密度泛含理论第八章 全电子(AE)能带理论方法
- 格式:pdf
- 大小:252.51 KB
- 文档页数:30
能带理论能带理论摘要阐述了能带理论提出的背景以及假设条件,在此基础上,主要给出了两个模型:近⾃由电⼦近似模型、紧束缚近似模型。
两者的假设不同,近⾃由近似模型认为价电⼦近似⾃由,晶体的周期性势场微扰很⼩;紧束缚近似模型认为电⼦受到原⼦核作⽤⽐较强,将其他原⼦的作⽤看做微扰。
两者共同基础是周期性势场中电⼦共有化运动,由两种模型研究电⼦的运动状态得出同⼀结论--能带。
在能带理论的基础上,定性的解释了绝缘体、半导体和导体。
Abstract This paper expounds the background and hypothesis of the theory of band theory,on the basis of it,two models are given:Near-free electron approximation model,tight-binding approximation model.Their assumptions are different,The near -free approximation model considers that the valence electrons are approximately free and the periodic potential of the crystal is very small;The tight-binding approximation model considers electrons are strongly affected by the nucleus,The role of other atoms as perturbation.The common basis of them is the electron co movement in the periodic potential field,It is concluded that the two models can be used to study the motion of electrons. On the basis of band theory, the properties of insulator, semiconductor and conductor are explained qualitatively.概述(背景、出发点)能带理论是讨论晶体(包括⾦属、绝缘体和半导体的晶体)中电⼦的状态及其运动的⼀种重要的近似理论。
密度泛函理论导言密度泛函理论(Density Functional Theory, DFT)是一种用于计算量子力学体系中电子密度的方法。
它是由Hohenberg 和Kohn于1964年首次提出,并在Kohn和Sham于1965年进行进一步发展。
密度泛函理论在固体物理、化学和生物物理等领域中得到了广泛的应用,并成为计算材料科学的重要工具。
基本原理密度泛函理论的基本思想是通过电子密度来描述体系的基态性质。
根据Hohenberg和Kohn的第一定理,任何物质的基态性质都可以通过其基态电子密度唯一确定。
而根据第二定理,存在一个能泛函,即总能量泛函,使得该能泛函在给定的电子密度下取得最小值。
根据Kohn和Sham的工作,总能量泛函可以分解为以下三个部分:动能泛函、外势能泛函和电子间排斥能泛函。
•动能泛函是电子动能的泛函,它可以用Kohn-Sham 方程的非相互作用的体系的Kohn-Sham轨道来表示。
该方程可以看作是一组单电子Schrödinger方程,其中电子之间的相互作用通过有效的外势能来描述。
•外势能泛函是不包括电子间相互作用的外势能的泛函,它可以通过实验数据或密度泛函理论本身得到。
•电子间排斥能泛函是电子之间的库伦相互作用的泛函,其一般采用Coulomb势能或同时考虑交换-相关作用的LDA(局域密度近似)或GGA(广义梯度近似)泛函来表示。
密度泛函理论的实现在实际计算中,密度泛函理论的实现包括以下几个关键步骤:1.选择适当的泛函:根据系统的性质选择合适的泛函,其中包括局域密度近似(LDA)和广义梯度近似(GGA)等方法。
2.确定电子密度:通过求解Kohn-Sham方程或自洽场方法确定电子密度。
3.计算物理性质:利用求解得到的电子密度计算相应的物理性质,如能带结构、吸附能等。
4.校正方法研究误差:对于一些复杂体系,密度泛函理论可能存在误差,可以通过校正方法如GW近似、自洽微扰理论等来提高计算的精度。
密度泛函理论引言密度泛函理论(Density Functional Theory,简称DFT),是一种理解和计算电子结构的方法。
它是解决多体问题的一种近似方法,它通过考虑物质中电子的密度来描述系统的性质。
密度泛函理论在凝聚态物理、量子化学和材料科学等领域都有广泛的应用。
DFT的基本原理密度泛函理论的基本原理是根据单体密度的基本原理制定的。
基本原理包含两个主要部分:\1.霍恩堡定理:一个体系的总能量可以通过经典电磁场和电子的交变相互作用来表示。
