中央冷却水温控制系统
- 格式:pptx
- 大小:2.40 MB
- 文档页数:39
水冷中央空调工作原理
水冷中央空调是一种利用水循环来实现空调功能的系统。
它通过循环水来吸取热量并将热量排放到外部环境中,从而达到降低室内温度的目的。
具体的工作原理如下:
1. 压缩机:水冷中央空调系统中的压缩机是其中最重要的组件之一。
它将低温低压的制冷剂气体吸入并将其压缩,使其温度和压力升高。
2. 蒸发器:在蒸发器中,高温高压的制冷剂经过节流阀进入,由于节流后的压力突然降低,使得制冷剂的温度迅速下降。
这样,在蒸发器内的水向制冷剂传递热量,水温下降,制冷剂变成低温低压的气体。
3. 冷凝器:低温低压的制冷剂气体进入冷凝器后,通过外部的冷水对其进行冷却。
在冷却的过程中,制冷剂释放出的热量被传递给冷水,同时制冷剂又变成高温高压的气体。
4. 冷却塔:高温高压的制冷剂气体进入冷却塔,并且通过空气或水的冷却作用,使得制冷剂的温度降低。
5. 膨胀阀:高温高压的制冷剂通过膨胀阀进入蒸发器,膨胀阀作用是通过节流作用,将其压力降低,使得制冷剂的温度降低。
通过以上的工作过程,水冷中央空调系统能够实现循环制冷,从而达到降低室温的目的。
同时,这种系统还能够通过调节冷凝器和冷却塔的工作状态来实现室内温度的控制和调节。
整个
系统通过水的循环流动实现热量的传递,有效地将室内的热量排出,从而达到室内降温的效果。
摘要随着计算机技术、测量仪器和控制技术的高速发展,在现代自动控制领域中,应用了越来越多的先进测量控制技术、设备和方法。
在这些众多的先进测量控制技术中,由于单片微处理器的性能日益提高、价格又不断降低,使其性能价格比的优势非常明显。
因此,如何将单片微处理器应用到船舶自动控制领域,成为目前轮机自动化的焦点课题之一,为越来越多的科研机构所重视。
PID水温控制调节方法出现时间较早,已被大部分现代船舶所淘汰。
因此本文针对传统的柴油机中央冷却系统水温PID控制系统算法较为复杂,不能准确、快速、灵敏、稳定的调节柴油机冷却水的温度,提出了基于89C51单片机的智能冷却水调节系统的控制方案和具体方法。
在建立柴油机中央冷却系统高温淡水(缸套冷却水)冷却回路的动态热力模型基础上,将柴油机功率模糊信号引入到了高温冷却水温度控制系统中。
通过调节三通阀的开度,从而可以达到降低冷却水温度的动态偏差,快速而准确的调节冷却水温度的目的。
比较得出基于功率信号模糊预调节与水温Smith+PID调节的智能控制方法,明显优于常规PID控制方法。
在实际应用中实现了对船舶柴油机冷却水的智能精确控制,减少了油耗,延长了发动机的使用寿命。
关键词:智能控制;89C51单片机;精度高;速度快1AbstractWith the rapid development of computer technology, measuring instruments and control technology, the application of advanced measurement and control technology, equipment and methods were applied in the modern field of automatic control. Due to the improving performance and decreasing price of single-chip microprocessor, its cost performance became outstanding beyond the numerous advanced measurements and control technologies. Therefore, one of the focuses of the current turbine automation topics is to apply the single-chip microprocessor into ship automatic control, which has been paid attention to by more and more research institutions.PID temperature control adjustment method, which has the problems of