九年级上数学期末试卷(苏科版)
- 格式:doc
- 大小:956.37 KB
- 文档页数:4
苏科版九年级(上)期末数学试卷一、选择题(本大题共有6 小题,每小题3 分,共18 分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上)1.(3 分)(cos30°)﹣1 的值为()A.2B. C.D.2.(3 分)下列说法正确的是()A.三角形的外心一定在三角形的外部B.三角形的内心到三个顶点的距离相等C.外心和内心重合的三角形一定是等边三角形D.直角三角形内心到两锐角顶点连线的夹角为125°3.(3 分)下列说法:①概率为0 的事件不一定是不可能事件;②试验次数越多,某情况发生的频率越接近概率;③事件发生的概率与实验次数有关;④在抛掷图钉的试验中针尖朝上的概率为,表示3 次这样的试验必有1 次针尖朝上.其中正确的是()A.①②B.②③C.①③D.①④4.(3 分)如图1,在△ABC 中,AB=BC,AC=m,D,E 分别是AB,BC 边的中点,点P 为AC 边上的一个动点,连接PD,PB,PE.设AP=x,图1 中某条线段长为y,若表示y 与x 的函数关系的图象大致如图2 所示,则这条线段可能是()A.PD B.PB C.PE D.PC5.(3 分)△ABC 中,∠C=90°,内切圆与AB 相切于点D,AD=2,BD=3,则△ABC 的面积为()A.3B.6 C.12 D.无法确定6.(3 分)若二次函数y=﹣x2+px+q 的图象经过A(1+m,n)、B(0,y1)、C(3﹣m,n)、D(m2﹣2m+5,y2)、E(2m﹣m2﹣5,y3),则y1、y2、y3 的大小关系是()A.y3<y2≤y1 B.y3<y1<y2 C.y1<y2<y3 D.y2<y3<y1二、填空题(本大题共有10 小题,每小题 3 分,共30 分.请把答案直接填写在答题卡相应位置上)7.(3 分)二次函数y=2x2+4x+1 图象的顶点坐标为.8.(3 分)在Rt△ABC 中,∠C=90°,AC=6,BC=8,则sin A 的值为.9.(3 分)数据3000,2998,3002,2999,3001 的方差为.10.(3 分)某人感染了某种病毒,经过两轮传染共感染了121 人.设该病毒一人平均每轮传染x 人,则关于x 的方程为.11.(3 分)一元二次方程有一个根为2﹣,二次项系数为1,且一次项系数和常数项都是非0 的有理数,这个方程可以是.12.(3 分)若x1、x2 为关于x 的方程x2+2mx+m=0(m≠0)的两个实数根,则+的值为.13.(3 分)A、B 为⊙O 上两点,C 为⊙O 上一点(与A、B 不重合),若∠ACB=100°,则∠AOB 的度数为°.14.(3 分)如图,⊙O 与矩形ABCD 的边AB、CD 分别相交于点E、F、G、H,若AE+CH =6,则BG+DF 为.15.(3 分)如图,半圆O 的直径AB=18,C 为半圆O 上一动点,∠CAB=a,点G 为△ABC 的重心.则GO 的长为.16.(3 分)用正五边形钢板制作一个边框总长为40cm 的五角星(如图),则正五边形的边长为cm(保留根号).三、解答题17.(12 分)(1)计算:+sin60°﹣tan45°;(2)解方程:2(x﹣1)2=(x﹣1)18.(8 分)已知:关于x 的方程x2﹣(m+1)x+m2﹣1=0,根据下列条件求m 的值.(1)方程有一个根为1;(2)方程两个实数根的和与积相等.19.(8 分)我市有2000 名学生参加了2018 年全省八年级数学学业水平测试.其中有这样一题:如图,分别以线段BD 的端点B、D 为圆心,相同的长为半径画弧,两弧相交于A、C 两点,连接AB、AD、CB、CD.若AB=2,BD=2,求四边形ABCD 的面积.统计我市学生解答和得分情况,并制作如下图表:解答类型及得分情况表(1)求学业水平测试中四边形ABCD 的面积;(2)请你补全条形统计图;(3)我市该题的平均得分为多少?(4)我市得3 分以上的人数为多少?20.(8 分)证明相似三角形对应角平分线的比等于相似比.已知:如图,△ABC∽△A′B′C′,相似比为k,.求证:.(先填空,再证明)证明:21.(10 分)如图,⊙O 的半径为2a,A、B 为⊙O 上两点,C 为⊙O 内一点,AC⊥BC,AC =a,BC=a.(1)判断点O、C、B 的位置关系;(2)求图中阴影部分的面积.22.(10 分)一次函数y=3x+6 的图象与x 轴相交于点A,与y 轴相交于点B,二次函数y=ax2+x+b 图象经过点A、B,与x 轴相交于另一点C.(1)求a、b 的值;(2)在直角坐标系中画出该二次函数的图象;(3)求∠ABC 的度数.23.(10 分)在Rt△ABC 中,∠C=90°.(1)如图①,点O 在斜边AB 上,以点O 为圆心,OB 长为半径的圆交AB 于点D,交BC 于点E,与边AC 相切于点F.求证:∠1=∠2;(2)在图②中作⊙M,使它满足以下条件:①圆心在边AB 上;②经过点B;③与边AC 相切.(尺规作图,只保留作图痕迹,不要求写出作法)24.(10 分)某软件开发公司开发了A、B 两种软件,每种软件成本均为1400 元,售价分别为2000 元、1800 元,这两种软件每天的销售额共为112000 元,总利润为28000 元.(1)该店每天销售这两种软件共多少个?(2)根据市场行情,公司拟对A 种软件降价销售,同时提高B 种软件价格.此时发现,A 种软件每降50 元可多卖1 件,B 种软件每提高50 元就少卖1 件.如果这两种软件每天销售总件数不变,那么这两种软件一天的总利润最多是多少?25.(12 分)定义:点P 在△ABC 的边上,且与△ABC 的顶点不重合.若满足△P AB、△ PBC、△P AC 至少有一个三角形与△ABC 相似(但不全等),则称点P 为△ABC 的自相似点.如图①,已知点A、B、C 的坐标分别为(1,0)、(3,0)、(0,1).(1)若点P 的坐标为(2,0),求证:点P 是△ABC 的自相似点;(2)求除点(2,0)外△ABC 所有自相似点的坐标;(3)如图②,过点B 作DB⊥BC 交直线AC 于点D,在直线AC 上是否存在点G,使△ GBD 与△GBC 有公共的自相似点?若存在,请举例说明;若不存在,请说明理由.26.(14 分)已知:二次函数y1=﹣(x+m)2+m2﹣3、y2=a(x﹣m﹣1)2+m2+2m﹣2 图象的顶点分别为A、B(其中m、a 为实数),点C 的坐标为(0,﹣3).(1)试判断函数y1 的图象是否经过点C,并说明理由;(2)若m 为任意实数时,函数y2 的图象始终经过点C,求a 的值;(3)在(2)的条件下,存在不唯一的x 值,当x 增大时,函数y1 的值减小且函数y2 的值增大.①直接写出m 的范围;②点P 为x 轴上异于原点O 的任意一点,过点P 作y 轴的平行线,与函数y1、y2 的图象分别相交于点D、E.试说明的值只与点P 的位置有关.苏科版九年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题共有6 小题,每小题3 分,共18 分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上)1.(3 分)(cos30°)﹣1 的值为()A.2B. C. D.【解答】解:原式=()﹣1=,故选:D.2.(3 分)下列说法正确的是()A.三角形的外心一定在三角形的外部B.三角形的内心到三个顶点的距离相等C.