加热炉基础知识
- 格式:doc
- 大小:72.50 KB
- 文档页数:27
加热炉知识1、什么叫加热炉的热负荷?我装置加热炉的热负荷各是多少?答:加热炉的热负荷是指在每小时内,炉管内被加热的介质所吸收的热量。
我装置加热炉的设计热负荷是:15F01:4860KW;16F01:76650KW;18F01:12220KW。
2、火嘴有几种?答:燃气型火嘴、燃油型火嘴和油气混烧型火嘴。
3、加热炉火焰如何算好?怎样调节?答:主火嘴火焰以中兰上黄为佳,调节手段通常有:调风门配风;调烟道挡板。
4、简述加热炉一般结构。
答:有辐射室、对流室、烟囱、余热回收系统和燃烧器等。
5、立式加热炉有几种型式?答:有筒式加热炉和箱式加热炉两种。
6、热量交换的方法有几种?答:传导.对流.辐射。
7、加热炉主要有哪些部分组成的?答:加热炉主要有烟道、箱体、炉管、火嘴几部分组成。
8、加热炉烟道内设挡板有什么作用?答:主要是调整炉内压力,调整烟气中的氧气含量,保证加热炉有较高的热效率。
9、加热炉按传热方式可分为哪两段?答:辐射段和对流段。
10、加热炉点火前的准备工作有哪些?答:加热炉点火前的准备工作有:(1)检查防爆门、看火窗,人孔是否关闭,清理可燃物及杂物,燃烧器安装正确,压力表可用,备好消防器材。
(2)引蒸汽到炉前,排凝结水。
(3)投用仪表,建立燃料油循环,准备点火棒。
(4)打开烟道挡板和通风门,置换炉膛气体。
11、简述加热炉点长明灯步骤?答:点长明灯步骤:(1)蒸汽吹扫炉膛.烟道挡板和一、二次风门置于1/3开度。
(2)确认点火/监测器已送电正常。
(3)点长明灯,三人配合,火把或电子点火,开长明灯阂前阀。
12、简述加热炉点长明灯注意事项?答:点长明灯时应注意如果三次点不着,需吹扫后再点。
13、简述加热炉日常检查内容。
答:加热炉日常检查内容有:(1)炉出口温度、炉膛温度,温差是否在指标范围内,火盆、炉管和衬里等是否正常。
(2)根据负荷变化,勤调“三门一板”,使效率最佳。
(3)余热回收系统电机振动.温度.蝶阀是否可自由开关,膨胀节.热管是否正常。
加热炉操作基础————————————————————————————————作者:————————————————————————————————日期:ﻩ加热炉操作基础1、阻火器的作用和工作原理是什么?答:阻火器的作用:是防止明火或常明灯的明火进入燃料气系统,造成燃烧爆炸事故。
烧不能继续而熄火。
2、加热炉为什么要设置防爆门?答:在加热炉未点火之前,如果炉膛内充满易燃气体,一遇明火或静电即会爆炸,这时防热炉设置防爆门的目的是为了防止加热炉爆炸时造成过大的损害。
3、风门的作用?烟道挡板的作用是什么?答:风门的作用是通过风门调节入炉空气量来调节火焰燃烧情况。
烟道挡板的作用是目的。
4、加热炉的负压是怎样产生的?为什么在负压下操作?答:由于烟囱内的烟气温度比外界空气高,气体密度相对较小,容易向上流动,这样就使操作影响很大,负压过大,入炉空气量多,使烟气氧含量增加,降低了炉子的热效率,且炉了炉子的热效率,因此要在适当的负压下操作。
5、加热炉为什么要保持一定的负压?答:燃料需要有一定量的空气存在才能燃烧,只有保持一定的负压,炉内压力比炉外压力气量就很小,燃料燃烧不完全,炉热效率下降,烟囱冒黑烟,炉膛不明亮,甚至往外喷火,会6、负压值应该保持多少为合适?答:一般炉膛负压应保持在-50~-100pa,烟道挡板开度增大还不能增加抽力,7、加热炉的负压对操作有何影响?答:加热炉的负压对操作影响很大,负压过大,烟气中过剩空气量增加,所以带走的热量增加烧不完全,也降低了炉子的热效率。
8、造成炉膛内压力增高的原因有哪些?答:(1)风门开得过大,过剩空气太多(2)烟道档板调节不当,烟道气引风机故障,对流排9、什么是炉膛温度?答:炉膛温度一般指烟气离开辐射室的温度。