complexity and can not accurately, rapidly, sensitively and stably control the diesel’s cooling system, had been eliminated by most modern ships. Therefore, this essay will focus on the the problems of the PID control system algorithm of the central cooling system water temperature in conventional diesel engines, and propose a control scheme and approach which is based on the 89C51 micro-controller smart cooling water conditioning system. The solution is to introduce the engine power fuzzy signal into a high-temperature cooling water temperature control system by establishing a dynamic model of the central engine cooling system temperature fresh water ( jacket cooling water ) cooling circuit on the basis of thermodynamic model. By adjusting the opening degree of the three-way valve to achieve the aim of reducing the dynamic deviation of water temperature and quickly and accurately adjusting the cooling water temperature. It can be significantly better than the conventional PID control methods system simulation studies which gains fuzzy intelligent control power signal pre-conditioning and water -based Smith + PID regulator. In practical applications, not only precise control of intelligent engine cooling water vessel is achieved, but also the fuel consumption is reduced and the life of the engine is extended.KEY WORDS:intelligent controls,89C51 microcomputer, high precision, high speed2目录摘要 (1)ABSTRACT (2)第1章绪论 (5)第2章船用柴油机中央冷却系统 (10)2.1船用柴油机中央冷却系统工作过程 (10)2.2系统的构成 (10)2.2.1 系统结构图 (11)2.2.2 系统各组成部分功能说明 (11)2.3 系统的性能指标 (13)2.3.1 系统的主要技术功能 (13)2.3.2 系统的性能特点 (14)第3章系统硬件组成 (15)3.1 系统硬件组成结构图 (15)3.2 系统各部分结构 (16)3.2.1 测温电路 (16)3.2.2 A/D转换电路 (17)3.2.3 键盘与显示电路: (18)3.2.4 串行通讯模块: (19)3.2.5 声光报警电路: (19)3.2.6 主控单元(MCC): (20)第4章系统软件介绍 (22)4.1 温度控制系统算法 (22)4.1.1 系统的整体控制 (22)4.1.2 算法介绍 (23)4.2 计算机软件及功能 (28)4.3 单片机的软件设计 (30)34.3.1 主程序: (31)4.3.2 T.0中断服务子程序 (32)4.3.3 串行口中断服务程序 (33)第5章系统可靠性研究 (34)5.1 系统硬件的可靠性设计 (34)5.2 系统软件的可靠性设计 (36)第6章结论 (38)致谢 (39)参考文献 (40)4第1章绪论1.1课题提出背景船舶柴油机冷却水温度控制技术是轮机自动化技术的重要组成部分。