外心和内心重合的三角形一定是等边三角形D.直角三角形内心到两锐角顶点连线的夹角为125°【解答】解:A、三角形的外心不一定在三角形的外部,错误;B、三角形的内心到三个边的距离相等,错误;C、外心和内心重合的三角形一定是等边三角形,正确;D、直角三角形内心到两锐角顶点连线的夹角为135°,错误;故选:C.3.(3 分)下列说法:①概率为0 的事件不一定是不可能事件;②试验次数越多,某情况发生的频率越接近概率;③事件发生的概率与实验次数有关;④在抛掷图钉的试验中针尖朝上的概率为,表示3 次这样的试验必有1 次针尖朝上.其中正确的是()A.①②B.②③C.①③D.①④【解答】解:①不可能事件发生的概率为0,但是概率为0 的事件不一定是不可能事件,还有可能是检测的手段问题,不能说明该事件是不可能事件,这个和测度论有关,所以①正确;②试验次数越多,某情况发生的频率越接近概率,正确;③事件发生的概率与实验次数有关,错误;④在抛掷图钉的试验中针尖朝上的概率为,是偶然事件,不一定3 次这样的试验必有1 次针尖朝上,故本选项错误;故选:A.4.(3 分)如图1,在△ABC 中,AB=BC,AC=m,D,E 分别是AB,BC 边的中点,点P 为AC 边上的一个动点,连接PD,PB,PE.设AP=x,图1 中某条线段长为y,若表示y 与x 的函数关系的图象大致如图2 所示,则这条线段可能是()A.PD B.PB C.PE D.PC【解答】解:A 错误,观察图2 可知PD 在x=取得最小值.B、错误.观察图2 可知PB 在x=取得最小值.C、正确.观察图2 可知PE 在x=取得最小值.D、错误.观察图2 可知PC 在x=m 取得最小值为0.故选:C.5.(3 分)△ABC 中,∠C=90°,内切圆与AB 相切于点D,AD=2,BD=3,则△ABC 的面积为()A.3B.6 C.12 D.无法确定【解答】解:设△ABC 的内切圆分别与AC、BC 相切于点E、F,CE 的长为x.根据切线长定理,得AE=AD=2,BF=BD=3,CF=CE=x.根据勾股定理,得(x+2)2+(x+3)2=(2+3)2.整理,得x2+5x=6.所以S△ABC=AC•BC=(x+2)(x+3)=(x2+5x+6)=×(6+6)=6.故选:B.6.(3 分)若二次函数y=﹣x2+px+q 的图象经过A(1+m,n)、B(0,y1)、C(3﹣m,n)、D(m2﹣2m+5,y2)、E(2m﹣m2﹣5,y3),则y1、y2、y3 的大小关系是()A.y3<y2≤y1 B.y3<y1<y2 C.y1<y2<y3 D.y2<y3<y1【解答】解:∵经过A(1+m,n)、C(3﹣m,n),∴二次函数的对称轴x=,∵m2﹣2m+5=(m﹣1)2+4≥4,2m﹣m2﹣5=﹣(m﹣1)2﹣4≤﹣4,∴(m2﹣2m+5﹣2)﹣[2﹣(2m﹣m2﹣5)]=﹣4<0,∴D 点离对称轴x=2 比E 点离对称轴x=2 近,∴B(0,y1)、D(m2﹣2m+5,y2)、E(2m﹣m2﹣5,y3)与对称轴的距离E 最远,B 最近,∵a=﹣1<0,∴y1≥y2>y3;故选:A.二、填空题(本大题共有10 小题,每小题 3 分,共30 分.请把答案直接填写在答题卡相应位置上)7.(3 分)二次函数y=2x2+4x+1 图象的顶点坐标为(﹣1,﹣1).【解答】解:∵y=2x2+4x+1=2(x2+2x)+1=2[(x+1)2﹣1]+1=2(x+1)2﹣1,∴二次函数的图象的顶点坐标为(﹣1,﹣1),故答案为:(﹣1,﹣1).8.(3 分)在Rt△ABC 中,∠C=90°,AC=6,BC=8,则sin A 的值为.【解答】解:∵∠C=90°,AC=6,BC=8,∴AB==10,∴sin A===;故答案为:.9.(3 分)数据3000,2998,3002,2999,3001 的方差为2.【解答】解:=(3000+2998+3002+2999+3001)=3000,S2=[(3000﹣3000)2+(3000﹣2998)2+(3000﹣3002)2+(3000﹣2999)2+(3000 ﹣3001)2]=×10=2;故答案为:2.10.(3 分)某人感染了某种病毒,经过两轮传染共感染了121 人.设该病毒一人平均每轮传染x 人,则关于x 的方程为(1+x)2=121 .【解答】解:∵1 人患流感,一个人传染x 人,∴第一轮传染x 人,此时患病总人数为1+x;∴第二轮传染的人数为(1+x)x,此时患病总人数为1+x+(1+x)x,∵经过两轮传染后共有121 人患了流感,∴可列方程为:(1+x)2=121.故答案为:(1+x)2=121.11.(3 分)一元二次方程有一个根为2﹣,二次项系数为1,且一次项系数和常数项都是非0 的有理数,这个方程可以是x2﹣4x+1=0 .【解答】解:∵这个一元二次方程的二次项系数是1,∴设一元二次方程为:(x﹣2﹣)(x﹣2+)=0,整理为:x2﹣4x+1=0.故答案为:x2﹣4x+1=0.12.(3 分)若x1、x2 为关于x 的方程x2+2mx+m=0(m≠0)的两个实数根,则+的值为﹣2 .【解答】解:∵x1、x2 为关于x 的方程x2+2mx+m=0(m≠0)的两个实数根,∴x1+x2=﹣2m,x1•x2=m,∴+ ===﹣2.故答案为:﹣2.13.(3 分)A、B 为⊙O 上两点,C 为⊙O 上一点(与A、B 不重合),若∠ACB=100°,则∠AOB 的度数为160 °.【解答】解:如图,在优弧上取一点D,连接AD,BD.∵∠ADB+∠ACB=180°,∴∠ADB=180°﹣∠ACB=180°﹣100°=80°,∴∠AOB=2∠ADB=160°.故答案为160.14.(3 分)如图,⊙O 与矩形ABCD 的边AB、CD 分别相交于点E、F、G、H,若AE+CH =6,则BG+DF 为6 .【解答】解:作OM⊥GH 于M,OM 交EF 于N,如图,∵EF∥GH,∴OM⊥EF,∴EN=FN,GM=HM,易得四边形ABMN 和四边形MNDC 为矩形,∴AN=BM,DN=CM,∴BG+DF=BM﹣GM+DN﹣NF=AN﹣HM+CM﹣EN=AN﹣EN+CM﹣HM=AE+CH=6.故答案为6.15.(3 分)如图,半圆O 的直径AB=18,C 为半圆O 上一动点,∠CAB=a,点G 为△ABC 的重心.则GO 的长为3 .【解答】解:连接OC,∵半圆O 的直径AB=18,∴OC=9,∵点G 为△ABC 的重心,∴OC 经过G,∴GO=OC=3.故答案为:3.16.(3 分)用正五边形钢板制作一个边框总长为40cm 的五角星(如图),则正五边形的边长为2+2cm(保留根号).【解答】解:∵五边形ABCDE 是正五边形,∴五边形ABCDE 为圆内接正五边形,∴====,∴∠BAE==108°,∠HAN=∠AEH=∠BAC=∠DAE=∠ABE=∠BAE=×108°=36°,∴∠EAH=∠BAN=36°+36°=72°,∴∠AHE=180°﹣72°﹣36°=72°,∠ANB=180°﹣72°﹣36°=72°,∴∠EAH=∠EHA=72°,∠ANH=∠AHN=72°,∴AE=HE,∠EAH=∠EHA=∠ANH=∠AHN,∴△AEH∽△AHN,∴=,∵五角星的边框总长为40cm,∴AH=AN=EN==4,HN=HE﹣NE=AE﹣4,∴=,整理得:(AE﹣2)2=20,∴AE=2+2(cm),故答案为:2 +2.三、解答题17.