【免费下载】第六章 假设检验
- 格式:pdf
- 大小:230.15 KB
- 文档页数:5
第六章参数假设检验假设检验(test of hypothesis)亦称显著性检验(test of statistical significance),就是先对总体的参数或分布做出某种假设,如假设两个总体均数相等,总体服从正态分布或两总体分布相同等,然后用适当的统计方法计算某检验统计量,根据检验统计量的大小来推断此假设应当被接受或拒绝,它是统计推断的另一重要方面。
假设检验可以分为两类:一类是已知总体分布类型,对其未知总体参数的假设作假设检验,称为参数检验(parametric test),主要讨论总体参数(均值、方差、总体率等)的检验;另一类是对未知总体分布类型的总体假设作假设检验,称为非参数检验(non-parametric test),主要包括总体分布形式的假设检验、随机变量独立性的假设检验等。
本章主要介绍有关总体参数(均值、方差、总体率等)的参数检验问题。
第一节假设检验的基本概念一、假设检验问题及基本原理(一)假设检验问题我们先来看个具体的例子。
例6.1某药厂用自动包装机包装葡萄糖,按规定每袋葡萄糖的标准重量为500克,若已知包装机包装的每袋葡萄糖重量服从正态分布,且按以往标准知总体方差σ2=6.52,某日开工后,为检验包装机工作是否正常,随机抽取6袋葡萄糖,测得其平均重量x=504.5(克),问该日自动包装机包装的平均重量是否还是500克?某日随机抽取的6袋葡萄糖的平均重量x=504.5(克),与标准重量500克相比差4.5克,造成该差异的原因有两种可能:①这日自动包装机工作正常,其包装的总体平均重量μ=500克,此6袋葡萄糖的平均重量这一样本均值与总体均值不同,是随机抽样误差造成的;②这日自动包装机工作不正常,其包装的总体平均重量μ≠500克,故从此总体中随机抽取的6袋葡萄糖的平均重量与标准重量存在实质性差异,而不仅仅是抽样误差造成的。
上述两种可能是相互对立的、互不相容的,究竟哪一种可能是对的,可用假设检验的方法来判断。
第6章假设检验一项包括了200个家庭的调查显示,每个家庭每天看电视的平均时间为小时,标准差为小时。
据报道,10年前每天每个家庭看电视的平均时间是小时。
取显着性水平,这个调查能否证明“如今每个家庭每天收看电视的平均时间增加了”?详细答案:,=,,拒绝,如今每个家庭每天收看电视的平均时间显着地增加了。
为监测空气质量,某城市环保部门每隔几周对空气烟尘质量进行一次随机测试。
已知该城市过去每立方米空气中悬浮颗粒的平均值是82微克。
在最近一段时间的检测中,每立方米空气中悬浮颗粒的数值如下(单位:微克):根据最近的测量数据,当显着性水平时,能否认为该城市空气中悬浮颗粒的平均值显着低于过去的平均值详细答案:,=,,拒绝,该城市空气中悬浮颗粒的平均值显着低于过去的平均值。
安装在一种联合收割机的金属板的平均重量为25公斤。
对某企业生产的20块金属板进行测量,得到的重量数据如下:假设金属板的重量服从正态分布,在显着性水平下,检验该企业生产的金属板是否符合要求?详细答案:,,,不拒绝,没有证据表明该企业生产的金属板不符合要求。
在对消费者的一项调查表明,17%的人早餐饮料是牛奶。
某城市的牛奶生产商认为,该城市的人早餐饮用牛奶的比例更高。
为验证这一说法,生产商随机抽取550人的一个随机样本,其中115人早餐饮用牛奶。
在显着性水平下,检验该生产商的说法是否属实详细答案:,,,拒绝,该生产商的说法属实。
某生产线是按照两种操作平均装配时间之差为5分钟而设计的,两种装配操作的独立样本产生如下结果:操作A操作B=100=50====对=,检验平均装配时间之差是否等于5分钟。
详细答案:,=,,拒绝,两种装配操作的平均装配时间之差不等于5分钟。
某市场研究机构用一组被调查者样本来给某特定商品的潜在购买力打分。
样本中每个人都分别在看过该产品的新的电视广告之前与之后打分。
潜在购买力的分值为0~10分,分值越高表示潜在购买力越高。
原假设认为“看后”平均得分小于或等于“看前”平均得分,拒绝该假设就表明广告提高了平均潜在购买力得分。
