假设检验1
- 格式:ppt
- 大小:246.50 KB
- 文档页数:12
假设检验-1Hypothesis Testing假设检验方法【例】一种机床加工的零件尺寸绝对平均误差允许值为1.35mm 。
生产厂家现采用一种新的机床进行加工以期进一步降低误差。
为检验新机床加工的零件平均误差与旧机床相比是否有显著降低,从某天生产的零件中随机抽取50个进行检验。
利用这些样本数据,检验新机床加工的零件尺寸的平均误差与旧机床相比是否有显著降低?(α=0.1),数据见:”Parts .mtw ”左侧检验1.061.220.911.971.982.031.011.241.450.990.590.501.500.741.23 1.131.020.951.121.12 1.161.031.121.100.98 1.122.371.540.961.1950个零件尺寸的误差数据(mm)0.821.601.101.000.970.861.231.171.261.381.70 1.641.081.110.941.061.13 1.811.311.261-Sample Z Test —例题应用Minitab 检验假设检验-31-Sample Z Test—习题1. 请打开“1-Sample Z Test .mtw”C1为某钢丝绳索制造商声称其生产的钢丝绳的平均抗断强度为大于5磅,已经知道总体标准差为1,请判断其声明是否正确?注意:Ⅰ.当小样本时(n<25~30),且总体标准差未知时使用1-Sample T Test.使用1-Sample T Test前,一定要检验正态性.如果非正态时,可以考虑:a.增加样本量,达到n≥25.b.使用非参量设计(绿带教程一般不涉及)Ⅱ. 当大样本时(n≥25~30),使用1-Sample Z Test.不一定要求正态性.如果不知道总体标准差时,可以使用样本标准差代替.Ⅲ.当小样本时(n<25~30),但总体标准差已知时,也是使用1-Sample Z Test.注意:小样本时;一定要保证正态性.第一步设定H0和H a1. H0: 钢丝绳的平均抗断强度≤5H a:钢丝绳的平均抗断强度>5磅2. 取α=0.05假设检验-5第二步比较均值结论One-Sample Z: ValuesTest of mu= 5 vs mu> 5The assumed sigma = 1Variable N Mean StDev SE MeanValues 30 5.435 0.984 0.183Variable 95.0% Lower Bound Z PValues 5.134 2.38 0.009因为P小于0.05,所以对立假设成立。
实验7 假设检验(一)一、实验目的:1.掌握重要的参数检验方法(单个总体的均值检验,两个总体的均值检验,成对样本的均值的检验,两个总体方差的检验,二项分布总体的检验);2.掌握若干重要的非参数检验方法(Pearson拟合优度 2检验,Kolmogorov-Smirnov单样本和双样本检验)。
二、实验内容:练习:要求:①完成练习并粘贴运行截图到文档相应位置(截图方法见下),并将所有自己输入文字的字体颜色设为红色(包括后面的思考及小结),②回答思考题,③简要书写实验小结。
④修改本文档名为“本人完整学号姓名1”,其中1表示第1次实验,以后更改为2,3,...。
如文件名为“09张立1”,表示学号为09的张立同学的第1次实,法1Alt,即完法2:图标,工具。
)1.2.H0:H1:alternative hypothesis: true mean is not equal to 22595 percent confidence interval:172.3827 211.9173sample estimates:mean of x192.15P=0.002516<0.05,拒绝原假设,认为油漆工人的血小板计数与正常成年男子有差异3.(习题5.2)已知某种灯泡寿命服从正态分布,在某星期所生产的该灯泡中随机抽取10 只,测得其寿命(单位:小时)为1067 919 1196 785 1126 936 918 1156 920 948求这个星期生产出的灯泡能使用1000小时以上的概率。