炉膛温度是操作加热炉的一个重要工艺指标传给炉管的,传热量的大小与炉膛温度和管壁温度有关。
10、怎样理解物料在炉管中的流速和压力降?答:物料在炉管中的流速太低,则油品在炉管中的停留时间就长,容易在炉管内结焦,有速,有时也用重量流速来表示,即每秒通过每平方米炉管截面积的油品质量(kg/m2s)。
1.传热的基本方式及内容传热的基本方式有三种,它们是:①热传导;②对流;③热辐射。
2.热传导及其基本原理热量从物体中温度较高的部分传递到温度较低的部分或者传递到与之接触的温度较低的另一物体的过程称为热传导,简称导热,在纯导热过程中,物体的各部分之间不发生相对位移。
基础原理:气体的导热是气体分子作不规则热运动时相互碰撞的结果。
气体分子的与其温度有关,即高温区的分子运动速度比低温区的大,能量水平较高的分子与能量水平较低的分子相互碰撞的结果,热量就由高温处传到低温处,良好的导电体中有相当多的自由电子在品格之间运动,它们也能将热能从高温处传递到低温处。
而在非导电的固体中,导热是通过晶格结构的振动来实现的。
3.对流及热辐射的含义对流是指流体各部分质点发生相对位移而引起的热量传递过程,因而对流只能发生在流体中,在化工生产中常遇到的是流体流过固体表面时.热能由流体传到固体里面,或者由固体里面传入周围流体,这一过程称为对流传热。
热辐射当物质受热而引起其内部原子的复杂激动后.就会对外发射出辐射能。
这种能量是以电磁波的形式发射出来,并进行传播,当射到另一物体被吸收时,则又转变成热能.这种只与物体本身改变有关而引起的热射线的传播过程,称热辐射。
4.加热炉的辐射源1)火焰:悬浮着的游离炭。
2)烟气;Co2、H20、S02,N2等。
3)炉墙;炉墙温度高于炉管。
5.温度场一物体的内部.只要各点间有温度差存在,热就可以从高温度向低温度传导,即产生热流.而热流的大小,取决于物体内部的温度分布,物体(或空间)各点温度在任一瞬间的分布情况,称为温度场。
6.等温面温度相同的点所组成的面积为等温面.因为空间任一点不能同时有两个不同的温度.所以温度不同的等温面彼此不会相交。
7.导热系数导热系数表示物质的导热能力,是物质的物理性质之一,其数值常和物质的组成、结构、密度、压力和温度等有关。
8.固体的导热系数金属是良导电体.因而也是良好的导热体。
一、管式加热炉的结构及工作原理1.1 管式加热炉在炼油和石油化工中的重要性管式加热炉是一种火力加热设备, 它利用燃料在炉膛内燃烧时产生的高温火焰与烟气作为热源, 加热在炉管中高速流动的介质, 使其达到工艺规定的温度, 以供给介质在进行分馏、裂解或反应等加工过程中所需的热量, 确保生产正常进行。
与其他加热方式相比, 管式加热炉的主要优点是加热温度高〔可达1273K〕, 传热能力高和便于操作管理。
近60多年所来, 管式炉的发展很快, 已成为近代石化工业中必不可少的工艺设备之一, 在生产和建设中具有十分重要的地位。
例如: 一个年处理量为2.5Mt原油的常减压蒸馏装置, 虽所用的加热炉的座数不多, 但其提供的总热量却达70MW, 如果炉子加热能力不够, 就会限制整个装置处理能力的提升, 甚至无法完成预定的任务。
管式加热炉消耗的燃料量相当可观, 一般加工深度较浅的炼厂, 约占其原油能力的3%~6%, 中等深度的占4%~8%, 较深的为8%~15%, 其费用约占操作费用的60%~70%, 因此, 炉子热效率的凹凸与节约燃料降低成本有密切的关系。
此外, 管式炉炉管结焦、炉管烧穿、炉衬烧塌等事故也常常是迫使装置停工检修的重要原因。
在生产中, 希望生产装置能达到高处理量、高质量和低消耗以及长周期、安全运转, 大量施行说明, 管式炉的操作往往是关键之一。
