5遗传的基本定律及其扩展
- 格式:ppt
- 大小:6.00 MB
- 文档页数:104
动物遗传学作业与习题第一章绪论一、名词解释1遗传 2 变异3遗传学二、思考题1 遗传学的发展历程。
第二章遗传的物质基础一、名词解释:1 染色质 2染色体 3染色单体 4 同源染色体 5异源染色体 6常染色质 7异染色质 8妹妹染色单体 9染色体组型 10核型 11双价体 12着丝点与着丝粒 13 联会 14端粒 15等臂染色体 16有丝分裂 17减数分裂 18核小体 19 C值与C值矛盾 20 卫星DNA 21小卫星DNA 22 微卫星DNA 23基因簇 24 基因家族 25 开放阅读框 26 基因组 27 信号肽序列 28 Chargaff当量定律二、思考题1 DNA作为遗传物质的证据极其论点?2染色体的四级结构。
3 基因的一般结构特征。
4 真核生物基因组的特点。
5 DNA分子中A-T和C-G碱基对中,那一种碱基对较易打开?为什么?6 DNA的二级结构和特点。
7如何解释C值矛盾。
8 一个含有转录位点上游3.8kbDNA的基因,其mRNA的转录活性比仅含有3.1kb上游DNA的基因转录活性大50倍,这表明什么?9染色质的类型及其特点?10试比较减数分裂与有丝分裂的异同点。
11同源染色体的分离分开,姐妹染色单体的分离分开,分别在细胞分裂的什么时期?12 家猪细胞染色体数2n=38,分别说明下列细胞分裂时期中有关数据:⑴有丝分裂前期和后期染色体的着丝粒数。
⑵减数分裂前期Ⅰ、后期Ⅰ、期Ⅱ和后期Ⅱ的染色体数。
⑶减数分裂前期Ⅰ、后期Ⅰ、末期Ⅰ的染色体数。
13体细胞中有四对染色体,其中A、B、C、D来自父本,A′、B′、C′、D′来自母本,通过减数分裂能形成几种配子? 写出各种配子的染色体组成?14 人们对基因的概念认识和发展过程。
15 mRNA, tRNA和rRNA各自的作用是什么?16 从4种不同物质分离出的核酸中各种碱基的比例(%)如下:物种 A T U G C 备注1 2 3 4 17302617183416332125333136(A+T)/(C+G)=2.1 (A+T)/(C+G)=1.0⑴每个物种的核酸是DNA还是RNA? 是单链还是双链?⑵填补物种4 中缺少的碱基百分比。
第五章遗传的基本定律及其扩展1.现代遗传学是建立在粒子遗传理论的基础上的,即(分离定律,自由组合定律和连锁与互换定律)三大定律。
2.孟德尔实验的方法和特点(1)孟德尔选用了适宜遗传的豌豆来做他的实验。
采用人工方法分别进行相互交配。
(2)特点:①实验材料都是能真是遗传的纯种②选择有明显区别的单位形状作为观察对象③对各代性状的表现进行??记载④应用统计方法确定相同性状的植株是否总是按相同比例出现⑤构思创建理论时表现的独创性3.性状:是生物体外观结构形态及内在生理生化特征的统称单位性状:每一种能被具体区分的性状统称单位性状相对性状:同一种性状的不同表现4.纯合杂交:在遗传学上指两个基因型不同的纯合体之间的交配5.显性性状:是指具有相对性状的纯种亲本杂交后代所表现的亲本性状隐性性状:是指具有相对性状的纯种亲本杂交后代自交既出现了显性性状又出现了隐形性状的现象6.分离现象的解释及验证解释:①P表示亲代。
红花品种豌豆细胞中有两个红花基因,白花品种中有两个白花基因。
产生的配子分别含有一个R或一个r基因,而配子受精并形成F1。
其细胞中为Rr基因组合,由于R对r为显性,因此F1(Rr)表现为红花性状。
②然后再让子代F1自交,F1形成配子时Rr分离,分别进入不同的配子中,且雌雄两种配子中含有R和r的配子数相同。
由于受精是随机的就形成了数量相等的4种配子组合形式。
即RR,Rr,Rr,rr. 所以红花与白花的比例在F2中为3:1验证:用白花亲本与杂合一代红花进行测交,所得子代中开红花与开白花的比例为1:1。