解:源代码及运行结果:(复制到此处,不需要截图)> x<-c(1067, 919, 1196, 785, 1126, 936, 918, 1156, 920, 948)> p<-pnorm(1000,mean(x),sd(x))> 1-p[1] 0.4912059结论:这个星期生产出的灯泡能使用1000小时以上的概率为0.49120594.(习题5.3)为研究某铁剂治疗和饮食治疗营养性缺铁性贫血的效果,将16名患者按年龄、体重、病程和病情相近的原则配成8对,分别使用饮食疗法和补充铁剂治疗的方法,3个月后测得两种患者血红资白如下表所示,问两种方法治疗后的患者血红蛋白有无差异?H0:H1:5.,分别测试验组与对照组空腹腔血糖下降值(mmol/L)(1)检验试验组和对照组的的数据是否来自正态分布,采用正态性W检验方法(见第3章)、Kolmogorov-Smirnov检验方法和Pearson拟合优度 2检验;解:提出假设:H0:认为国产四类新药阿卡波糖股嚢与拜唐苹股嚢对空腹血糖的降糖效果不同H1:认为国产四类新药阿卡波糖股嚢与拜唐苹股嚢对空腹血糖的降糖效果相同①正态性W检验方法源代码及运行结果:(复制到此处,不需要截图)>x<-c(-0.70,-5.60,2.00,2.80,0.70,3.50,4.00,5.80,7.10,-0.50,2.50,-1.60,1.70,3.00,0.40,4.50,4.6 0,2.50,6.00,-1.4)> shapiro.test(x)Shapiro-Wilk normality testdata: xW = 0.9699, p-value = 0.7527>y<-c(3.70,6.50,5.00,5.20,0.80,0.20,0.60,3.40,6.60,-1.10,6.00,3.80,2.00,1.60,2.00,2.20,1.20,3②结论:试验组p=0.9771>0.05,对照组p=0.9368>0.05,所以检验试验组和对照组的的数据是来自正态分布③Pearson拟合优度 2检验源代码及运行结果:(复制到此处,不需要截图)>x<-c(-0.70,-5.60,2.00,2.80,0.70,3.50,4.00,5.80,7.10,-0.50,2.50,-1.60,1.70,3.00,0.40,4.50,4.6 0,2.50,6.00,-1.4)> A<-table(cut(x,br=c(-6,-3,0,3,6,9)))> p<-pnorm(c(-3,0,3,6,9),mean(x),sd(x))> p> p<-c(p[1],p[2]-p[1],p[3]-p[2],p[4]-p[3],1-p[4])> p> chisq.test(A,p=p)Chi-squared test for given probabilitiesdata: AX-squared = 0.56387, df = 4, p-value = 0.967Warning message:In chisq.test(A, p = p) : Chi-squared近似算法有可能不准>y<-c(3.70,6.50,5.00,5.20,0.80,0.20,0.60,3.40,6.60,-1.10,6.00,3.80,2.00,1.60,2.00,2.20,1.20,3 .10,1.70,-2.00)> B<-table(cut(y,br=c(-2,1,2,4,7)))> p<-pnorm( c(-2,1,2,4,7),mean(y),sd(y))> p> p(2H0:H1:t = -0.64187, df = 38, p-value = 0.5248alternative hypothesis: true difference in means is not equal to 095 percent confidence interval:-2.326179 1.206179sample estimates:mean of x mean of y2.065 2.625结论:p=0.5248>0.05,不拒绝原假设,两组数据均值没有差异②方差不同模型源代码及运行结果:(复制到此处,不需要截图)>x<-c(-0.70,-5.60,2.00,2.80,0.70,3.50,4.00,5.80,7.10,-0.50,2.50,-1.60,1.70,3.00,0.40,4.50,4.6 0,2.50,6.00,-1.4)>y<-c(3.70,6.50,5.00,5.20,0.80,0.20,0.60,3.40,6.60,-1.10,6.00,3.80,2.00,1.60,2.00,2.20,1.20,3 .10,1.70,-2.00)> t.test(x,y)Welch Two Sample t-testdata: x and yt = -0.64187, df = 36.086, p-value = 0.525alternative hypothesis: true difference in means is not equal to 095 