(12 分)(1)计算:+sin60°﹣tan45°;(2)解方程:2(x﹣1)2=(x﹣1)【解答】解:(1)原式=|tan30°﹣1|+﹣1=| ﹣1|+ ﹣1=1﹣+ ﹣1=;(2)∵2(x﹣1)2﹣(x﹣1)=0,∴(x﹣1)(2x﹣2﹣)=0,则x﹣1=0 或2x﹣2﹣=0,解得x=1 或x=.18.(8 分)已知:关于x 的方程x2﹣(m+1)x+m2﹣1=0,根据下列条件求m 的值.(1)方程有一个根为1;(2)方程两个实数根的和与积相等.【解答】解:(1)依题意有1﹣(m+1)+m2﹣1=0,m2﹣m﹣1=0,解得m=;(2)依题意有m+1=m2﹣1,m2﹣m﹣2=0,解得m=﹣1 或2,当m=2 时△<0,方程无实数根,故m=﹣1.19.(8 分)我市有2000 名学生参加了2018 年全省八年级数学学业水平测试.其中有这样一题:如图,分别以线段BD 的端点B、D 为圆心,相同的长为半径画弧,两弧相交于A、C 两点,连接AB、AD、CB、CD.若AB=2,BD=2,求四边形ABCD 的面积.统计我市学生解答和得分情况,并制作如下图表:解答类型及得分情况表3 D 正确计算出AO 的长;E 结论正确,过程不完整;4 F 正确,与参考答案一致;G 用其他方法,完全正确.(1)求学业水平测试中四边形ABCD 的面积;(2)请你补全条形统计图;(3)我市该题的平均得分为多少?(4)我市得3 分以上的人数为多少?【解答】解:(1)连接AC 交BD 于点O;由作图可知AB=BC=CD=DA,∴ABCD 是菱形,∴AC⊥BD,OA=OC,OB=OD=BD=,在Rt△AOB 中,OA==1,∴AC=2OA=2,∴S 菱形=AC•BD=2 ;(2)100﹣1.4﹣6.7﹣9.2﹣28.7﹣10.8﹣8.9=34.3,补全条形统计图如图所示:(3)2×1.4%+3×(6.7%+9.2%)+4×(34.3%+28.7%)=3.025(分)答:我市该题的平均得分为 3.025 分;(4)2000×(6.7%+9.2%+34.3%+28.7%)=1578(人).答:我市得3 分及以上的人数有1578 人.20.(8 分)证明相似三角形对应角平分线的比等于相似比.已知:如图,△ABC∽△A′B′C′,相似比为k,AD、A′D′分别是△ABC 和△A′B′C′的角平分线.求证:=k.(先填空,再证明)证明:【解答】解:已知:如图,△ABC∽△A′B′C′,相似比为k,AD、A′D′分别是△ ABC 和△A′B′C′的角平分线.求证:=k.(先填空,再证明)证明:∵△ABC∽△A′B′C′,∴∠B=∠B′,∠BAC=∠B′A′C′,∵AD、A′D′分别是△ABC 和△A′B′C′的角平分线,∴∠BAD=∠BAC,∠B′A′D′=∠B′A′C′,∴∠BAD=∠B′A′D′,∴△ABD∽△A′B′D′,∴==k.故答案为:AD、A′D′分别是△ABC 和△A′B′C′的角平分线;=k.21.(10 分)如图,⊙O 的半径为2a,A、B 为⊙O 上两点,C 为⊙O 内一点,AC⊥BC,AC =a,BC=a.(1)判断点O、C、B 的位置关系;(2)求图中阴影部分的面积.【解答】(1)解:O、C、B 三点在一条直线上.证明:连接OA、OB、OC,在Rt△ABC 中,AB==2a,∴∠ABC=60°,∴OA=OB=AB,∴△OAB 是等边三角形,∴∠ABO=60°,故点C 在线段OB 上,即O、C、B 三点在一条直线上.(2)∵=.S 扇形AOB==.∴阴影部分的面积为=.22.(10 分)一次函数y=3x+6 的图象与x 轴相交于点A,与y 轴相交于点B,二次函数y=ax2+x+b 图象经过点A、B,与x 轴相交于另一点C.(1)求a、b 的值;(2)在直角坐标系中画出该二次函数的图象;(3)求∠ABC 的度数.【解答】解:(1)当x=0,y=3x+6=6,则B(0,6);当y=0 时,3x+6=0,解得x=﹣2,则A(﹣2,0),把B(0,6),A(﹣2,0)代入y=ax2+x+b 得,解得;(2)抛物线解析式为y=﹣x2+x+6,∵y=﹣x2+x+6=﹣(x+ )2+∴抛物线的顶点坐标为(﹣,);当y=0 时,﹣x2+x+6=0,解得x1=﹣2,x2=3,∴抛物线与x 轴的交点坐标为A(﹣2,0),C(3,0),如图,(3)作AH⊥BC 于H,如图,BC==3 ,AB==2 ,∵OB•AC=•AH•BC,∴AH==2 ,在Rt△ABH,sin∠ABH===,∴∠ABH=45°,即∠ABC=45°.23.(10 分)在Rt△ABC 中,∠C=90°.(1)如图①,点O 在斜边AB 上,以点O 为圆心,OB 长为半径的圆交AB 于点D,交BC 于点E,与边AC 相切于点F.求证:∠1=∠2;(2)在图②中作⊙M,使它满足以下条件:①圆心在边AB 上;②经过点B;③与边AC 相切.(尺规作图,只保留作图痕迹,不要求写出作法)【解答】解:(1)证明:如图①,连接OF,∵AC 是⊙O 的切线,∴OE⊥AC,∵∠C=90°,∴OE∥BC,∴∠1=∠OFB,∵OF=OB,∴∠OFB=∠2,∴∠1=∠2.(2)如图②所示⊙M 为所求.①作∠ABC 平分线交AC 于F 点,②作BF 的垂直平分线交AB 于M,以MB 为半径作圆,即⊙M 为所求.证明:∵M 在BF 的垂直平分线上,∴MF=MB,∴∠MBF=∠MFB,又∵BF 平分∠ABC,∴∠MBF=∠CBF,∴∠CBF=∠MFB,∴MF∥BC,∵∠C=90°,∴FM⊥AC,∴⊙M 与边AC 相切.24.(10 分)某软件开发公司开发了A、B 两种软件,每种软件成本均为1400 元,售价分别为2000 元、1800 元,这两种软件每天的销售额共为112000 元,总利润为28000 元.(1)该店每天销售这两种软件共多少个?(2)根据市场行情,公司拟对A 种软件降价销售,同时提高B 种软件价格.此时发现,A 种软件每降50 元可多卖1 件,B 种软件每提高50 元就少卖1 件.如果这两种软件每天销售总件数不变,那么这两种软件一天的总利润最多是多少?【解答】解:(1)设每天销售A 种软件x 个,B 种软件y个.由题意得:,解得:,20+40=60.∴该公司每天销售这两种软件共60 个.(2)设这两种软件一天的总利润为W,A 种软件每天多销售m 个,则B 种软件每天少销售m 个.W=(2000﹣1400﹣50m)(20+m)+(1800﹣1400+50m)(40﹣m)=﹣100(m﹣6)2+31600(0≤m≤12).当m=6 时,W 的值最大,且最大值为31600.∴这两种软件一天的总利润最多为31600 元.25.(12 分)定义:点P 在△ABC 的边上,且与△ABC 的顶点不重合.若满足△P AB、△ PBC、△P AC 至少有一个三角形与△ABC 相似(但不全等),则称点P 为△ABC 的自相似点.如图①,已知点A、B、C 的坐标分别为(1,0)、(3,0)、(0,1).(1)若点P 的坐标为(2,0),求证:点P 是△ABC 的自相似点;(2)求除点(2,0)外△ABC 所有自相似点的坐标;(3)如图②,过点B 作DB⊥BC 交直线AC 于点D,在直线AC 上是否存在点G,使△ GBD 与△GBC 有公共的自相似点?若存在,请举例说明;若不存在,请说明理由.【解答】证明:(1)连接CP,∵A(1,0),B(3,0),C(0,1),P(2,0),∴AP=1,AC=,AB=2,∴=,,∴,且∠PAC=∠CAB,∴△APC∽△CAB,∴点P 是△ABC 的自相似点;(2)由题意可得点P 只能在BC 上,∵A(1,0),B(3,0),C(0,1),∴AC=,BC=,AB=2,如图,若△CP'A∽△CAB,∴∴2=×CP',∴CP'=,∴=,∴点P′(3×,1×),即点P′坐标(,);若△ABP''∽△CBA,∴,∴4=•P''B,∴P''B=,∴,∴点P″(,);(3)存在.