前言虽然航运业的形式很多,船舶运输还是在其中占有很大的比重。
随着海运业的不断发展,各式各样的特种船舶广泛的应用。
因此,对船舶系统的研究需不断地提高和优化,为船舶动力装置的发展做出努力。
船舶的冷却系统是一个具有复杂形式的系统,合理地选择一种冷却系统对整个船舶航运的经济性,维修性是非常重要的,这与造船成本和船东的使用成本都具有很大的影响。
中央冷却系统作为船舶冷却系统的一种冷却形式在现代船舶上的运用越来越广泛,对其的研究及优化是一个重要的课题。
在我国的船舶行业中,对中央冷却系统的介绍和研究还不是很多,然而在现行的船舶中,船东特别是大公司的船东越来越倾向于中央冷却系统。
中央冷却系统对于船厂来说提高了制造成本,对于船东来说提高了设备的可靠性,降低了维修费用,因此,对中央冷却系统的进一步研究有利于船厂降低成本,提高中央冷却系统的运用深度有很大帮助。
在韩国和日本等造船强国,中央冷却系统的设计有着很详细的设计基准,他们通过众多的船舶设计人员在实际设计和使用后总结出一整套设计标准,按照这种标准,使得他们船舶的设计既符合各方面的要求,又降低了设计成本。
在我国,大部分船厂都没有中央冷却系统的设计的标准,而韩国日本等造船强国又对我们进行技术封锁,我们以前很多船舶系统的设计中,只是部分采用了中央冷却系统的原理,并没有达到完整,经常会出现各种问题,引起在实际制造中大量的返工,造成人力物力的浪费,同时在设计过程中,为了保证各种设备能正常工作,对中央冷却系统设置了大量的余量,增加了设计成本。
本文通过了对中央冷却系统的各种形式的介绍和以往的中央冷却系统所产生问题的分析,使中央冷却系统的理论系统化,完善化,以供设计人员及其他相关人员参考。
第一章船舶中央冷却系统的概述1.1 船舶冷却水系统的发展为了使柴油机和其他辅助设备受高温和摩擦作用的部件保持正常稳定的工作性能,必须对这些部件进行冷却。
冷却系统的作用就是把冷却介质送到受热部件,将其多余的热量带走。
一、冷机启停逻辑(DDC内控制程序)1、冷机启动→平台选择了冷机模式,并且发送了启动命令(开始计时)→水泵、冷却塔、冷机没有故障,且没有切为本地,否则报故障,机组停机,切机→冷机模式对应的1个阀门开到位,否则报故障,机组停机,切机→冷却塔进水阀开度>80%,否则报故障,切机→开启冷却水循环泵,冷却水循环泵频率>(设定启动频率-5)→开启冷却塔,冷却塔频率>25HZ→开启冷冻水泵,冷冻水泵频率>(设定启动频率-5)→开启冷机,系统运行状态返回(计时清零,正常启动完成,如果超过3分钟没有状态返回,启动故障处理程序)→冷机启动完成2、冷机关闭→平台选择了冷机模式,并且发送了关机命令(开始计时)→给冷机发送关机指令,冷机停机,冷机运行状态为OFF,开始计时→计时时间=300S(5分钟),关闭冷冻水循环泵→计时时间=360S(6分钟),冷冻水泵运行状态为OFF,关闭冷却水循环泵→冷冻水流量<20且冷却水流量<20,关闭冷却塔→冷机关闭完成3、板换启动→平台选择了板换模式,并且发送了启动命令(开始计时)→水泵、冷却塔、冷机没有故障,且没有切为本地,否则报故障,机组停机,切机→板换模式对应的4个阀门开到位,否则报故障,机组停机,切机→冷却塔进水阀开度>80%,否则报故障,切机→开启冷却水循环泵,冷却水循环泵频率>(设定启动频率-5)→开启冷却塔,冷却塔频率>25HZ→开启冷冻水泵→板换启动完成4、板换关闭→平台选择了板换模式,并且发送了关机命令(开始计时)→计时时间=30S(半分钟),关闭冷冻水循环泵→计时时间=60S(6分钟),冷冻水泵运行状态为OFF,关闭冷却水循环泵→冷冻水流量<20且冷却水流量<20,关闭冷却塔→板换关闭完成二、冷机故障切换逻辑1、故障条件➢大前提:制冷单元发送了开机命令或者在运行中➢设备(冷机、冷冻水泵、冷却水泵、冷却塔)切换到本地模式➢设备(冷机、冷冻水泵、冷却水泵、冷却塔)故障➢冷机断电(延时10S(可设置)时间没有恢复)。