管式炉的基建投资费用, 一般约占炼油装置总投资的10%~20%, 总设备费用的30%左右, 在重整制氢和裂解等石油化工装置中, 则占建设费用的25%左右, 因此, 加热炉制定选型的好坏, 还直接影响装置经济的合理性。
1.2 管式加热炉的分类和主要工艺指标管式炉的类型很多, 如按用途分有纯加热和加热-反应炉, 前者如: 常压炉、减压炉, 原料在炉内只起到加热〔包括汽化的作用〕;后者如: 裂解炉、焦化炉, 原料在炉内不仅被加热, 同时还应确保有一定的停留时间进行裂解或焦化反应。
加热炉基础知识加热炉的分类:1.有纯加热炉,如常压炉、减压炉等;有加热炉反应炉,如裂解炉、焦化炉等。
2.按传热方式分类:有纯对流式炉、辐射对流式炉和辐射式炉。
3.按炉型结构分类:有箱式炉、立式炉等。
4.按燃烧形式分类:底烧式炉、侧烧式炉。
5.按供风形式分类:强制供风炉、自然供风一、气体燃料的燃烧气体燃料的燃烧过程,实质上是化学反应,传热与传质,气体运动等基本现象构成的一个综合的物理化学过程。
气体燃料的燃烧是气体燃料中的可燃成分在一定条件下和氧气进行的激烈的化学反应。
在这个过程中放出大量的热并伴有发光现象。
工业就是利用燃料燃烧的放热和发光的性质通过一定的手段加以利用。
无论那种气体燃料,在燃烧本质上都包含以下三个过程。
1、燃料气和空气的混合;2、混合后的可燃气体的加热和着火;3、完成燃烧化学反应。
第一个过程:燃料气和空气的混合;工程上一般燃烧所需空气都是从空气中获得,气体燃料的燃烧需要的提供燃烧所需要的一定数量的氧气。
各种燃料完全燃烧所需要的空气量是不同的(又称燃料完全燃烧的理论空气量)。
气体燃料的燃烧不仅要提供所需要的空气,而且燃料气可空气的均匀混合也是气体燃料燃烧进行的重要条件。
气体燃烧器(俗称火嘴,烧嘴)的设计和操作应对气体燃料与空气的混合给予重视。
影响混合的因素很多,主要的有以下几个方面:1、燃料气与空气的流动方式主要可以归纳为四种,燃料气喷射到静止的空气中;燃料气和空气平行流动;燃料气和空气流动时相互之间有一定的夹角;燃料气和空气呈旋流运动。
这四种混合方式在各种不同的燃烧器中都有应用。
2、燃料气的流动速度燃料气的流动速度与火焰的长短有密切关系,在外混式燃烧器中,燃料气流速过大,会引起脱火;在半预混燃烧器中,燃料气流速过小会引起回火。
3、燃料气,空气的相对速度二者之间的相对速度也对混合有极大的影响,速度差越大,混合就越快。
从加速混合的角度来说,希望燃料气和空气混合时的速度差大一些比较好。
4、燃料气流直径的影响气流直径越大,完全混合的时间越长。
为了加速混合,可以将大股气流分成若干小股气流。
这就是一些大功率的燃烧器有多个燃料气喷嘴的原因。
5、燃料气的发热值当其他条件相同时,燃料气的发热量越大,燃烧需要的空气量就越多,其混合时间也就越长。
当炉子的燃料由热值低的燃料改为高热值燃料时,为了保证其完全燃烧,燃烧器在设计时需要注意改善燃料气与空气的混合条件。
这个也是一个燃烧只能适配一定种类燃料的原因。
6、空气过剩系数增大空气过剩系数,可以加速混合,使火焰变短,反之则混合缓慢,火焰拉长。
这两种情况都有一些实际利用的例子。
在使燃料能完全燃烧的情况下希望空气过剩系数越低越好。
但过低可能造成燃烧不完全,而过高将增加了炉内空气量,降低炉子的热效率,对于强制通风或引风,还将增加动力消耗,烟气中的氧含量过多也将增加对炉管和其他部件的损失。
第二个过程:混合后的可燃气体的加热和着火。
燃料气与空气充分混合后并不能使燃料燃烧,要使燃料气燃烧还需要使燃料气达一定的温度,这个温度俗称着火温度。
为了使燃料达到着火温度,工程上开工时一般是人工点火或电点火。
在炽热的炉膛内,烧嘴砖以及回流的高温烟气等都可以使得新燃料气很快加热到着火温度并达到稳定的燃烧。
第三个过程:完成燃烧化学反应。