当点G 的坐标为(5,﹣4)时,△GBD 与△GBC 公共的自相似点为S(3,﹣2).理由如下:由题意D(,﹣).∵点G、S 在直线AC:y=﹣x+1 上,且在△DBG、△GBC 的边上∵△DBG∽△DSB 且△GBS∽△GCB.由S(3,﹣2)、B(3,0)知BS⊥AB,可得△ABS 为等腰直角三角形.∵SG=|x G﹣x S|=2 ,所以AC•SG=×2 =4,而AB2=4,所以AB2=AC•SG,∵AB=BS,∴=,∵∠BAC=∠BSG=135°,∴△ABC∽△SGB,有∠SBG=∠BCA,∴△GBS∽△GCB,所以点S 是△GBC 的自相似点;由上可得∠CBG=135°,而BD⊥BC,所以∠DBG=45°,即∠DBS+∠GBS=45°,∵∠GBS+∠BGS=45°,∴∠DBS=∠BGS,可得△DBS∽△DGB,故点S 是△GBD 的自相似点.所以S(3,﹣2)是△GBD 与△GBC 公共的自相似点.26.(14 分)已知:二次函数y1=﹣(x+m)2+m2﹣3、y2=a(x﹣m﹣1)2+m2+2m﹣2 图象的顶点分别为A、B(其中m、a 为实数),点C 的坐标为(0,﹣3).(1)试判断函数y1 的图象是否经过点C,并说明理由;(2)若m 为任意实数时,函数y2 的图象始终经过点C,求a 的值;(3)在(2)的条件下,存在不唯一的x 值,当x 增大时,函数y1 的值减小且函数y2 的值增大.①直接写出m 的范围;②点P 为x 轴上异于原点O 的任意一点,过点P 作y 轴的平行线,与函数y1、y2 的图象分别相交于点D、E.试说明的值只与点P 的位置有关.【解答】解:(1)函数y1 的图象经过点C.理由如下:当x=0 时,y1=﹣(0+m)2+m2﹣3=﹣m2+m2﹣3=﹣3,∴函数y1 的图象经过点C.(2)将点C(0,﹣3)代入y2 得:a(0﹣m﹣1)2+m2+2m﹣2=﹣3,∴(a+1)(2m+1)2=0,∵m 为任意实数时,函数y2 的图象始终经过点C,∴(a+1)(2m+1)2=0 的成立与m 无关,∴a+1=0,∴a=﹣1;(3)①m>﹣;②设点P 的坐标为(n,0),则y D=﹣(n+m)2+m2﹣3,y E=﹣(n﹣m﹣1)2+m2+2m ﹣2,∴DE=|y D﹣y E|=|﹣(n+m)2+m2﹣3﹣[﹣(n﹣m﹣1)2+m2+2m﹣2]|=|2n(2m+1)| 由①可知:2m+1>0,∴DE=|2n|(2m+1);过A 点作x 轴的平行线,过B 点作y 轴的平行线,两平行线相交点F,则点F 的坐标为(m+1,m2﹣3),∴AF=|m+1﹣(﹣m)|=2m+1,BF=|m2+2m﹣2﹣(m2﹣3)|=2m+1,∴AB==(2m+1),∴==|n|,故的值只与点P 的位置有关.。
苏科版九年级上册数学期末试题一、单选题1.数据:-2,1,1,2,4,6的中位数是()A.1B.2C.1.5D.1或22.方程x2﹣4x+5=0根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.有一个实数根D.没有实数根3.小玲在一次班会中参与知识抢答活动,现有语文题6个,数学题5个,英语题9个,她从中随机抽取1个,抽中数学题的概率是()A.14B.15C.120D.134.若抛物线y=(x-m)2+(m+1)的顶点在第一象限,则m的取值范围为()A.m>1B.m>0C.m>-1D.-1<m<05.已知圆锥的底面半径为6,母线长为8,圆锥的侧面积为()A.60B.48C.60πD.48π6.抛物线y=a2x+(a-3)x-a-1经过原点,那么a的值等于()A.0B.1C.–1D.37.抛物线y=3(x-2)2+1图象上平移2个单位,再向左平移2个单位所得的解析式为()A.y=3x2+3B.y=3x2-1C.y=3(x-4)2+3D.y=3(x-4)2-1 8.如图,A、B、C、D四个点均在⊙O上,⊙AOD=70°,AO⊙DC,则⊙B的度数为()A.40°B.45°C.50°D.55°二、填空题9.一组数据2,3,3,5,7的众数是_________.10.数据-1,0,1的方差为_______.11.若a是方程3x2-4x-3=0的一个根,则代数式246 3a a-+值为_________.12.要利用一面很长的围墙和100米长的隔离栏建三个如图所示的矩形羊圈,若计划建成的三个羊圈总面积为400平方米,则羊圈的边长AB 为多少米?设AB=x 米,根据题意可列出方程的为_________.13.如图,点A 、B 、C 、D 在⊙O 上,O 点在⊙D 的内部,四边形OABC 为平行四边形,则⊙OAD+⊙OCD=_______°.14.如果二次函数y=-2x 2-2(k -4)x+4图像的对称轴为直线x=2,那么字母k 的值为_______. 15.如图,在平行四边形ABCD 中,以点A 为圆心,AB 的长为半径的圆恰好与CD 相切于点C ,交AD 于点E ,延长BA 与⊙A 相交于点F .若弧EF 的长为2,则图中阴影部分的面积为_____.16.如图,AB 是⊙O 的弦,AB =4,点C 是⊙O 上的一个动点,且⊙ACB =45°.若点M ,N 分别是AB ,BC 的中点,则MN 长的最大值是_____.三、解答题17.解方程:(1)2x(x-2)=5(2-x)(2)x2-5x+3=018.在一次“中国梦”演讲比赛中,将甲、乙两组选手(每组10人)的成绩分别按得分(10分制)进行统计,根据统计数据绘制了如下还不完整的统计图表.(1)a=_______,b=_______,c=________;(2)乙组“10分”所在扇形的圆心角等于_______°.并请你补全条形统计图.19.已知关于x的方程x2-(k+2)x+2k=0.(1)求证:k取任何实数值,方程总有实数根;(2)若等腰⊙ABC的一腰长为4,另两边长m,n恰好是这个方程的两个根,求⊙ABC的周长.20.箱子里有4瓶果汁,其中有一瓶是苹果汁,其余三瓶都是橙汁,它们除口味不同外,其他完全相同.现从这4瓶果汁中一次性取出2瓶.(1)请用树状图或列表法把上述所有等可能的结果表示出来;(2)求抽出的2瓶果汁中恰好抽到苹果汁的概率.21.电动自行车已成为市民日常出行的首选工具.据某市品牌电动自行车经销商1至3月份统计,该品牌电动自行车1月份销售150辆,3月销售216辆.(1)求该品牌电动车销售量的月平均增长率;(2)若该品牌电动自行车的进价为2300元,售价2800元,则该经销商1月至3月共盈利多少元.22.如图,在边长为1的正方形组成的网格中,⊙AOB的顶点均在格点上,其中点A(5,4),B(1,3),将⊙AOB绕点O逆时针旋转90°后得到⊙A1OB1.(1)画出⊙A1OB1;(2)在旋转过程中点B所经过的路径长为______;(3)求在旋转过程中线段AB、BO扫过的图形的面积之和.23.小丽为校合唱队购买某种服装时,商店经理给出了如下优惠条件:如果一次性购买不超过10件,单价为80元;如果一次性购买多于10件,那么每增加1件,购买的所有服装的单价降低2元,但单价不得低于50元.按此优惠条件,小丽一次性购买这种服装付了1200元.请问她购买了多少件这种服装?24.如图,二次函数的图像与x轴交于A(-3,0)和B(1,0)两点,交y轴于点C(0,3),点C、D是二次函数图像上的一对对称点,一次函数的图像过点B、D.