中央空调系统简介随着我国国民经济的快速增长,中央空调被广泛使用,尤其是城市的宾馆、饭店、大型商场、娱乐场所、大型写字楼、办公楼、现代化生产车间都相继安装了中央空调设备,它不仅给人们带来舒适的环境,同时也被用来调节工业生产所需环境的温度和湿度。
中央空调循环水系统包括冷却水系统、冷冻水系统和采暖水系统。
冷却水系统是由热交换器、冷却水泵、管道、冷却塔、贮水池组成。
冷却水在冷冻机里冷却受热受压的制冷剂,温度上升至37℃左右,经水泵送至冷却塔,冷却后返回至冷冻机中循环使用。
冷冻水系统是由热交换器、冷冻水泵、管道、风机盘管、膨胀水箱组成。
冷冻水在冷冻机中被制冷剂冷却至7℃左右后送往风机盘管,与空气进行热交换升温至12℃左右后,再返回到冷冻机中被冷却。
热媒水在热水锅炉中被加热至60℃左右后送往风机盘管,与空气进行热交换降至55℃左右后,再返回到锅炉中加热。
热水和冷冻水共用一套管道系统。
1.中央空调系统特点中央空调一般承担着夏季供冷、冬季供热的任务,春季和秋季停机检修或保养,即使在正常运行期间也根据气温的变化和工作环境的需要停机。
大多数企事业单位由于编制上的限制不设专门水处理技术管理人员,实行粗放式管理,因此,水处理技术和方案对这一情况应有较强的适应性,既要有良好的处理效果,又要管理简单方便,水处理成本低廉。
2.冷冻水系统特点冷冻水系统是以水做冷媒介质和空气进行能量交换的密闭式体系,虽然与外界接触较少,但在整个体系的最高处设有膨胀水箱,这样冷冻水介质还是和空气有所接触,使溶解氧和一些营养物进入冷冻水系统,导致粘泥沉积,不仅影响传热,还可能形成氧浓差引起设备的腐蚀,经常出现黄褐色水质或黑灰色水质。
因此,对于冷冻水系统水处理的重点是控制设备的腐蚀及粘泥的产生。
3.冷却水系统特点冷却水在循环使用过程中不断蒸发浓缩,含盐量不断上升,为了不使含盐量无限制的升高,必须排放掉一部分冷却水,同时补入新鲜水,前者称之为排污,后者称之为补水。
船舶柴油机冷却水温度控制系统IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】摘要船舶柴油机冷却水的温度是影响柴油机工作的重要热工参数。
精确控制冷却水的温度,对于提高柴油机的动力性、减少废气的产生、减少燃料消耗量等方面都有着重要的意义。
本设计的单片机系统采用了AT89C51作为微处理器,采用铂电阻(pt100)作为温度传感器,与运算放大器(op27)相结合构成精密测温电路,采用了ADC0809芯片作为精密测温电路与单片机的转换通道。
键盘矩阵采用2行3列非编码方式,显示部分为3位LED数码管显示,看门狗电路采用了较为常见的X25045芯片。
系统输出环节通过单片机输出口传递输出控制信号,经光电藕合4N25和模拟开关CD4052后去控制继电器的通断,进而控制三相伺服交流步进电机电机的旋转,当实际温度偏高时,单片机输出控制信号使正转继电器通电,伺服电机正转,改变三通调节阀的开度,增加流过淡水冷却器的淡水量,使淡水温度降低;当实际温度偏低时,单片机输出控制信号使反转继电器通电,伺服电机反转,改变三通调节阀的开度,增加旁通冷却水流量,使淡水温度升高,最终起到温度控制的作用。
本设计引入了功率模糊控制信号的智能温度控制系统,有效地克服了水温的时滞特性,大大地降低了冷却水温度的超调量,并提高了系统的响应速度;采用屏蔽与隔离技术,提高了控制系统在恶劣环境中的抗干扰能力;采用指令冗余及数字滤波技术,提高了系统的软件抗干扰能力。
关键词:船舶柴油机;冷却水温度;单片机;数码管显示AbstractThe temperature of cooling water of marine diesel engine is an important reference. It is very significant to control the temperature of cooling water accurately. For improving the power performance of diesel engine, decreasing the exhausting and saving fiiel.The design of the SCM system uses AT89C51 as the microprocessor, using platinum resistance (pt100) as a temperature sensor, and operational