这个定理表明体系的总能量主要由电子的运动决定。
2.雅可比定理:任何一个电子系统的外势能和密度之间都有一一对应的关系。
根据这两个基本原理,密度泛函理论可以将多体问题转化为求解一个单粒子波函数的问题,进而可以计算得到体系的总能量和物理性质。
密度泛函的近似实际上,精确求解密度泛函的方程是非常困难的。
因此,人们提出了一系列近似方法来简化计算过程。
其中最著名的近似方法是局域密度近似(Local DensityApproximation,LDA)和广义梯度近似(Generalized Gradient Approximation,GGA)。
LDA近似假设体系的局部化性质是均匀的,通过将非均匀体系映射为均匀电子气来近似计算。
这种近似方法在实际计算中取得了一定的成功,但是对于一些体系来说,精度相对较低。
GGA近似在LDA的基础上引入了梯度信息,优化了近似表达式。
它对于局部化性质和径向分布提供了更准确的描述,因此在描述分子间相互作用和共价键性质方面更为准确。
应用领域密度泛函理论广泛应用于固体材料的研究。
例如,研究晶体的能带结构、电子态密度以及光谱性质等。
此外,密度泛函理论还可以用于研究分子的结构、反应动力学等。
密度泛函理论在计算材料性质和设计新材料方面也有广泛应用。
例如,它可以用于计算材料的弹性模量、热膨胀系数、热导率等宏观性质,以及预测新型材料的性质。
最后,密度泛函理论还可以应用于计算化学反应的能垒和速率常数,从而在催化剂的设计和反应机理的研究中发挥重要作用。
能带理论能带理论是目前研究固体中电子运动的一个主要理论基础,它预言固体中电子能量会落在某些限定范围或“带"中,因此,这方面的理论称为能带理论。
对于晶体中的电子,由于电子和周围势场的相互作用,晶体电子并不是自由的,因而其能量与波失间的关系E (k )较为复杂,而这个关系的描述这是能带理论的主要内容.本章采用一些近似讨论能带的形成,并通过典型的模型介绍能带理论的一些基本结论和概念。
一、三个近似绝热近似:电子质量远小于离子质量,电子运动速度远高于离子运动速度,故相对于电子的运动,可以认为离子不动,考察电子运动时,可以不考虑离子运动的影响,取系统中的离子实部分的哈密顿量为零。
平均场近似:让其余电子对一个电子的相互作用等价为一个不随时间变化的平均场。
周期场近似: 无论电子之间相互作用的形式如何,都可以假定电子所感受到的势场具有平移对称性。
原本哈密顿量是一个非常复杂的多体问题,若不简化求解是相当困难的,但 经过三个近似处理后使复杂的多体问题成为周期场下的单电子问题,从而本章的中心任务就是求解晶体周期势场中单电子的薛定谔方程,即其中二、两个模型(1)近自由电子模型1、模型概述 在周期场中,若电子的势能随位置的变化(起伏)比较小,而电子的平均动能要比其势能的绝对值大得多时,电子的运动就几乎是自由的.因此,我们可以把自由电子看成是它的零级近似,(222U m ∇+)()(r U R r U n=+而将周期场的影响看成小的微扰来求解。
(也称为弱周期场近似)2、怎样得到近自由电子模型近自由电子近似是晶体电子仅受晶体势场很弱的作用,E (K )是连续的能级。
由于周期性势场的微扰 E (K )在布里渊区边界产生分裂、突变形成禁带,连续的能级形成能带,这时晶体电子行为与自由电子相差不大,因而可以用自由电子波函数来描写今天电子行为。
3、近自由电子近似的主要结果1) 存在能带和禁带:在零级近似下,电子被看成自由粒子,能量本征值 E K0 作为 k 的函数具有抛物线形式.由于周期势场的微扰,E (k )函数将在 处断开,本征能量发生突变,出现能量间隔2︱V n ︱,间隔内不存在允许的电子能级,称禁带;其余区域仍基本保持自由电子时的数值。
密度泛函理论简单解释
密度泛函理论(DFT-Density Functional Theory)是一种有效的尺度求解原子、体系及材料计算电子结构的量子力学方法。
它使用必要的最少原子数,并不依赖总电子数来求取几何、动量、能量等概念。
它基于贝尔原理,由加权密度和能量进行结果推断。
DFT是基于自由电子模型(Free-electron model),它假设电子系统由Kohn-Sham动力学方程描述:在多电子体系中,密度泛函理论通过假设一个电子每核可能形成s轨道,并且每个轨道中的电子都是等于的,用一个统一的交换能力(Exchange potential)和一个相同的结合能力(Attractive potential)描述系统的模型,可以得到系统的几何结构、特征能量以及电子结构。
DFT能够提供更高的精度和更完整的描述,比如某个化合物分子结构微观上的属性、化学伴随反应物、物性参数,模拟系统机制及材料多种性质。
它是一个计算机科学研究中重要的理论工具,可用于理解有机和无机反应机理,包括某些生物医学方面的应用。
DFT也可以用来计算与结构有关的能量、力、磁场等,所以它是一种在物理化学方面有着极大价值的理论工具。
因此,密度泛函理论被广泛应用于量化计算、材料科学、催化反应研究、生物医学等诸多领域。
它不仅极大地简化了电子结构和能量计算,使我们能够使用计算机在尺度上求解物质特性,而且也得出了非常有意思的结果,为物理化学研究提供了新的工具。