(1)求点D的坐标;(2)求二次函数的表达式;(3)根据图像直接写出使一次函数值大于二次函数值的x的取值范围.25.如图,点D为⊙O上一点,点C在直径BA的延长线上,且⊙CDA=⊙CBD.(1)判断直线CD和⊙O的位置关系,并说明理由.(2)过点B作⊙O的切线BE交直线CD于点E,若AC=2,⊙O的半径是3,求BE的长.26.(1)【学习心得】小刚同学在学习完“圆”这一章内容后,感觉到一些几何问题,如果添加辅助圆,运用圆的知识解决,可以使问题变得非常容易.例如:如图1,在⊙ABC中,AB=AC,⊙BAC=90°,D是⊙ABC外一点,且AD=AC,求⊙BDC 的度数,若以点A为圆心,AB为半径作辅助圆⊙A,则点C、D必在⊙A上,⊙BAC是⊙A 的圆心角,而⊙BDC是圆周角,从而可容易得到⊙BDC=°.(2)【问题解决】如图2,在四边形ABCD中,⊙BAD=⊙BCD=90°,⊙BDC=25°,求⊙BAC的度数.小刚同学认为用添加辅助圆的方法,可以使问题快速解决,他是这样思考的:⊙ABD的外接圆就是以BD的中点为圆心,12BD长为半径的圆;⊙ACD的外接圆也是以BD的中点为圆心,12BD长为半径的圆.这样A、B、C、D四点在同一个圆上,进而可以利用圆周角的性质求出⊙BAC的度数,请运用小刚的思路解决这个问题.(3)【问题拓展】如图3,在⊙ABC中,⊙BAC=45°,AD是BC边上的高,且BD=4,CD=2,求AD的长.27.如图,直线112y x=+与x,y轴分别交于点B,A,顶点为P的抛物线22y ax ax c=-+过点A.(1)求出点A ,B 的坐标及c 的值;(2)若函数22y ax ax c =-+在34x ≤≤时有最大值为2a +,求a 的值;(3)若0a >,连接AP ,过点A 作AP 的垂线交x 轴于点M .设⊙BMP 的面积为S . ⊙直接写出S 关于a 的函数关系式及a 的取值范围;⊙结合S 与a 的函数图象,直接写出18S >时a 的取值范围.参考答案1.C【分析】根据中位数的定义即可得. 【详解】解:将这组数据从小到大排序得-2,1,1,2,4,6,其中最中间的两个数为1,2,∴这组数据的中位数为12 1.52+= , 故选:C .【点睛】本题考查了中位数的知识,将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数,如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数,熟记中位数的定义是解题的关键.2.D【分析】先计算判别式的值,然后根据判别式的意义判断方程根的情况.【详解】解:⊙2450x x -+=,⊙()2Δ4415--⨯⨯==﹣4<0,⊙方程没有实数根.故选:D .【点睛】本题考查了根的判别式,一元二次方程20ax bx c ++=(a≠0)的根与2Δ4b ac -=如下关系:当Δ>0时,方程有两个不相等的两个实数根;当Δ=0时,方程有两个相等的两个实数根;当Δ<0时,方程无实数根,熟练掌握判别式的意义是解题的关键.3.A【分析】先求出总的题数,然后用数学题的提数除以总题数即可. 【详解】解:抽中数学题的概率是:551==659204++. 故选A.【点睛】本题考查概率的定义.属于比价基础的题型.4.B【分析】利用y=ax 2+bx+c 的顶点坐标公式表示出其顶点坐标,根据顶点在第一象限,所以顶点的横坐标和纵坐标都大于0列出不等式组.【详解】顶点坐标(m ,m+1)在第一象限,则有 010m m >⎧⎨+>⎩解得:m>0,故选:B .5.D【分析】圆锥的侧面积是一个扇形,扇形的面积就是圆锥的侧面积,根据计算公式计算即可.【详解】解:圆锥的侧面积=12•2π•6×8=48π.故选D .【点睛】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.6.C【分析】把(0,0)代入函数解析式,求解关于a 的一元一次方程即可.【详解】⊙抛物线y=a 2x +(a -3)x -a -1经过原点,⊙-a -1=0,解得a=-1,故选C.【点睛】本题考查了抛物线与点的关系,熟练掌握图像过点,点的坐标满足函数的解析式是解题的关键.7.A【分析】抛物线的平移,实际上就是顶点的平移,先求出原抛物线对顶点坐标,根据平移规律求新抛物线的顶点坐标,确定新抛物线的解析式.【详解】⊙y=3(x-2)2+1的顶点坐标为(2,1),⊙把抛物线向上平移2个单位,再向左平移2个单位,得新抛物线顶点坐标为(0,3),⊙平移不改变抛物线的二次项系数,⊙平移后的抛物线的解析式是y=3(x-0)2+3,即y=3x2+3.故选A.【点睛】根据平移规律求新抛物线的顶点坐标,确定新抛物线的解析式.考察抛物线的平移关系.8.D【详解】解:如图,连接OC,⊙AO⊙DC,⊙⊙ODC=⊙AOD=70°,⊙OD=OC,⊙⊙ODC=⊙OCD=70°,⊙⊙COD=40°,⊙⊙AOC=110°,⊙⊙B=12⊙AOC=55°. 故选D .9.3【详解】解:⊙数据2,3,3,5,7中出现次数最多是3⊙众数是3故答案为:3.【点睛】本题主要考查了众数的定义,在一组数据中出现次数最多的数据成为这组数据的众数,熟练地掌握众数的概念是解决本题的关键.10.23【分析】先求出3个数的平均数,再根据方差公式计算.【详解】解:数据-1,0,1的平均数:()110103-++=, 方差()()()222211000103S ⎡⎤=--+-+-⎣⎦23=, 故答案为:23. 【点睛】本题考查方差的计算,方差()()()2222121n S x x x x x x n ⎡⎤=-+-++-⎣⎦,熟记方差公式是解题的关键.11.7 【分析】由a 是方程3x 2-4x -3=0的一个根,得234=3a a -,利用整体代入,即可求出答案.【详解】解:⊙a 是方程3x 2-4x -3=0的一个根⊙234=3a a - ⊙22416=34+6=1+6=733a a a a -+-() 故答案为:7.【点睛】本题主要考查了一元二次方程的解的定义,再利用整体代入的方法求代数式的值,找到题目中的倍分关系是解题的关键.12.x (100-4x )=400【分析】由题意,得BC 的长为(100-4x )米,根据矩形面积列方程即可.【详解】解:设AB 为x 米,则BC 的长为(100-4x )米由题意,得x (100-4x )=400故答案为:x (100-4x )=400.【点睛】本题主要考查了一元二次方程的实际问题,解决问题的关键是通过图形找到对应关系量,根据等量关系式列方程.13.60【详解】⊙四边形OABC 为平行四边形,⊙⊙AOC=⊙B ,⊙OAB=⊙OCB ,⊙OAB+⊙B=180°.⊙四边形ABCD 是圆的内接四边形,⊙⊙D+⊙B=180°.又⊙D =12⊙AOC ,⊙3⊙D=180°,解得⊙D=60°.⊙⊙OAB=⊙OCB=180°-⊙B=60°.⊙⊙OAD+⊙OCD=360°-(⊙D+⊙B+⊙OAB+⊙OCB )=360°-(60°+120°+60°+60°)=60°. 故答案为:60°.【点睛】考点:⊙平行四边形的性质;⊙圆内接四边形的性质.14.0【分析】根据y=ax 2+bx+c 的对称轴为x=-2b a,直接代入求k 即可. 【详解】解:⊙对称轴为x=-2b a =2 ⊙-2422k ---⨯()=2 解得k=0故答案为:0.