第六章假设检验一.思考题1.备择假设通常是研究者( A )A.想搜集证据予以支持的假设B.想搜集证据予以反对的假设C.想要支持的一个正确假设D.想要反对的一个正确假设2.在假设检验中”=”总是放在( A)A.原假设上B.可以放在原假设上,也可以放在备择假设上C.备择假设上D.有时放在原假设上,有时放在备择假设上3.支出下列假设检验哪一个属于右侧检验(C )A.H0:μ<600;H1:μ≥600 B: H0:μ=600; H1:μ≠600C: H0:μ≤600; H1:μ>600 D: H0:μ≥600; H1:μ<6004.一项研究表明,中学生吸烟的比例超过30%,为检验这一方法是否属实,我们建立的原假设和备择假设应为(D )A. H0:π=30%; H1: π≠30%B. H0:π≠30%; H1: π=30%C. H0:π≥30%; H1: π<30%D. H0:π≤30%; H1: π>30%5.随即取一个n=100的样本,计算得到⎺x=60,s=15,要检验假设:H0:μ=65;H1:μ≠65,则检验统计量的值为(A)A.-3.33 B.3.33 C.-2.36 D.2.366.在小样本,正态总体方差未知的情况下,检验总体均值所使用的统计量是(C )A. z=⎺x-μ0/ (σ/√n)B. z= ⎺x-μ0/ (σ2/√n)C. t=⎺x-μ0/(s/√n)D. t=⎺x-μ0/(s/√n)7.从正态总体中随机抽取一个n=25的随机样本,计算得到⎺x=17,s2=8,假定σ20=10,要检验H0:σ2=σ20,则检验统计量的值为(A )A.x2=19.2B. x2=18.7C. x2=30.38D. x2=39.68.若检验的假设H0:μ≤μ0;H1:μ>μ0,则拒绝域为(A )A. z>z aB.Z<- z aC. z>z a 或z<-z a/2D. z>z a或z<- z a9.在假设检验中,如果计算出来的P值越小,则说明( A )A.不利于原假设的证据越强B.不利于原假设的证据越弱C.不利于备择假设的证据越强D.不利于备择假设的证据越弱10.环保部门想检验餐馆一天所有的快餐盒平均是否超过600个,建立的原假设和备择假设应为( C )A. H0: μ<600;H1:μ≥600 B: H0:μ=600; H1:μ≠600C: H0:μ≤600; H1:μ>600 D: H0:μ≥600; H1:μ<60011.环保部门想检验餐馆一天所有的快餐盒平均是否超过600个,则第I类错误是( A )A.μ≤600;声称μ>600 B:μ=600;声称μ≠600C:μ≤600;声称μ<600D:μ≥600;声称μ>60012. 环保部门想检验餐馆一天所有的快餐盒平均是否超过600个,则第II类错误是(D )A.μ≤600;声称μ>600 B:μ=600;声称μ=600C:μ≤600;声称μ<600D:μ>600;声称μ≤60013.一项研究表明,湿路上汽车刹车距离的方差显著大于干路上的汽车刹车距离的方差。
随机抽取16辆汽车,检测同样速度行驶条件下载湿路和干路上的刹车距离。
在湿路上的刹车距离的标准差为32米,在干路上的标准差是16米。
用于检验的原假设和备择假设是(A )A. H0:σ21/σ22≤1;H1:σ21/σ22>1B.H0:σ21/σ22≥1;H1:σ21/σ22<1C. H0:σ21/σ22=1; H1:σ21/σ22≠1D. H0:σ21/σ22=1; H1:σ21/σ22≠114.一项研究表明,湿路上汽车刹车距离的方差显著大于干路上的汽车刹车距离的方差。
随机抽取16辆汽车,检测同样速度行驶条件下载湿路和干路上的刹车距离。
在湿路上的刹车距离的标准差为32米,在干路上的标准差是16米。
α=0.05,得到的结论是(B )A.拒绝H0B.不拒绝H0C.可以拒绝也可以不拒绝H0D.可以拒绝也可能不拒绝H0二.判断题1.样本均值的标准误差是所抽选样本的标准差。
(错)2.假设检验所陈述的具体数值是总体参数的真实值。
( 错)3.方差未知时,使用x2分布做关于一个总体均值的假设检验。
(错)4.在假设检验中,样本容量不变的条件下,第I类错误和第II类错误的概率不能同时减小。
(对)5.样本容量一定时,拒绝域的面积与显著水平α成反比。
(错)6.如果检验统计量落在非拒绝域内,意味着原假设是真的。
(错)7.P值越大,拒绝原假设的可能性越大。
(错)8.关于一个总体的方差或标准差,常常是希望将它们控制在某种水平之下,因此对方差的检验多是单侧的。
(对)9.利用独立小样本对两总体的均值之差进行检验时,t分布的自由度是等于n1-1和n2-1中较小的一个。
(错)10.F分布是对称的分布。
(错)四.计算题1.已知某炼铁厂生产的铁水的含铁量服从正态分布N(4.55,0.1082),现在预定了9炉铁水,其平均含铁量为4.484。