percent confidence interval:(3解:提出假设:H0:试验组与对照组的方差相同H1:试验组与对照组的方差不相同源代码及运行结果:(复制到此处,不需要截图)>x<-c(-0.70,-5.60,2.00,2.80,0.70,3.50,4.00,5.80,7.10,-0.50,2.50,-1.60,1.70,3.00,0.40,4.50,4.6 0,2.50,6.00,-1.4)>y<-c(3.70,6.50,5.00,5.20,0.80,0.20,0.60,3.40,6.60,-1.10,6.00,3.80,2.00,1.60,2.00,2.20,1.20,3 .10,1.70,-2.00)> var.test(x,y)F test to compare two variancesdata: x and yF = 1.5984, num df = 19, denom df = 19, p-value = 0.3153alternative hypothesis: true ratio of variances is not equal to 195 percent confidence interval:0.6326505 4.0381795sample estimates:ratio of variances1.598361结论:p= 0.3153>0.05,不拒绝原假设,试验组与对照组的方差相同6.(习题5.5)为研究某种新药对抗凝血酶活力的影响,随机安排新药组病人12例,对照组病人10例,(1(2(3解:(1H0:H1:H0:H1:> y<-c(162, 172 ,177 ,170 ,175, 152 ,157 ,159, 160 ,162)> ks.test(y,"pnorm",mean(y),sd(y))One-sample Kolmogorov-Smirnov testdata: yD = 0.22216, p-value = 0.707alternative hypothesis: two-sidedWarning message:In ks.test(y, "pnorm", mean(y), sd(y)) :Kolmogorov - Smirnov检验里不应该有连结(2)检验两组样本方差是否相同;提出假设:H0:两组样本方差相同H1:两组样本方差不相同源代码及运行结果:(复制到此处,不需要截图)> x<-c(126,125,136,128,123,138,142,116,110,108,115,140)> y<-c(162, 172 ,177 ,170 ,175, 152 ,157 ,159, 160 ,162)> var.test(x,y)F test to compare two variancesdata: x and yF = 1.9646, num df = 11, denom df = 9, p-value = 0.32alternative hypothesis: true ratio of variances is not equal to 1(3H0:H1:7.靠,随机抽选了400名居民,发现其中有57人是老年人。
假设检验一、假设检验的意义假设检验是抽样推断中的一项重要内容。
它是根据原资料作出一个总体指标是否等于某一个数值,某一随机变量是否服从某种概率分布的假设,然后利用样本资料采用一定的统计方法计算出有关检验的统计量,依据一定的概率原则,以较小的风险来判断估计数值与总体数值(或者估计分布与实际分布)是否存在显著差异,是否应当接受原假设选择的一种检验方法。
用样本指标估计总体指标,其结论有的完全可靠,有的只有不同程度的可靠性,需要进一步加以检验和证实。
通过检验,对样本指标与假设的总体指标之间是否存在差别作出判断,是否接受原假设。
这里必须明确,进行检验的目的不是怀疑样本指标本身是否计算正确,而是为了分析样本指标和总体指标之间是否存在显著差异。
从这个意义上,假设检验又称为显著性检验。
进行假设检验,先要对假设进行陈述。
通过下例加以说明。
例如,设某工厂制造某种产品的某种精度服从平均数为方差为的正态分布,据过去的数据,已知平均数为75,方差为100。
现在经过技术革新,改进了制造方法,出现了平均数大于75,方差没有变更,但仍存在平均数不超过75的可能性。
试陈述为统计假设。
根据上述情况,可有两种假设,一个是假想平均数不超过75,即假设另一个假想是平均数大于75,即假设如果我们把作为原假设,即被检验的假设,称作零假设,记作于是,假设相对于假设来说,是约定的、补充的假设,记作它和有两者选择其一的意思,即作为被检验的假设,则就是备择的,故称为备择假设或对立假设。