【点睛】本题主要考查二次函数的性质,熟练掌握y=ax 2+bx+c 的对称轴为x=-2b a 是解题的关键.15.2-2π 【分析】由切线的性质和平行四边形的性质得到BA⊙AC ,⊙ACB =⊙B =45°,⊙DAC =⊙ACB =45°=⊙FAE ,根据弧长公式求出弧长,得到半径,即可求得结果.【详解】如图所示,连接AC ,⊙CD 与⊙A 相切,⊙CD⊙AC ,在平行四边形ABCD 中, ⊙AB =DC ,AB⊙CD ,AD⊙BC , ⊙BA⊙AC , ⊙AB =AC⊙⊙ACB =⊙B =45°, ⊙,AD⊙BC⊙⊙FAE =⊙B =45°,⊙DAC =⊙ACB =45°=⊙FAE , ⊙EF EC =, ⊙EF 的长度=451802R ππ=,解得R =2, ⊙S 阴影=S ⊙ACD −S 扇形=12×22−2452360π⨯=2−2π.故答案为:2−2π. 【点睛】本题考查了切线的性质,平行四边形的性质,弧长的求法,扇形面积的求法,知道S 阴影=S ⊙ACD −S 扇形是解题的关键.16.【分析】根据中位线定理得到MN 的最大时,AC 最大,当AC 最大时是直径,从而求得直径后就可以求得最大值.【详解】解:点M ,N 分别是AB ,BC 的中点, 12MN AC ∴=, ∴当AC 取得最大值时,MN 就取得最大值,当AC 时直径时,最大, 如图,45ACB D ∠=∠=︒,4AB =,AD ∴= 12MN AD ∴==故答案为:【点睛】本题考查了三角形的中位线定理、等腰直角三角形的性质及圆周角定理,解题的关键是利用中位线性质将MN 的值最大问题转化为AC 的最大值问题,难度不大. 17.(1)1252,2x x ==-(2)12x x ==【分析】(1)用因式分解法解方程即可;(2)先计算根的判别式大于零,再利用公式法解方程即可. (1)2(2)5(2)x x x -=-- 2(2)5(2)0x x x -+-= (2)(25)0x x -+=20x -=或250x +=解得 1252,2x x ==- (2)由题意得1,5,3a b c ==-= 2(5)413130∴∆=--⨯⨯=>x ∴==12x x ∴==【点睛】本题考查了因式分解法和公式法解一元二次方程,熟练掌握知识点是解题的关键. 18.(1)2;2;0.2; (2)144,补图见解析.【分析】(1)用总人数乘0.2即可得出a 的值, 进而得出b 、c 的值;(2)用360°乘“10分”所占比例即可得出“10分”所在扇形的圆心角度数,用10减去其它人数得出“8分”的人数,再补全条形统计图即可. (1)解:(1)由题意得: .10022a =⨯=,101252b =---=,.21002c =÷= , 故答案为:2,2,0.2; (2)解:乙组“10分”所在扇形的圆心角等于: 17210836013104460---⨯︒︒︒︒=︒, 乙组“8分”的人数为:10-1-3-4=2 (人), 补全条形统计图如下:故答案为: 144.【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键. 19.(1)证明见解析; (2)⊙ABC 的周长为10.【分析】(1)计算其判别式,得出判别式不为负数即可;(2)当边长为4的边为腰时,则可知方程有一个根为4,代入可求得k 的值,则可求得方程的另一根,可求得周长;当边长为4的边为底时,可知方程有两个相等的实数根,可求得k 的值,再解方程即可. (1)证明:⊙⊙=(k +2)2-8k =k 2+4k +4-8k =(k -2)2≥0, ⊙无论k 取何值,方程总有实数根; (2)解:当腰长为4时,则可知方程有一个实数根为4, ⊙16-4(k +2)+2k =0,解得k =4, ⊙方程为x 2-6x +8=0,解得x =4或x =2, ⊙a 、b 的值分别为2、4, ⊙⊙ABC 的周长为2+4+4=10;【点睛】本题主要考查根的判别式,掌握方程根的情况与判别式的关系是解题的关键. 20.(1)见解析,12种等可能性 (2)12【分析】(1)设A 表示苹果汁,123,,B B B 分别表示橙汁,根据画树状图的基本要求画出正确树状图即可.(2)用确定事件的等可能性除以所有等可能性即可. (1)设A 表示苹果汁,123,,B B B 分别表示橙汁,画树状图如下:,故一共有12种等可能性. (2)根据前面知道,一共有12种等可能性,抽出的2瓶果汁中恰好抽到苹果汁的等可能性有6种,故抽出的2瓶果汁中恰好抽到苹果汁的概率为:61122. 21.(1)20%;(2)273000.【分析】(1)设该品牌电动车销售量的月平均增长率为x ,2月份该品牌电动车销售量为150(1+x),则3月份该品牌电动车销售量为150(1+x) (1+x) =150(1+x)2. 据此列出方程求解. (2)根据(1)求出增长率后,再计算出二月份的销量,即可得到答案. 【详解】解:(1)设该品牌电动车销售量的月平均增长率为x ,根据题意得 150(1+x )2=216,解得x 1=0.2,x 2=-2.2(舍去)答:该品牌电动车销售量的月平均增长率为20%.(2)由(1)得该品牌电动车销售量的月平均增长率为20%, ⊙2月份的销售量为150×(1+20%)=180⊙则1-3月份的销售总量为150+180+216=546(辆) ⊙()28002300546273000-⨯=(元) 答:该经销商1月至3月共盈利273000元.22.(1)画图见解析;(2;(3)414π 【分析】(1)根据网格结构找出点A 、B 绕点O 逆时针旋转90°后的对应点A 1、B 1的位置,然后顺次连接即可;(2)利用勾股定理列式求OB ,再利用弧长公式计算即可得解;(3)利用勾股定理列式求出OA ,再根据AB 所扫过的面积=S 扇形A 1OA+S⊙A 1B 1O -S 扇形B 1OB -S⊙AOB=S 扇形A 1OA -S 扇形B 1OB 求解,再求出BO 扫过的面积=S 扇形B 1OB ,然后计算即可得解.【详解】解:(1)⊙A 1OB 1如图所示;(2)由勾股定理得, 所以,点B 所经过的路径长9010101802π=,;(3)由勾股定理得,⊙AB 所扫过的面积=S 扇形A 1OA+S⊙A 1B 1O -S 扇形B 1OB -S⊙AOB=S 扇形A 1OA -S 扇形B 1OB BO 扫过的面积=S 扇形B 1OB ,⊙线段AB 、BO 扫过的图形的面积之和=S 扇形A 1OA -S 扇形B 1OB+S 扇形B 1OB ,=S 扇形A 1OA ,414π=.【点睛】考点:1.作图-旋转变换;2.勾股定理;3.弧长的计算;4.扇形面积的计算. 23.她购买了20件这种服装.【分析】根据一次性购买多于10件,那么每增加1件,购买的所有服装的单价降低2元,表示出每件服装的单价,进而得出等式方程求出即可. 【详解】解:设购买了x 件这种服装,根据题意得出:[802(10)]1200x x --=,解得:120x =,230x =,当30x =时,802(3010)40--=50<不合题意舍去; 答:她购买了20件这种服装.【点睛】本题主要考查了一元二次方程的应用,解题的关键是根据已知得出每件服装的单价. 24.(1)D (-2,3);(2)二次函数的解析式为y=−x2-2x+3;(3)一次函数值大于二次函数值的x 的取值范围是x <-2或x >1. 【分析】(1)根据抛物线的对称性来求点D 的坐标;(2)设二次函数的解析式为y=ax 2+bx+c (a≠0,a 、b 、c 常数),把点A 、B 、C 的坐标分别代入函数解析式,列出关于系数a 、b 、c 的方程组,通过解方程组求得它们的值即可; (3)根据图象直接写出答案. (1)解:⊙如图,二次函数的图象与x 轴交于A (-3,0)和B (1,0)两点, ⊙对称轴是31231x =-+-=-.