燃料气和空气的混合物达到其着火温度之后,就立即开始剧烈的氧化反应过程,并放出大量的光和热,这就是可燃混合物的燃烧反映阶段。
气体燃料的燃烧时间由两部分组成。
燃料气与空气的混合时间较长而燃烧反应的时间很短。
在扩散燃烧时,由于燃料气与空气的混合时间远较燃烧反应时间长,燃烧时间主要取决于燃料与空气的混合时间。
所以扩散燃烧时燃料燃烧时间较长,火焰形状呈长火矩形。
预混性燃烧时,燃料气与空气在着火前已经混合好了,燃烧时间主要决定于燃烧反应时间。
燃烧反应时间短,燃烧反应速度快。
二、气体燃料的燃烧方式气体燃料的燃烧方式以其在燃烧前与空气的混合情况可以分为三种类型。
1、扩散燃烧;2、预混燃烧;3、半预混燃烧。
燃料气与空气的混合方式不同,燃烧状态也不相同。
1、扩散燃烧;燃料气未与空气先混合而进行的燃烧为扩散燃烧。
一般是将燃料气直接通入炉膛中,燃料气与助燃空气边混合边燃烧。
这是典型的扩散燃烧的例子。
通常所说的扩散燃烧有两中形式,层流扩散和紊流扩散。
层流扩散是分子之间的扩散,紊流扩散是燃料气分子团与空气分子团之间的转移。
紊流燃烧时,火焰表面被破坏,气体混合物分裂成许多微小的分子团散布在燃烧产物中燃烧,使得火焰面积增大,燃烧速度加快。
扩散燃烧火焰稳定性好,不会发生回火现象。
脱火的可能性也很小。
只有当气流的初速度超过某一极限值,周围的空气有供给不足或分子扩散的空气量过多,燃料气被空气冲淡时才可能发生脱火。
扩散燃烧的优点是可以在较大范围内改变燃料气出火孔速度,使负荷变化范围大。
但扩散燃烧火焰较长,容积热强度比较小;需要的过剩空气系数较大;容易造成燃烧不完全。
2、预混燃烧,半预混燃烧气体燃料在燃烧前就部分或全部与空气均匀混合好,这种燃烧方式为半预混燃烧或预混燃烧。
观察气体燃料从扩散燃烧逐步地改变成半预混燃烧的变化过程可以更加清楚地了解半预混燃烧燃烧,预混燃烧的特点。
在扩散燃烧时,火焰的形状是长矩形,火焰内部是燃料气,外部是助燃空气,燃料气与空气的混合是依靠扩散方式进行。
当开始预混空气后,火焰的形状开始发生变化。
当一次空气系数a<1时,火焰由两个锥体组成。
内锥体燃料气与空气是预混的,为动力燃烧,外锥体则是燃料气与空气的扩散燃烧。
这种火焰结构就是本生火焰。
(本生火焰造型请zsx加个图片吧。
我知道你有,就麻烦你了。
)随着一次空气系数a的增大,火焰逐渐变短。
当燃料气与空气在燃烧前已经全部混合均匀时,如果出口处有高温火源时,就形成无焰燃烧。
在石油化工工业炉上半预混燃烧的气体燃烧器得到广泛的应用。
我主要和大家聊聊火焰传播速度,燃烧脱火和回火。
1、火焰传播速度完全均相的可燃混合物着火后在着火处形成了燃烧焰面。
焰面之后是高温的燃烧产物,之前是尚未燃烧的可燃混和物。
由于可燃混合物的热传导和所形成的温度差,热量便开始向前传播,邻近的未燃气层的温度便升高,达到着火温度后就形成了新的燃烧焰面。
这种燃烧焰面不断向未燃气体方向传播的现象叫做火焰的传播过程,垂直与燃烧焰面的传播速度在一定条件下可以用实验方法测得。
这个速度一般称为法向火焰传播速度或火焰传播的基本速度。
在静止的气流或层流状态下可燃混合物的法向火焰传播速度很小,一般为每秒几厘米;对于最易燃烧的氢也只是每秒几米。
紊流火焰传播速度目前尚无数据。
按照火焰传播速度理论,要保持火焰的稳定,始终在固定位置上燃烧,就要使可燃物想燃烧焰面移动的速度与法向火焰传播速度相等。
当混合燃料气出火孔速度小于火焰传播速度时将发生回火;当混合燃料气出火孔速度大于火焰传播速度时将发生脱火。
回火或脱火都会使燃烧器和炉子不能正常工作,甚至发生事故,是应当避免的。
2.燃烧脱火燃料气与空气的混合物在燃烧焰面法线方向的速度分量大于该混合物的火焰传播速度,则火焰被推出火孔,开始离焰,直到火焰被吹跑造成火焰熄火——脱火。
燃烧器发生脱火是不允许的。