可否认为现在生产的铁水平均含铁量为4.55?(α=0.05)2.电视机的制造商声明,他的产品在保修期的期后第一年的维修费用不多于50元。
消费者协会随机抽取了50个这种电视机的拥有者,调查显示平均维修费是61.6元,标准差是32.46.以0.01的显著性水平,对厂商声明的可信度进行判断。
3.某调查公司认为平均每个调查员每周能够完成人户访问53次,且访问次数服从正态分布。
随机抽取一些调查员,记录他们一周内完成的人户访问次数如下。
535750555854605259626060515956在0.05的显著水平下,我们是否可以说平均每个调查员每周完成的调查次数大于53次?4.一位不愉快的顾客在银行办理业务时对等待时间过长感到厌烦。
银行声明“顾客等待服务的时间多于10分钟的次数不超过接受服务次数的一半”。
该顾客从办理业务的人中收集数据,发现60人中有35人等待时间超过10分钟。
在0.05的显著性水平下,这位不愉快的顾客有充分证据拒绝银行的声明吗?5.某公交公司为提高乘客满意度,鼓励公交司机保持运行时间的稳定。
要求运行时间的方差不超过4分钟。
已知运行时间服从正态分布,随机抽取了在同一线路运行的10辆公交车,测得其运行时间的方差为4.8分钟,在0.05的显著性水平下,可否认为该线路的运行时间稳定性达到了公司的要求?6.一个金融分析师希望比较与石油相关的股票的换手率和其他股票的换手率是否相等。
他选择了32个与石油相关的股票和49个其他股票作为样本。
与石油相关的股票的换手率为31.4%,标准差为5.1%。
而其他股票的平均换手率为34.9%,标准差为6.7%。
使用0.05的显著性水平判断两种类型股票的换手率是否存在显著差异?7.为了测试健身课程的效果,记录课程后参与者在1分钟内做仰卧起坐的次数。
随机选择10个参与者,记录其次数如下。
以前29222529262431463428以后30262535333632545043在0.05的显著水平下,可否认为健身课程有效?8.某车险公司对投保人最近3年的索赔情况进行抽样调查.其中,400个单身投保人中有76人索赔,900个已婚投保人中有90人索赔,显著水平为0.05,能否判断又已婚投保人的索赔率高于单身投保人?9.两种新的装配方法经检验后装配时间的方差数据如下.方法样本容量样本方差A 3125B 2512在α=0.10时,能否认为两个总体的方差相等?答案 :四、计算题1.小样本,方差已知,双侧检验。
01:= 4.55: 4.55H H μμ≠。
,(P 值=0.067),不拒绝原假1.833c z ===-/21.96z α=设,可以认为现在生产的铁水平均含碳量为4.55.2. 。
01:50:50H H μμ≤>。
,(P 值=0.006),拒绝原假设,2.527c z == 2.33z α=厂家声明不可信。
3.小样本,方差未知,右侧检验。
由样本数01:53:53H H μμ≤>据得到,,,,(P 值56.4, 3.738x s == 3.523c t ==(1) 1.761t n α-==0.002),拒绝原假设,可以说平均每个调查员每周完成的调查次数大于53次。
4. 。
P=35/60=58.33%,01:50%:50%H H ππ≤>,,(P 值=0.099),不拒绝1.290c z ===0.05z z 1.645α==原假设,没有充分证据拒绝银行的声称。
5. 一个总体方差检验,右侧。
2201:4:>4H H σσ≤。
2220(1)s (101) 4.810.84c n χσ--⨯===,不拒绝原假设,即可以认为该线路的运行时220.05(1)(9)16.919n αχχ-==间稳定性达到了公司的要求。
6.独立样本的均值之差检验,双侧,大样本,方差未知。
012112:0:0H H μμμμ-=-≠,,(P 值=0.008),拒2.662c z ===-/21.96z α=绝原假设,存在显著差异。
7.两总体均值之差检验,匹配小样本。
, 经计算,,012112:0:<0H H μμμμ-≥-7, 5.793d d s =-=。
,(P 值=0.002),拒3.821c t ===-(1) 1.833t n α--=-绝原假设,健身课程有效。
9.两总体方差比检验,双侧。
2211012222:1:1H H σσσσ=≠, 1.939,拒绝原假设,两个总体方212225 2.08312c s F s ===/212(1,1)F n n α--=差不相等。