又点C (0,3),点C 、D 是二次函数图象上的一对对称点,⊙D(-2,3);(2)解:设二次函数的解析式为y=ax2+bx+c(a≠0,a、b、c常数),根据题意得,9303a b ca b cc++⎧⎪++⎨⎪⎩===,解得a=-1,b=-2,c=3,所以二次函数的解析式为y=−x2-2x+3;(3)解:一次函数值与二次函数值相交于D(-2,3)、B(1,0),如图,∴一次函数值大于二次函数值的x的取值范围是x<-2或x>1.【点睛】本题考查了待定系数法求二次函数解析式以及二次函数与不等式组,利用数形结合的数学思想是解题的关键.25.(1)直线CD和⊙O的位置关系是相切,理由见解析;(2)BE=6.【分析】(1)连接OD,可知由直径所对的圆周角是直角可得⊙DAB+⊙DBA=90°,再由⊙CDA=⊙CBD可得⊙CDA+⊙ADO=90°,从而得⊙CDO=90°,根据切线的判定即可得出;(2)由已知利用勾股定理可求得DC的长,根据切线长定理有DE=EB,根据勾股定理得出方程,求出方程的解即可.【详解】(1)直线CD和⊙O的位置关系是相切,理由是:连接OD,⊙AB是⊙O的直径,⊙⊙ADB=90°,⊙⊙DAB+⊙DBA=90°,⊙⊙CDA=⊙CBD,⊙⊙DAB+⊙CDA=90°,⊙OD=OA,⊙⊙DAB=⊙ADO,⊙⊙CDA+⊙ADO=90°,即OD⊙CE,⊙直线CD是⊙O的切线,即直线CD和⊙O的位置关系是相切;(2)⊙AC=2,⊙O的半径是3,⊙OC=2+3=5,OD=3,在Rt⊙CDO中,由勾股定理得:CD=4,⊙CE切⊙O于D,EB切⊙O于B,⊙DE=EB,⊙CBE=90°,设DE=EB=x,在Rt⊙CBE中,由勾股定理得:CE2=BE2+BC2,则(4+x)2 =x2+(5+3)2,解得:x=6,即BE=6.26.(1)45;(2)⊙BAC=25°,(3)+3.【分析】(1)如图1,由已知易得点B,C,D在以点A为圆心,AD为半径的圆上,则由“圆⊙BAC=23°;周角定理”可得⊙BDC=12(2)如图2,由已知易得A、B、C、D在以BD的中点O为圆心,OB为半径的圆上,由此可由“圆周角定理”可得⊙BAC=⊙BDC=28°;(3)如图3,由已知易得点A、C、D、F在以AC为直径的同一个圆上,由此可得⊙EFC=⊙DAC;同理可得:⊙DFC=⊙CBE;由已知易得⊙DAC=⊙EBC,这样即可得到⊙EFC=⊙DFC.【详解】(1)如图1,⊙AB=AC=AD,⊙点B、C、D在以A为圆心,AB为半径的圆上,⊙⊙BDC=1⊙BAC=23°;2(2)证明:取BD中点O,连接AO、CO,⊙在Rt⊙BAO中,⊙BAD=90°,BD=BO=DO,⊙AO=12BD,同理:CO=12⊙AO=DO=CO=BO,⊙点A、B、C、D在以O为圆心、OB为半径的同一个圆上,⊙⊙BAC=⊙BDC=28°(3)⊙CF⊙AB,AD⊙BC,⊙⊙AFC=⊙ADC=90°,⊙点A、C、D、F在以AC为直径的同一个圆上,⊙⊙EFC=⊙DAC,同理可得:⊙DFC=⊙CBE,⊙在⊙ADC中,⊙DAC+⊙ACD=90°,在⊙BEC中,⊙EBC+⊙ACD=90°,⊙⊙DAC=⊙EBC,⊙⊙EFC=⊙DFC.27.(1)A (0,1),B (-2,0),1c = (2)17a =(3)⊙222131(01)22131(12)22131(2)22a a a S a a a a a a ⎧-+<<⎪⎪⎪-+-<<⎨⎪⎪-+>⎪⎩;⊙0a <<a >【分析】(1)先求出点 A(0,1) ,点 B(−2,0) ,将点A 坐标代入解析式可求c 的值; (2)分a >0,a <0两种情况讨论,由二次函数的性质可求解;(3)⊙分四种情况讨论,由“AAS”可证 ⊙AOM⊙⊙PNA ,可得OM =AN ,由三角形的面积公式可求解;⊙分三种情况讨论,解不等式可求解. 【详解】解:(1)⊙直线112y x =+与x ,y 轴分别交于点B ,A , ⊙点A (0,1),点B (-2,0), ⊙抛物线22y ax ax c =-+过点A , ⊙1c =;(2)⊙()222111y ax ax a x a =-+=-+-, ⊙对称轴为直线1x =,当0a >,34x ≤≤时,y 随x 的增大而增大 ⊙当4x =时,y 有最大值, ⊙912a a a +-=+, 解得:17a =;当a<0,34x ≤≤时,y 随x 的增大而减小, ⊙当3x =时,y 有最大值,⊙412a a a +-=+, 解得:12a =(不合题意舍去), 综上所述:17a =(3)⊙当0a >,10a ->时,即01a <<, 如图2,过点P 作PN y ⊥轴于N ,⊙1PN OA ==,1(1)AN a a =--=, 同理可得AOM PNA ∆≅∆,⊙OM AN a ==,⊙2BM a =-, ⊙()()2113211222S a a a a =⨯--=-+; 当0a >,110a -<-<时,即12a <<, 如图3,过点P 作PN y ⊥轴于N ,⊙1PN OA ==,1ON a =-,11AN a a =+-=,同理可得AOM PNA ∆≅∆,⊙OM AN a ==,⊙2BM a =-, ⊙()()2113211222S a a a a =⨯--=-+-;当2a =时,点B 与点M 重合,不合题意, 当0a >,11a -<-时,即2a >, 如图4,过点P 作PN y ⊥轴于N ,⊙1PN OA ==,1ON a =-,11AN a a =+-=, 同理可得AOM PNA ∆≅∆,⊙OM AN a ==,⊙2BM a =-, ⊙()()2113211222S a a a a =⨯--=-+; 综上所述:222131(01)22131(12)22131(2)22a a a S a a a a a a ⎧-+<<⎪⎪⎪-+-<<⎨⎪⎪-+>⎪⎩⊙当12a <<时,221313111222288S a a a ⎛⎫=-+-=--+≤ ⎪⎝⎭,⊙当12a <<时,不存在a 的值使18S >;当01a <<时,开口向上,对称轴为直线32a =,S 随a 的增大而减小当18S =时,解得a =⊙0a << 当2a >时,开口向上,对称轴为直线32a =,S 随a 的增大而增大,⊙a >综上所述:0a <<a >。
苏科版九年级上册数学期末考试试卷一、选择题。