充分证明孟德尔遗传定律是正确的7.等位基因:在同源染色体上占据相同位点并控制着相对性状的一对基因复等位基因:占据同源染色体上同一位点的两个以上的基因基因型:由于配子随机受精形成的基因组合基因座:基因处于染色体上的固定位置表现型:生物体的外在特征表现(基因与基因型所能表现出来的生物体的各类性状)8.杂合体:由两个基因型不同的配子结合而形成的合子,自交后发生性状分离纯合体:由两个基因型相同的配子结合而形成的合子,自交后不发生性状分离测交:由隐形纯合体作亲本与杂合体交配,使杂合体所带有的基因种类和数量得以表现等显性:一对等显性的等位基因控制的性状假显性:如果带有显性的基因的一段染色体缺失了,同源染色体上隐性基因得到表现9.镶嵌型性状:显性现象来自两个亲本,两个亲本的基因作用,可以在不同部位表示出非等量的显性10.共显性:如果双亲性状同时在后代的同一个体表现出来,即等位基因同时得到表现,这种显性称为共显性完全显性:子代的表现型与显性亲本的表现型完全一致不完全显性:子代的变现不同于两个亲本,而介于两亲本之间11.法国遗传学家L·Guenat用小鼠作杂交实验。
第五单元遗传规律及其拓展B卷能力提升练一、单选题:本题共15个小题,每小题2分,共30分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.孟德尔杂交试验成功的重要因素之一是选择了严格自花授粉的豌豆作为材料。
自然条件下豌豆大多数是纯合子,主要原因是()A.杂合子豌豆的繁殖能力低B.豌豆的基因突变具有可逆性C.豌豆的性状大多数是隐性性状D.豌豆连续自交,杂合子比例逐渐减小2.孟德尔运用假说—演绎法最终得出遗传学的两大定律。
下列有关说法正确的是()A.选取豌豆作为实验材料的优点之一是可以免去人工授粉的麻烦B.F1测交子代表现型及比例能反映出F1产生的配子的种类及比例C.黄色圆粒(YyRr)豌豆产生Yr的卵细胞和Yr的精子的数量之比约为1:1D.基因的自由组合定律的实质是F1产生的雌雄配子随机结合3.遗传学发展史上有很多经典实验。
下列关于遗传学经典实验的叙述,正确的是()A.孟德尔豌豆杂交实验,需在F1花粉成熟前对其去雄并套袋B.噬菌体侵染细菌实验中可对噬菌体进行3H标记会更方便C .肺炎双球菌活体转化实验证明了不同物种间也可实现基因重组D.探究DNA的复制过程实验中,需将每代样品细菌破碎处理后提取DNA4.某二倍体植物雌雄异株,其性别由染色体上基因M、m决定,M决定雄株,m决定雌株;另一对染色体上的基因D决定高产,但基因型为Dd的雌株产量也较低。
以下叙述错误的是()A.该植物野生型的性别比例约为1:1,原因是不存在含基因M的卵细胞B.若对雄株进行单倍体育种只能获得雌株,则说明可能出现了基因型为M的单倍体加倍后即死亡的现象C.利用相关基因型均为Dd的雌雄植株杂交,子代高产植株中雄株:雌株=3:1D.基因型均为Dd的雄株与雌株产量不同,这在遗传学上属于伴性遗传5.鸡的性别决定方式为ZW型(染色体组成为WW的个体在胚胎期死亡)。
养鸡场的工作人员发现,原来下过蛋的母鸡,之后却变成了公鸡,长出公鸡的羽毛,发出公鸡样的啼声,这种现象称为性反转,性反转的动物遗传物质不变。
遗传的基本规律复习笔记一、遗传的第一定律1.孟德尔的豌豆杂交试验孟德尔的豌豆杂交试验:观察并分类记录杂交第一代(F1)和杂交第二代(F2)中具有各种性状的植株或种子数,进行统计与数学归纳。
2.一对性状的遗传分析(1)性状分离性状分离是指让具有一对相对性状的亲本杂交,F1全部个体都表现显性性状,F1自交,F2个体大部分表现显性性状,小部分表现隐性性状的现象。
(2)测交测交是指将F1杂种与隐性的亲本进行杂交,而证明F1杂种产生两种不同但数目相等配子的杂交方法,实质上是用隐性亲本来测验F1杂种基因型的一种回交。
(3)孟德尔对其实验结果提出了诠释的假设:①生物体的遗传特征是由基因决定的。
②每棵植株的每一对相对性状都分别由一对等位基因控制。
③每一个生殖细胞或配子中只含有每对等位基因中的一个基因。
④每一对基因中,一个来自父本的雄性生殖细胞,一个来自母本的雌性生殖细胞。