脱火与燃料气的性质,一次空气系数,燃料气离开火孔的速度等因素有关。
石油化学工业炉燃料气与空气混合物离开火孔速度一般都比较高,都超过其火焰传播速度。
但是燃烧器在结构上都有相应的措施保证不发生脱火现象,使火焰稳定燃烧。
这些措施是在混合燃料气出口处设有炽热的烧嘴砖或设有回流装置使得炉中高温烟气的一部分在混合燃料气出火孔处造成回流区。
所以尽管混合燃料气喷口速度较高,仍能保证火焰稳定的燃烧,不发生脱火现象。
燃料气与空气的混合物在燃烧焰面法线方向的速度分量大于该混合物的火焰传播速度,则火焰被推出火孔,开始离焰,直到火焰被吹跑造成火焰熄火——脱火。
燃烧器发生脱火是不允许的。
我来说一下加热炉的简单控制.由于下面的图片上传上来看不清楚.请下载word里面的图形看.炉出口温度与燃料油或燃料气的串级控制, 给炉出口温度一个设定值, 通过调整燃料油或燃料气流量控制炉出口温度炉出口温度与燃料油或燃料气的串级控制, 给炉出口温度一个设定值, 通过调整燃料油或燃料气流量控制炉出口温度炉膛负压一般采用单回路定值控制,根据炉膛内压力的高低来调整烟道挡板角度氧含量也采用单回路定值控制,根据实测的烟气中氧含量与设定的氧含量的偏差来调节进空气蝶阀开度空气量随燃料量的变化存在较大滞后,燃料量已经发生了变化,而空气量只有在检测到烟气中氧含量发生变化时,才由氧含量控制回路调整空气量的大小。
燃料量的变化会引起炉膛内压力的变化,只有在检测到炉堂内压力变化时,才由炉膛压力控制回路来调节烟道挡板角度,加热炉达到一个新的稳态需要较长的时间,影响加热炉的燃烧效果。
燃料与空气配比控制具体的控制图形见附件通过控制空气-燃料比保持烟道中规定的氧含量可实现加热炉的优化控制燃料流量与氧含量调节器的输出经过运算作为空气流量调节器的设定值,可消除空气流量随燃料流量变化的滞后,使加热炉烟气中氧含量保持在规定的范围内,改善燃料流量变化过程中加热炉的燃烧效果,使燃烧达到最佳状态,提高加热炉的热效率油气混合燃烧控制具体的控制流程图见附件,因为直接上传图形看不清楚.瓦斯的可用性通过低值选择器受到背压调节器(PC) 的限制,其流量经压力补偿之后,在加法器中与燃料油量相加。
加法器的刻度是基于事先计算好且考虑了这两种燃料的发热值以及它们的流量范围。
加法器的输出表示进入系统的总的热流量,该信号作为流量调节器(FC) 的测量值,受炉子出口温度调节器的控制,同时FC 的测量值也作为空气流量控制系统的输入。
当背压调节器将瓦斯的可用性限制在流量调节器所需的燃料量之下时,及时打开燃料油阀门,增加燃料油量,从而保证了炉出口温度在规定的范围内。
同时,燃料流量的变化作为空气流量控制的输入,及时地改变了空气流量大小,又保证了加热炉烟气中氧含量的稳定。
达到了多烧瓦斯少烧油,降低了能耗,提高了加热炉热效率。
氧含量控制:燃烧是一种氧化反应,若氧气不足则燃烧不完全,烟气中将带走大量CO;若氧气过量,则排烟量增多,烟气带走的热量多,同时,由于冷空气增多,一部分燃料白白消耗在为冷空气加热上,降低了火焰温度,导致热效率降低。
因此,氧气的量既要足够使燃料充分燃烧,又不能过剩太多,即应处于低氧(适当的) 燃烧状态。
把氧含量作为热效率的主要控制参数,将炉膛压力作为副参数,组成串级调节系统来调整烟道挡板的转角。
由于炉子的热效率与进料及燃料油(气) 的波动有直接或间接的联系,这些影响又集中反映在炉子的出口油品温度上,为此可用炉出口温度调节燃料流量和压力并前馈调节风门位置,以提高热效率。
炉膛压力控制:若炉膛压力过高,则火焰窜出,影响安全,且辐射室高温烟气的热量透过炉膛大量散失若炉膛压力过低,则高温烟气流速加大,带走的热量多若炉膛压力过低,则高温烟气流速加大,带走的热量多炉膛压力是一个分布参数,由下向上逐渐升高,且受进风量及雾化蒸汽(燃油炉) 等的影响。