amplifiers (op27) combined constitute precise temperature measurement circuit, using ADC0809 chip as precision temperature measurement circuit and microcontroller conversion channels. Keyboard matrix using two rows three non-coding mode, the display part of the three LED digital tube display, the watchdog circuit uses more common X25045 chip. System output link passing through the microcontroller output port output control signal, the optical coupling and analog switches CD4052 4N25 go after control relay off, and then control three-phase AC servo motor stepper motor rotation, when the actual temperature is high, the microcontroller output control signal forward relay is energized, the servo motor is transferred, changed way regulating valve opening, increasing freshwater flowing fresh water cooler, so that fresh water temperature decreases; when the actual temperature is low, the microcontroller output control signal reverse relay is energized, reversing the servo motor, three-way valve to change the opening degree of the bypass cooling water flow increases, the fresh water temperature, the temperature control end play a role.This design introduces a fuzzy control signal power intelligent temperature control system, effectively overcome the delay characteristics of the water temperature, which greatly reduces the cooling water temperature overshoot, and improves system response speed; using shielding and isolation technology, improve the control system in the harsh environment of the anti-jamming capability; using instruction redundancy and digital filtering technology to improve the system's software anti-jamming capability.Key Words:SMarine Engine; Temperature of Center Cooling Water System; SCM; Digital display目录第1章绪论1.1课题背景船舶柴油机冷却水温度控制技术是轮机自动化技术的重要组成部分。
船舶中央冷却⽔系统的常见故障与分析--讲解前⾔虽然航运业的形式很多,船舶运输还是在其中占有很⼤的⽐重。
随着海运业的不断发展,各式各样的特种船舶⼴泛的应⽤。