在形成下一代新的植株或合子时,雌、雄生殖细胞的结合是随机的。
⑤形成生殖细胞时,成对的基因相互分离,分别进入不同的生殖细胞中去。
(4)分离定律的内容在配子形成时,等位基因随着同源染色体的分开而分离,分离到不同的配子中去,独立地随着配子遗传给后代,在一般情况下,配子分离比是1:1,F2基因型分离比是1:2:1,F2表型分离比是3:1。
二、遗传的第二定律1.两对性状的遗传分析独立分配定律(自由组合定律)的内容:F1配子形成时,等位基因分离,非同源染色体上的非等位基因自由组合。
在一般情况下,F1配子分离比为1:1:1:1;F2基因型比为(1:2:1)2;F2表型比为(3:1)2即9:3:3:1。
2.人类筒单的孟德尔式遗传遗传学家采用分析系谱的方法来研究人类简单的孟德尔式遗传,即系谱分析法。
3.颗粒遗传理论颗粒遗传的理论是指每一个基因是一个相对独立的功能单位,在有性生殖的二倍体生物中,控制成对性状的基因是成对的,形成配子时,只有成对的等位基因才会相互分离。
考纲要求:
1.孟德尔遗传实验的科学方法(Ⅱ)
2.基因的分离
定律(Ⅱ)
3.基因的自由组
合定律(Ⅱ)
考纲要求:
1.伴性遗传(Ⅱ)
2.人类遗传病的类型
Ⅰ
3.人类遗传病的监
测和预防
4.人类基因组计划及其意义(Ⅰ)
注:不确定类型判断:
(1)代代相传,很可能为性;隔代相传,为性。
(2)男女患病个体数量均衡,可能为染色体遗传;男女患病个体数量不均衡,可能为遗传(男性患者多于女性患者,为伴染色体性遗传;女性患者多于男性患者,为伴染
再根据子代或亲代中的隐性性状个体填
空,确定出其基因型
最后用拆分法解题即可。
遗传学总结(完整版)动物遗传学(总结)第一章绪论1、遗传(heredity):后代和前代的相似性。
2、变异(variation):子代与亲代或子代与子代之间的不相似性。
3、遗传学:是研究遗传物质的结构与功能及遗传信息的传递与表达规律的一门科学。
第二章遗传的细胞学基础一、与遗传有关的细胞器1、线粒体:由双层膜围成的与能量代谢有关的细胞器,主要作用是通过氧化磷酸化合成ATP。
2、内质网:由单层膜围成一个连续的管道系统。
粗面内质网,表面附有核糖体,参与蛋白质的合成和加工;光面内质网表面没有核糖体,参与脂类合成。
3、核糖体:为椭球形的粒状小体,核糖体无膜结构,主要由蛋白质(40%)和rRNA(60%)构成,是细胞内蛋白质合成的场所。
4、中心体:中心粒加中心粒周边物质称为中心体。
或指动物真核细胞质中由两个中心粒组成的物质。
5、核仁:核仁是真核细胞细胞核内的生产核糖体的机器。
二、染色质与染色体1、染色质:是指染色体在细胞分裂的间期所表现的形态,呈纤细的丝状结构,含有许多基因的自主复制核酸分子。
2、染色体:在细胞分裂时期,在细胞核中容易被碱性染料染色、具有一定数目和形态结构的的杆状体。
3、染色质的类型P23:常染色质和异染色质染色质。
其中异染色质又分为结构染色质、兼性异染色质4、染色体的一般形态结构及分类P25:(1)形态结构:通常由长臂、短臂、着丝点、次缢痕、随体及端粒几部分组成。
(2)分类:A、B染色质、巨大染色体。
其中巨大染色体又分为多线染色体、灯刷染色体5、染色体的超微结构P26:两条反向平行的DNA双链。
:6、一倍体:只含有一个染色体组的细胞或生物(X)。
7、二倍体:由受精卵发育而来,且体细胞中含有两个染色体组的生物个体。
(2n)8、单倍体:含有配子染色体数的生物。
(N/2)9、单体:指比正常二倍体缺少一个染色体的个体。
(2n-1)10、缺体:指比正常二倍体(2n)缺少一对同源染色体的个体。
(2n-2)11、三体:指比正常二倍体多一个染色体的个体。
遗传的基本规律孟德尔定律遗传是生物学中一个重要的概念,它涉及到物种的进化和家族的传承。
在遗传学的研究中,孟德尔定律是基本的理论基础,对于遗传现象的解释提供了重要的线索。
下面将围绕孟德尔定律展开讨论,分析其基本规律和在实际应用中的意义。