还须指出,哪个是零假设,哪个是备择假设,是无关紧要的。
我们关心的问题,是要探索哪一个假设被接受的问题。
被接受的假设是要作为推理的基础。
在实际问题中,一般要考虑事情发生的逻辑顺序和关心的事件,来设立零假设和备择假设。
在作出了统计假设之后,就要采用适当的方法来决定是否应该接受零假设。
由于运用统计方法所遇到的问题不同,因而解决问题的方法也不尽相同。
但其解决方法的基本思想却是一致的,即都是“概率反证法”思想,即:(1)为了检验一个零假设(即虚拟假设)是否成立,先假定它是成立的,然后看接受这个假设之后,是否会导致不合理结果。
假设检验的基本概念及其应用假设检验是统计学中重要的推断方法之一,用于对统计推断的结果进行判断。
它通过对样本数据进行分析,进行统计推断,并对研究假设进行验证。
本文将介绍假设检验的基本概念,并探讨其在实际应用中的重要性。
一、基本概念1.1 假设检验的定义假设检验是通过对样本数据进行统计分析,对研究假设进行评估的一种方法。
它的基本思想是通过对比样本数据和假设的理论值之间的差异,判断这种差异是否达到了显著水平,从而对研究假设的真实性进行推断。
1.2 假设检验的步骤假设检验通常包括以下步骤:(1)提出假设:根据研究问题和目标,提出原假设(H0)和备择假设(H1);(2)选择检验统计量:根据假设的具体内容,选择适当的检验统计量;(3)确定显著水平:根据研究的具体要求,确定显著水平α;(4)计算检验统计量的值:根据样本数据和所选择的检验统计量,计算出检验统计量的值;(5)做出决策:根据检验统计量的值与临界值或拒绝域的比较结果,对原假设进行接受或拒绝的决策;(6)得出结论:根据所做出的决策,对研究问题进行结论的推断。
二、应用案例为了更好地理解假设检验的应用,我们以医学领域为例进行说明。
2.1 研究背景假设有一种新型药物声称可以显著降低患者的血压水平。
为了验证这一假设,我们进行了一项实验,将患者随机分为两组,一组接受新药治疗,另一组接受安慰剂治疗。
我们希望通过假设检验来判断新药物是否真的具有降低血压的效果。
2.2 假设的建立在这个案例中,我们可以建立以下假设:原假设(H0):新药物对血压水平没有显著影响;备择假设(H1):新药物对血压水平有显著影响。
2.3 检验统计量的选择针对这个案例,我们可以选择相关的检验统计量,如t检验、F检验等。
根据实验设计的不同,选择合适的检验统计量进行分析。
2.4 显著水平的确定在进行假设检验时,我们需要确定显著水平α的大小。
一般情况下,我们选择显著水平为0.05,即α=0.05。
2.5 计算检验统计量的值根据实验数据和所选择的检验统计量,计算出检验统计量的值。
假设检验参数估计是统计推断的一个方面,统计推断的另一方面就是假设检验。
这2种推断方法都是研究总体参数的情况,但假设检验是研究如何运用样本得到的统计量来检验事先对总体参数所做的假设是否正确,是否具有某种性质或数量特征。
本章在讨论假设检验基本问题的基础上,着重研究总体平均数和2个总体平均数之差的假设检验、总体比率和2个总体比率之差的假设检验以及总体方差的假设检验等。
第一节假设检验的基本问题一、什么是假设检验一个说明统计假设检验基本推论过程的例子:一名被告正在受到法庭的审判。
根据英国的法律,先假定被告是无罪的,于是,证明他有罪的责任就是原告律师的事情了。
用假设检验的术语表示,那就是要建立一个假设,记为H0:被告是无罪的。
H0称为原假设或零假设。
另一个可供选择的假设记作H1:被告是有罪的。
H1称为备择或替代假设。
法庭陪审团要审查各种证据,以确定原告律师是否证实了这些证据与无罪这一基本假设不一致。
如果陪审员们认为证据与不一致,他们就拒绝该假设而接受其备择假设H1,即认为被告有罪。
用统计术语来说,原假设H0是接受检验的假设。
备择假设H1是当原假设被否定时另一种可成立的假设。
原假设和备择假设相互对立,在任何情况下只能有一个成立。
如果接受H0就必须拒绝H1;拒绝H0就必须接受H1。
例:某公司要检验一批新进口的薄钢板是否符合平均厚度为5毫米的规定,那么就是假设这批货(总体)的平均厚度(µ)是5毫米。
然后从这批货中按随机抽样的方法抽取样本并计算样本的平均厚度,以此来检验所做假设的正确性。
本例中需要被检验、被证实的原假设可记为H0: µ=5mm,(即原假设为总体平均厚度等于5mm)。
其备择假设就是H1: µ 5mm,(即这批货平均厚度不等于5毫米)。
总体平均数的假设有3种情况:(1)H0: µ = µ0;H1: µ≠ µ0。
(2)H0: µ≥ µ0;H1: µ < µ0。