因此,对船舶系统的研究需不断地提⾼和优化,为船舶动⼒装置的发展做出努⼒。
船舶的冷却系统是⼀个具有复杂形式的系统,合理地选择⼀种冷却系统对整个船舶航运的经济性,维修性是⾮常重要的,这与造船成本和船东的使⽤成本都具有很⼤的影响。
中央冷却系统作为船舶冷却系统的⼀种冷却形式在现代船舶上的运⽤越来越⼴泛,对其的研究及优化是⼀个重要的课题。
在我国的船舶⾏业中,对中央冷却系统的介绍和研究还不是很多,然⽽在现⾏的船舶中,船东特别是⼤公司的船东越来越倾向于中央冷却系统。
中央冷却系统对于船⼚来说提⾼了制造成本,对于船东来说提⾼了设备的可靠性,降低了维修费⽤,因此,对中央冷却系统的进⼀步研究有利于船⼚降低成本,提⾼中央冷却系统的运⽤深度有很⼤帮助。
在韩国和⽇本等造船强国,中央冷却系统的设计有着很详细的设计基准,他们通过众多的船舶设计⼈员在实际设计和使⽤后总结出⼀整套设计标准,按照这种标准,使得他们船舶的设计既符合各⽅⾯的要求,⼜降低了设计成本。
在我国,⼤部分船⼚都没有中央冷却系统的设计的标准,⽽韩国⽇本等造船强国⼜对我们进⾏技术封锁,我们以前很多船舶系统的设计中,只是部分采⽤了中央冷却系统的原理,并没有达到完整,经常会出现各种问题,引起在实际制造中⼤量的返⼯,造成⼈⼒物⼒的浪费,同时在设计过程中,为了保证各种设备能正常⼯作,对中央冷却系统设置了⼤量的余量,增加了设计成本。
本⽂通过了对中央冷却系统的各种形式的介绍和以往的中央冷却系统所产⽣问题的分析,使中央冷却系统的理论系统化,完善化,以供设计⼈员及其他相关⼈员参考。
第⼀章船舶中央冷却系统的概述1.1 船舶冷却⽔系统的发展为了使柴油机和其他辅助设备受⾼温和摩擦作⽤的部件保持正常稳定的⼯作性能,必须对这些部件进⾏冷却。
冷却系统的作⽤就是把冷却介质送到受热部件,将其多余的热量带⾛。
中央空调水控制系统总体方案设计摘要:本文首先对中央空调制冷系统的结构和原理、中央空调冷冻水变水量调节的原理及特点进行分析;通过对比传统的中央空调水控制系统,设计了基于PLC的带有远程监控功能的分布式中央空调水控制系统。
1.中央空调制冷系统的结构及原理中央空调制冷系统主要由制冷机组、冷却水循环系统、冷冻水循环系统和冷却塔风机系统构成,系统原理如图1所示:图1中央空调制冷系统在中央空调制冷过程中,制冷剂通过蒸发器制冷,冷冻水与制冷剂在蒸发器中进行热交换之后带走冷量,此时制冷剂为常温低压气态,通过压缩机之后,制冷剂变成高温高压气态。
制冷剂进入冷凝器之后,在冷凝器的盘管中与冷却水完成热量交换,冷却水将带走热量,此时制冷剂由高温高压的气态冷凝为高压液体流出冷凝器。
高压液体制冷剂通过电子膨胀阀后压力降低,在降压过程中,液态制冷剂气化温度降低,在蒸发器中进行冷量交换,这个冷量交换的过程就是中央空调的制冷过程。
冷却水在冷凝器中完成热交换后,将制冷剂的热量带出,流经冷却塔时与大气充分接触,从而释放冷却水中的热量到大气中,经冷却水泵的作用后重新进入冷凝器。
冷却塔在冷却水循环的过程中有重要作用,它使冷却水与大气的接触面积增大,能够起到自然降温的目的,冷却塔的风扇也具有降温作用。
冷冻水循环是一个相对封闭的循环系统。
在冷冻水的循环过程中,冷冻水泵将冷冻水送入蒸发器,在蒸发器中,冷冻水与制冷剂完成热量交换后冷冻水温度降低,通过冷冻水泵将冷冻水输送到整个冷冻水循环系统中,之后在风机盘管中进行热交换,达到降低空气的温度的目的。
低温空气通过风机吹送到房间以达到降低房间的温度的目的,从而达到调节室内温度的效果。
2中央空调冷冻水变流量调节2.1变水量调节的特点在中央空调水系统控制中,与常用的定流量系统相比,变流量系统具有以下的特点:(1)中央空调系统冷量负荷发生变化时能够实时调节冷水量,实现冷水量根据负荷改变而变化,从而降低水泵的能耗,起到节能的作用。
中央空调冷却水循环系统简介冷却水循环系统是中央空调系统的一种,它是指冷却水换热并经降温,再循环使用的给水系统,主要由冷却设备、水泵和管道组成,包括敞开式和密闭式两种类型。
冷却水循环系统-原理以水作为冷却介质,并循环使用的一种冷却水系统。
主要由冷却设备、水泵和管道组成。
冷水流过需要降温的生产设备(常称换热设备,如换热器、冷凝器、反应器)后,温度上升,如果即行排放,冷水只用一次(称直流冷却水系统),使升温冷水流过冷却设备则水温回降,可用泵送回生产设备再次使用,冷水的用量大大降低,常可节约95%以上。