一、孟德尔定律的概述孟德尔是19世纪著名的植物学家和遗传学家,他通过对豌豆的研究,发现了遗传的基本规律。
孟德尔定律主要包括两个方面:第一定律是关于同质性的,即纯合子与杂合子之间的配子比例规律;第二定律则是关于分离性的,即两个基因的分离和再组合;此外,还有一个重要的规律是显性和隐性的表现规律。
二、同质性的配子比例规律根据孟德尔的研究,同质纯合子与杂合纯合子之间的配子比例约为3:1。
这意味着,在同质纯合子的后代中,约有三分之一的个体表现出了与纯合子相同的性状,而剩下的两分之一则表现出与杂合子相同的性状。
这一规律通过孟德尔的豌豆实验得到了验证,对于后代性状的预测和控制具有重要的指导意义。
三、分离性和重组性的规律孟德尔通过豌豆实验还发现,不同基因的遗传是相互独立的。
这意味着,在杂合子的后代中,两个基因会分离,并独立地遗传给下一代。
这为后代的遗传性状提供了多样性,也为物种的适应和进化提供了基础。
同时,孟德尔还观察到,基因的分离是随机的,不同基因之间会重新组合,形成新的组合,从而增加了遗传的多样性。
四、显性和隐性的表现规律孟德尔定律还涉及到显性和隐性遗传因子的表现规律。
根据孟德尔的实验结果,显性遗传因子会表现出来,而隐性遗传因子则不会表现出来,只有在杂合纯合子之间的交配中才会显露出来。
这一规律解释了为什么某些性状在父母中并没有表现出来,但在子代中却会出现,并且经过多代的分离和重组,显性性状会逐渐增多。
五、孟德尔定律的应用意义孟德尔定律的发现和理论基础为遗传学的发展奠定了坚实的基础。
它不仅对于理解和解释遗传现象具有重要意义,也为现代遗传学和分子生物学的研究提供了参考。
通过对孟德尔定律的研究,人们可以预测和控制后代的性状,培育和改良农作物,甚至治疗一些遗传性疾病。
孟德尔遗传定律及其实验验证与扩展孟德尔遗传定律是遗传学的基石之一,它是奥地利植物学家格雷戈尔·约翰·孟德尔于19世纪中叶通过对豌豆的研究得出的。
孟德尔通过一系列的实验,揭示了遗传过程中的基本规律,为遗传学的发展奠定了基础,并对后来的科学家产生了深远的影响。
孟德尔的实验主要集中在豌豆的性状上,他选择了一些明显可见的性状,如花色、种子形状和颜色等。
他首先通过自交纯合的豌豆品种得到了纯合的F1一代(第一代),他发现F1一代都具有与亲本相同的性状。
然而,当不同性状的F1一代互相杂交时,他得到了意料之外的结果。
孟德尔的实验得出了三个重要的遗传定律。
第一定律是隔离定律,也称为分离定律或纯合子定律。
它表明,在性状的遗传过程中,一个纯合性状的个体与另一个纯合性状的个体杂交时,其后代(F2一代)中纯合性状与杂合性状的比例为3:1。
这意味着,孟德尔发现了性状的“隐性”和“显性”的遗传现象。
第二定律是自由组合定律,也称为独立定律。
它表明,不同性状的遗传是相互独立的,即它们的遗传并不影响彼此。
这意味着,单个性状的遗传是独立的,不会因其他性状的遗传而改变。
第三定律是合并定律,也称为互作用定律或复显性定律。
它表明,当两个基因同时存在于一个个体中时,它们会相互影响,产生新的性状表现。
这一定律揭示了基因之间的相互作用与影响。
孟德尔的实验验证了这些定律,并且预示了基因的存在。
然而,在当时,孟德尔的工作并没有受到科学界的广泛关注,直到几十年后才被重新发现并得到认可。
20世纪初,遗传学家才开始进一步研究孟德尔遗传定律,并将其与分子遗传学相结合,从而进一步拓展了孟德尔的工作。
分子遗传学的发展使我们能够更深入地理解孟德尔遗传定律背后的机制。
我们现在知道,孟德尔的基因是由DNA分子组成的,在遗传过程中,基因通过DNA的复制和重组来传递。
通过分子遗传学的研究,我们逐渐揭示了基因的结构和功能,以及基因与表现型之间的关系。
除了分子遗传学的发展之外,孟德尔遗传定律在植物育种和人类遗传学方面也得到了广泛的应用。
高中生物遗传的基本规律遗传是生物学中的重要概念,指的是生物在繁殖过程中通过基因传递性状的现象。
