数学模型。
该模型可以用于计算电力系统中各支路的功率潮流,包括有功功率、无功功率和视在功率等。
在复杂电力系统潮流计算中,需要考虑以下几个方面。
首先,需要确定电力系统的潮流计算方法,常用的有直接法、迭代法和改进迭代法。
直接法适用于小型电力系统,计算速度较快,但对于大型电力系统不太适用。
迭代法采用不断迭代的方式计算潮流,适用于大型电力系统,计算精度较高。
改进迭代法是对迭代法的改进,可以提高计算速度和精度。
其次,需要确定电力系统的节点类型。
电力系统中的节点可以分为平衡节点、PQ节点、PV节点和参考节点。
平衡节点的有功功率和无功功率都为零,用于维持整个系统的功率平衡。
PQ节点的有功功率和无功功率是已知的,需要通过潮流计算来确定该节点的电压幅值和相角。
PV节点的有功功率是已知的,需要通过潮流计算来确定该节点的无功功率和电压幅值。
参考节点是一个已知电压值的节点,作为其他节点电压相角的参考点。
最后,需要考虑电力系统潮流计算的收敛性和稳定性。
收敛性是指潮流计算的结果是否能够收敛到一个稳定的值。
如果潮流计算不能收敛,则需要调整潮流计算的参数或算法,以提高收敛性。
稳定性是指潮流计算结果对电力系统的扰动是否具有稳定的响应。
如果潮流计算结果不稳定,则需要进一步分析系统的动态行为,以寻找稳定的解决方案。
第4章复杂电力系统潮流计算复杂电力系统潮流计算是电力系统分析和运行中的关键问题之一、通过潮流计算可以获得电网各节点的电压、功率等信息,为电力系统的规划、调度和运行提供重要依据。
本章将介绍复杂电力系统潮流计算的原理及常用算法。
复杂电力系统潮流计算的目标是求解系统各节点的电压和功率,主要包括节点电压幅值和相位角。
常用的电力潮流计算算法有高斯-赛德尔迭代法、牛顿-拉夫逊迭代法和快速潮流算法等。
高斯-赛德尔迭代法是最常用的一种潮流计算方法。
该方法通过迭代计算各节点的电压幅值和相位角,直至满足收敛准则。
具体步骤如下:1.初始化各节点的电压幅值和相位角;2.根据节点电压和导纳矩阵计算节点注入功率;3.更新各节点的电压幅值和相位角;4.检查是否满足收敛准则,如果不满足则重复步骤2和3,直至满足。
牛顿-拉夫逊迭代法是一种更加精确的潮流计算方法。
该方法通过牛顿法和拉夫逊法相结合,通过雅可比矩阵的逆矩阵来迭代计算电压和功率。
具体步骤如下:1.初始化各节点的电压幅值和相位角;2.根据节点电压和导纳矩阵计算节点注入功率;3.根据雅可比矩阵计算节点电流和电压的偏导数;4.更新各节点的电压幅值和相位角;5.检查是否满足收敛准则,如果不满足则重复步骤2至4,直至满足。
快速潮流算法是一种高效的潮流计算方法。
该方法通过分解电力系统中的支路导纳矩阵,将潮流计算问题转化为不同节点之间的线性方程组求解问题,从而大大提高计算速度。
具体步骤如下:1.分解电力系统的导纳矩阵为戴维森分量和逆戴维森分量;2.根据节点电压和导纳矩阵计算节点注入功率;3.利用戴维森分量和逆戴维森分量计算节点电压幅值和相位角的变化量;4.更新各节点的电压幅值和相位角;5.检查是否满足收敛准则,如果不满足则重复步骤2至4,直至满足。
除了上述算法外,还有一些改进的算法用于复杂电力系统潮流计算,如改进的高斯-赛德尔迭代法、改进的牛顿-拉夫逊迭代法等。
这些算法在计算速度和计算精度上有所调整和改进,以满足电力系统不同场景下的需求。
第四章复杂电力系统潮流计算分析随着电力系统的规模不断扩大,出现了复杂的电力网络以及大量的电力设备。
因此,对于电力系统潮流计算的分析也变得愈加复杂。
本文将介绍第四章复杂电力系统潮流计算的分析。
复杂电力系统潮流计算的分析包括以下几个方面:电力系统模型的建立、潮流计算的方法、潮流计算的求解过程以及潮流计算的结果分析。
电力系统模型的建立是复杂电力系统潮流计算的基础。
电力系统模型是对电力系统的各种元件进行建模,包括发电机、变压器、输电线路、负荷等。
建立电力系统模型的关键是确定各个元件之间的拓扑结构以及元件的参数。
通常,电力系统模型会使用节点法进行建模,即将各个元件抽象为节点,然后利用节点间的支路阻抗建立网络拓扑。
建立电力系统模型的过程中,还需要考虑负载、发电机和输电线路的潮流方程,以及节点平衡方程等。
潮流计算的方法是对电力系统潮流进行计算的数值方法。
常用的潮流计算方法有牛顿-拉夫逊法、高斯-塞德尔法和快速潮流法等。
其中,牛顿-拉夫逊法是一种迭代法,通过不断迭代计算电力系统潮流,直到满足稳态潮流方程为止。
高斯-塞德尔法和快速潮流法也是通过迭代法计算潮流,但是它们相对于牛顿-拉夫逊法而言,计算效率更高。
对于潮流计算的求解过程,首先需要初始化各个节点的电压幅值和相角,然后利用潮流计算方法进行迭代计算。
在每一次迭代中,需要根据当前的电压幅值和相角计算节点注入功率,然后利用节点注入功率和节点间的支路阻抗计算节点的电压幅值和相角。
重复这个过程,直到误差满足收敛准则为止。
潮流计算的结果分析是对计算结果进行评估和分析,以便于进一步的电力系统规划和运营管理。
常见的结果分析指标包括节点电压、支路潮流、功率损耗等。
通过对这些指标的分析,可以评估电力系统的稳定性和安全性,发现潜在的问题并提出解决方案。
总之,复杂电力系统潮流计算的分析是电力系统规划和运营管理中必不可少的一环。
通过建立电力系统模型、选择合适的潮流计算方法并进行潮流计算,可以对电力系统的稳定性和安全性进行评估,为电力系统规划和运营提供决策支持。