冷却水占工业用水量的70%左右,因此,冷却水循环系统起了节约大量工业用水的作用。
冷却水循环系统-分类冷却设备有敞开式和封闭式之分,因而冷却水循环系统也分为敞开式和封闭式两类。
敞开式系统的设计和运行较为复杂。
1、敞开式冷却设备有冷却池和冷却塔两类,都主要依靠水的蒸发降低水温。
再者,冷却塔常用风机促进蒸发,冷却水常被吹失。
故敞开式冷却水循环系统必须补给新鲜水。
由于蒸发,循环水浓缩,浓缩过程将促进盐分结垢。
补充水有稀释作用,其流量常根据循环水浓度限值确定。
通常补充水量超过蒸发与风吹的损失水量,因此必须排放一些循环水(称排污水)以维持水量的平衡。
冷却水循环系统在敞开式系统中,因水流与大气接触,灰尘、微生物等进入循环水;此外,二氧化碳的逸散和换热设备中物料的泄漏,也改变循环水的水质。
为此,循环冷却水常需处理,包括沉积物控制、腐蚀控制和微生物控制。
处理方法的确定常与补给水的水量和水质相关,与生产设备的性能也有关。
当采用多种药剂时,要避免药剂间可能存在的化学反应。
2、封闭式封闭式冷却水循环系统采用封闭式冷却设备,循环水在管中流动,管外通常用风散热。
除换热设备的物料泄漏外,没有其他因素改变循环水的水质。
为了防止在换热设备中造成盐垢,有时冷却水需要软化。
为了防止换热设备被腐蚀,常加缓蚀剂;采用高浓度、剧毒性缓蚀剂时要注意安全,检修时排放的冷却水应妥善处置。
1、在MR-Ⅱ型电动冷却水温度控制系统中,其测温元件通常是。
A.温包B.热敏电阻C.金属丝电阻D.热电偶B2、在MR-Ⅱ型电动冷却水温度控制系统中,限位开关的作用。
A.使执行电机能持续转动B.当调节阀转到极限位置时能切断执行电机元件C.作为执行电机热保护D.防止增加,减少两个继电器同时断电B3、在MR-Ⅱ型电动冷却水温度控制系统中,其调节器是采用。
A.比例调节器B.PI调节器C.PD调节器D.PID调节器C4、在MR-Ⅱ型电动冷却水温度控制系统中,其输出执行装置保护环节不包括。
A.三通阀限位开关B.电源保险丝C.正反转接触器连锁D.电机过载保护B5、在MR-Ⅱ型电动冷却水温度控制系统中,控制对象输入和输出分别是。
A.三通调节阀的输出,柴油机进口水温B.柴油机出口水温,柴油机进口水温C.柴油机进口水量,柴油机出口水量D.淡水冷却器进口水温,淡水冷却器出口水温A6、在MR-Ⅱ型电动冷却水温度控制系统中,限位开关的作用是。
A.防止电机连续转动B.防止电机因短路等故障烧坏C.防止三通调节阀卡在极限位置而电机超载D.防止“增加”和“减少”输出接触器同时通电C7、在MR-Ⅱ型电动冷却水温度控制系统中,热保护继电器的作用是。
A.防止三通调节阀卡在极限位置B.防止“增加”和“减少”输出接触器同时通电C.防止电机M过载烧坏8、在MR-Ⅱ型电动冷却水温度控制系统中,比例微分控制电路的输入量是,其输出信号送至。
A.给定值/执行电机MB.偏差值/脉冲宽度调制器C.测量值/“增加”,“减少”输出继电器D.偏差值/执行电机MB9、在MR-Ⅱ型电动冷却水温度控制系统中,当柴油机负荷降低时,其主机冷却水出口温度会。
A.保持给定值不变B.绕给定值振荡C.增高D.降低D10、在MR-Ⅱ型电动冷却水温度控制系统中,当三通调节阀的旁通阀全开使电机停转后,其复位方法是。
A.停机后,手动复位B.运行中手动复位C.水温上升时自动复位D.水温上升到给定值以上时自动复位D11、在MR-Ⅱ型电动冷却水温度控制系统中,随着冷却水实际温度的变化,导致测温元件。
中央空调冷却循环水系统一、中央空调冷却循环水系统的组成二、中央空调冷却循环水系统主要由冷却塔、制冷机、冷凝器、循环水泵、控制阀门及相应管路组成。
运行温度一般为30℃—40℃.敞开式运行。
二、冷却循环水系统设计规范及物理场水处理水质标准1.《中华人民共和国国家标准工业循环冷却水处理设计规范》GB50050-951)1)冷却循环水系统中微生物控制指标:异养菌< 5×105 个/ml 2次/周真菌< 10 个/ml 1次/周硫酸盐还原菌 < 50 个/ml 1次/月铁细菌< 100 个/ml 1次/月2)冷却循环水系统腐蚀速率★碳钢换热器管壁的腐蚀速度小于0.125 mm/a★铜合金和不锈钢的腐蚀速度小于0.005 mm/a3)冷却循环水系统污垢热阻★敞开式:水侧管壁的年污垢热阻值为: 2×10-4 — 4×10-4 m2hc/kcal★密封式:水侧管壁的年污垢热阻值为: 1×10-4 m2hc/kcal4)冷却循环水系统中粘泥量<4 ml/m3 (生物过滤网法)1次/天<1 ml/m3 (碘化钾法)1次/天2.