遗传学家们通过研究发现了一系列的基本规律,揭示了遗传的奥秘。
本文将介绍高中生物中基因组成、遗传的基本规律以及遗传变异等方面的知识。
1. 基因是遗传的基本单位基因是一个生物体内某一特定性状的遗传单元,是控制遗传性状和生物体发育的分子。
DNA是基因的主要组成部分,由四种碱基(腺嘌呤、胸腺嘧啶、鸟嘌呤和胞嘧啶)组成。
基因位于染色体上,在有丝分裂过程中,染色体会复制自身,保证每个子细胞都含有完整的基因组。
2. 孟德尔的遗传定律孟德尔是遗传学的奠基者,他通过对豌豆花的杂交实验,总结了遗传的基本规律,现在被称为孟德尔的遗传定律。
这些定律包括:第一定律(互斥性定律):对于每一个特征有两个因子,个体的每一个配子只能传递一个;第二定律(独立性定律):不同特征相互独立遗传;第三定律(分离性定律):两个杂合子进行自交时,等位基因会分离并重新组合。
3. 隐性遗传与显性遗传在孟德尔的实验中,他发现有些性状可以通过自交得到稳定的表现,称为显性遗传,而有些性状只有在杂交后才能得到表现,称为隐性遗传。
隐性遗传的性状在隐性基因控制下,只有个体同时携带两个隐性基因时才会表现出来。
4. 基因型和表型基因型是指一个个体所具有的基因的组合,而表型则是指基因型在环境中的表现形式。
一个个体的表型由基因型和环境的共同作用决定。
在人类中,一些疾病和性状的表现形式与基因的组合密切相关,如血型、色盲等。
5. 遗传变异遗传变异是生物体在繁殖过程中产生的基因组变化。
遗传变异可以是突变引起的,也可以是基因重组引起的。
突变是指DNA序列的改变,可能是由于环境因素或者自然修复错误导致的。
基因重组则是指染色体在有丝分裂或减数分裂中的染色体交换过程。
总结:高中生物中,遗传的基本规律是遗传学的核心内容。
通过了解基因的组成、遗传定律、隐性遗传与显性遗传、基因型与表型以及遗传变异等方面的知识,我们可以更好地理解生物遗传的基本原理。
动物遗传学复习一、发展史1856~1865年间,孟德尔发现了遗传学中的两条基本规律,即分离定律和自由组合定律.1909年丹麦生物学家约翰逊把遗传因子改名为基因。
1910年,摩尔根和他的3位弟子发现经典遗传学中的第三个基本规律——遗传连锁规律。
并且在1926年发表了著名的《基因论》首次阐明了基因在上下代之间的传递规律。
1953年沃深和克里克准确地阐明了DNA双螺旋分子结构。
1944年由Oswald Theodore A very 等人完成的肺炎双球菌的转化实验和1952年Alfred Day Hershey和Martha Chase 通过噬菌体的感染实验证明了DNA是主要的遗传物质。
1957年Heinaz Fraenki-Conrat 和B. Singre 通过烟草花叶病毒实验证实RNA也是遗传物质。
1985年Karry Mullis 发明了聚合酶链式反应(PCR)技术。
二、遗传的物质基础DNA是遗传物质的旁证:1、细胞核中DNA的含量和质量的恒定性。
2、紫外线诱变作用于DNA的关系。
DNA一级结构:指DNA分子中4钟核苷酸的连接方式和排列顺序。
1943年英国Chargaff 腺嘌呤(A)和胸腺嘧啶(T),鸟嘌呤(G)和胞嘧啶(C)的摩尔含量总是相等的这一定律被称为Chargaff当量定律。
DNA二级结构:指两条核苷酸链反向平行盘绕所生成的爽螺旋结构。
跳跃基因:原核生物和真核生物中发现基因组中的某些成分位置的不固定性是一个普遍现象。
这些转移的成分叫跳跃基因。
断裂基因:绝大部分真核基因的编码序列是不连续的,它们往往被一些非编码的DNA序列间隔开,形成一种断裂结构,这些非编码的DNA在转录后的RNA加工过程中被剪切掉。
外显子:断裂基因中的编码序列。
内含子:非编码的间隔序列。
GT-AG法则:在没个外显子和内含子的接头区,有一段高度保守的共有序列,即每个内含子的5’端起始的两个核苷酸都是GT,3’端末尾的两个核苷酸都是AG,这是RNA剪接的信号,这种接头形式叫GT-AG法则。