《射频式物理场水处理设备》HG/T— 3729—2004敞开式循环冷却水应符合如下水质要求:. 总硬度(以CaCO3计):≤700mg/L;•总碱度(以碳酸盐硬度CaCO3计):≤500mg/L;•电导率: <3000 μs/cm(20℃);•悬浮物SS:≤20mg/L 或根据换热器对SS更严格的要求而定;•油:<5mg/L;•酸碱性: pH≥6.5(25℃);•全铁Fe:≤0.5mg/L;•异养菌:≤5×104个/ml;•浓缩倍数: >2.5(根据补水水质、环境确定)。
三、冷却循环水系统存在的问题冷却循环水系统主要存在的问题是水垢、腐蚀、菌藻及污垢所形成的复合垢,影响制冷机冷凝器的换热效率及水质控制问题。
中央水冷空调工作原理
中央水冷空调是一种通过水冷却空气来调节室内温度的空调系统。
它的工作原理主要包括制冷循环和空气循环两个部分。
首先,让我们来看看中央水冷空调的制冷循环。
制冷循环是通
过压缩机、冷凝器、膨胀阀和蒸发器四个主要部件完成的。
首先,
压缩机将低温低压的蒸汽吸入并压缩成高温高压的蒸汽,然后将高
温高压的蒸汽排入冷凝器,在冷凝器中,蒸汽通过散热变成高压液体,接着高压液体通过膨胀阀减压成低温低压的液体,最后低温低
压的液体进入蒸发器,在蒸发器中吸收室内热量并蒸发成低温低压
的蒸汽,完成制冷循环。
其次,我们来看看中央水冷空调的空气循环。
空气循环是通过
风机、冷却水和冷却盘管完成的。
首先,风机吸入室内空气,经过
冷却盘管的冷却水冷却后,再通过风机送入室内,从而调节室内温度。
总的来说,中央水冷空调的工作原理就是通过制冷循环和空气
循环来实现室内温度的调节。
在制冷循环中,通过压缩机、冷凝器、膨胀阀和蒸发器四个部件完成制冷过程;在空气循环中,通过风机、
冷却水和冷却盘管实现空气的循环和冷却。
这样的工作原理使得中央水冷空调成为了一种高效、节能的空调系统。
除此之外,中央水冷空调还有一些特点,比如系统运行稳定、噪音低、空气质量好等优点。
它适用于大型商业建筑、办公楼、医院、学校等场所,能够满足大空间、多房间的空调需求。
总之,中央水冷空调的工作原理清晰明了,通过制冷循环和空气循环实现室内温度的调节,同时具有高效节能、系统稳定、噪音低、空气质量好等优点,因此在大型建筑物中得到了广泛的应用。
冷却水进水温度一般应不高于32℃,冷却水主要指冷凝器和压缩机冷却用水。
有关中央空调水系统的相关问题很多用户可能还不是很了解,下面是深圳邦德瑞厂家的小编带来的中央空调冷却水系统介绍。
(一)直流式冷却水系统最简单的冷却水系统是直流式供水系统,即升温后的冷却回水直接排除,不循环使用。
这种系统只适用于水源水量特别充足的地区,例如靠近江、河、湖泊、海等地方,城市自来水不宜选用。
(二)循环式冷却水系统1、自然通风冷却循环系统2、吸收式冷水机组冷却循环系统优点:流量分配合理,各个单元之间相互影响小,运行可靠性高。
缺点:配管管线布置最为复杂,管路数目多,占用空间大,各设备不能相互备用。
优点:供回水都采用集中干管形式,管路数目少,占用空间小,设备之间可以相互备用,可通过冷却风机的台数或转速控制降低制冷机组部分负荷时的离心式冷水机组能耗,故应用最广。
在干管式系统和混合式系统中,由于冷却塔可以相互备用,如果水系统设计和控制不当,则容易出现“溢流”、“旁通”和“抽空”现象。
当冷却水系统出现上述现象时:冷却塔的进水管上安装了电动阀,而回水管上未装;当出水电动阀关闭而进水电动阀开启时;螺杆式冷水机组分配不平衡时;多台大小不同的冷却塔并联设置且集水盘水位不相同时,容易出现“溢流”问题。
避免措施:当冷却塔不运行时,同时严密关闭冷却塔进、出水电动阀。
目前,冷却水系统大多采用循环式冷却水系统,利用冷却塔机械循环。
冷却塔中冷却水的终温一般可达到比当地的湿球温度高5℃左右的温度(约为32℃)。
冷却水系统由冷凝器、冷却塔、水泵等组成,冷却塔是以冷凝器的冷却水流量作为依据,选择低噪音型,安装位置离居住区远,离制冷机近,一般安装在制冷机房屋面上,其出水管比进水管大一号,因出水管是靠重力返回水泵。
同型号多台冷却塔并联使用应考虑均压连接和自动(手动)补水,且每台互为备用。
3、制冷机房设计扬程的确定冷却水系统的水力计算以上就是深圳邦德瑞的小编给大家介绍的简单介绍。