(每小题只有一个正确答案)1.一元二次方程x 2=-3x 的解是()A .x =0B .x =3C .x 1=0,x 2=3D .x 1=0,x 2=-32.一组数据0、-1、3、2、1的极差是()A .4B .3C .2D .13.如图,已知一组平行线////a b c ,被直线m 、n 所截,交点分别为A 、B 、C 和D 、E 、F ,且 1.5AB =,2BC =, 1.8DE =,则EF =()A .4.4B .4C .3.4D .2.44.如图,AB 是⊙O 的直径,弦CD ⊥AB 于点M ,若CD =8cm ,MB =2cm ,则直径AB 的长为()A .9cmB .10cmC .11cmD .12cm5.已知二次函数y =ax 2+bx +c 的图像如图所示,则下列结论正确的个数有()①c >0;②b 2-4ac <0;③a -b +c >0;④当x >-1时,y 随x 的增大而减小.A .4个B .3个C .2个D .1个6.如图,在□ABCD 中,E 、F 分别是边BC 、CD 的中点,AE 、AF 分别交BD 于点G 、H ,则图中阴影部分图形的面积与□ABCD 的面积之比为()A .7:12B .7:24C .13:36D .13:72二、填空题7.若a b b-=23,则a b 的值为________.8.设1x 、2x 是关于x 的方程2350x x +-=的两个根,则1212x x x x +-∙=__________.9.将抛物线y =-5x 2先向左平移2个单位长度,再向下平移3个单位长度后,得到新的抛物线的表达式是________.10.如图,在△ABC 和△APQ 中,∠PAB =∠QAC ,若再增加一个条件就能使△APQ ∽△ABC ,则这个条件可以是________.11.在一块边长为30cm 的正方形飞镖游戏板上,有一个半径为10cm 的圆形阴影区域,则飞镖落在阴影区域内的概率为__________.12.若一个圆锥的主视图是腰长为5,底边长为6的等腰三角形,则该圆锥的侧面积是____________.13.如图,边长为2的正方形ABCD ,以AB 为直径作O ,CF 与O 相切于点E ,与AD 交于点F ,则CDF ∆的面积为__________.14.二次函数y =ax 2+bx +c (a ,b ,c 为常数,且a ≠0)的图像上部分点的横坐标x 和纵坐标y 的对应值如下表:x …-10123…y…-3-3-139…关于x 的方程ax 2+bx +c =0一个负数解x 1满足k <x 1<k +1(k 为整数),则k =________.15.如图,在ABC ∆中,3AB =,4AC =,6BC =,D 是BC 上一点,2CD =,过点D 的直线l 将ABC ∆分成两部分,使其所分成的三角形与ABC ∆相似,若直线l 与ABC ∆另一边的交点为点P ,则DP =__________.16.如图,在Rt ABC ∆中,90ACB ∠= ,6AC =,8BC =,D 、E 分别是边BC 、AC 上的两个动点,且4DE =,P 是DE 的中点,连接PA ,PB ,则14PA PB +的最小值为__________.三、解答题17.解方程:(1)3x 2-6x -2=0(2)(x -2)2=(2x +1)218.为了从小华和小亮两人中选拔一人参加射击比赛,现对他们的射击水平进行测试,两人在相同条件下各射击6次,命中的环数如下(单位:环):小华:7,8,7,8,9,9;小亮:5,8,7,8,10,10.(1)填写下表:平均数(环)中位数(环)方差(环2)小华8小亮83(2)根据以上信息,你认为教练会选择谁参加比赛,理由是什么?(3)若小亮再射击2次,分别命中7环和9环,则小亮这8次射击成绩的方差.(填“变大”、“变小”、“不变”)19.某景区检票口有A、B、C、D共4个检票通道.甲、乙两人到该景区游玩,两人分别从4个检票通道中随机选择一个检票.(1)甲选择A检票通道的概率是;(2)求甲乙两人选择的检票通道恰好相同的概率.20.已知二次函数y=-x2+bx+c(b,c为常数)的图象经过点(2,3),(3,0).(1)则b=,c=;(2)该二次函数图象与y轴的交点坐标为,顶点坐标为;(3)在所给坐标系中画出该二次函数的图象;(4)根据图象,当-3<x<2时,y的取值范围是.21.如图,AB是⊙O的弦,AB=4,点P在AmB上运动(点P不与点A、B重合),且∠APB =30°,设图中阴影部分的面积为y.(1)⊙O的半径为;(2)若点P到直线AB的距离为x,求y关于x的函数表达式,并直接写出自变量x的取值范围.22.如图,在Rt ABC ∆中,90C = ∠,矩形DEFG 的顶点G 、F 分别在边AC 、BC 上,D 、E 在边AB 上.(1)求证:ADG ∆∽FEB ∆;(2)若2AD GD =,则ADG ∆面积与BEF ∆面积的比为.23.已知二次函数y =x 2-mx +m 2+m -1(m 为常数).(1)求证:不论m 为何值,该二次函数的图像与x 轴总有两个公共点;(2)将该二次函数的图像向下平移k (k >0)个单位长度,使得平移后的图像经过点(0,-2),则k 的取值范围是.24.(1)如图①,在△ABC 中,AB =m ,AC =n (n >m ),点P 在边AC 上.当AP =时,△APB ∽△ABC ;(2)如图②,已知△DEF (DE >DF ),请用直尺和圆规在直线DF 上求作一点Q ,使DE 是线段DF 和DQ 的比例项.(保留作图痕迹,不写作法)25.如图,四边形ABCD 内接于⊙O ,AC 为⊙O 的直径,D 为 AC 的中点,过点D 作DE ∥AC ,交BC 的延长线于点E .(1)判断DE 与⊙O 的位置关系,并说明理由;(2)若CE =163,AB =6,求⊙O 的半径.26.某商店销售一种商品,经市场调查发现:该商品的月销售量y (件)是售价x (元/件)的一次函数,其售价x 、月销售量y 、月销售利润w (元)的部分对应值如下表:售价x (元/件)4045月销售量y (件)300250月销售利润w (元)30003750注:月销售利润=月销售量×(售价-进价)(1)①求y 关于x 的函数表达式;②当该商品的售价是多少元时,月销售利润最大?并求出最大利润;(2)由于某种原因,该商品进价提高了m 元/件(m >0),物价部门规定该商品售价不得超过40元/件,该商店在今后的销售中,月销售量与售价仍然满足(1)中的函数关系.若月销售最大利润是2400元,则m 的值为.27.在矩形ABCD 中,3AB =,5AD =,E 是射线DC 上的点,连接AE ,将ADE ∆沿直线AE 翻折得AFE ∆.(1)如图①,点F 恰好在BC 上,求证:ABF ∆∽FCE ∆;(2)如图②,点F 在矩形ABCD 内,连接CF ,若1DE =,求EFC ∆的面积;(3)若以点E 、F 、C 为顶点的三角形是直角三角形,则DE 的长为.参考答案1.D【分析】先移项,然后利用因式分解法求解.【详解】解:(1)x2=-3x,x2+3x=0,x(x+3)=0,解得:x1=0,x2=-3.故选:D.【点睛】本题考查了解一元二次方程-因式分解法,熟练掌握因式分解的方法是解题的关键.2.A【分析】根据极差的概念最大值减去最小值即可求解.【详解】解:这组数据:0、-1、3、2、1的极差是:3-(-1)=4.故选A.【点睛】本题考查了极差的知识,极差是指一组数据中最大数据与最小数据的差.3.D【分析】根据平行线等分线段定理列出比例式,然后代入求解即可.【详解】解:∵////a b c∴AB DEBC EF=即1.5 1.82EF=解得:EF=2.4故答案为D.【点睛】本题主要考查的是平行线分线段成比例定理,利用定理正确列出比例式是解答本题的关键.4.B 【分析】由CD ⊥AB ,可得DM=4.设半径OD=Rcm ,则可求得OM 的长,连接OD ,在直角三角形DMO 中,由勾股定理可求得OD 的长,继而求得答案.【详解】解:连接OD ,设⊙O 半径OD 为R,∵AB 是⊙O 的直径,弦CD ⊥AB 于点M ,∴DM=12CD=4cm ,OM=R-2,在RT △OMD 中,OD²=DM²+OM²即R²=4²+(R-2)²,解得:R=5,∴直径AB 的长为:2×5=10cm .故选B .【点睛】本题考查了垂径定理以及勾股定理.注意掌握辅助线的作法及数形结合思想的应用.5.C 【分析】由抛物线的开口方向判断a 与0的关系,由抛物线与y 轴的交点判断c 与0的关系,然后根据抛物线与x 轴交点及x=-1时二次函数的值的情况进行推理,进而对所得结论进行判断.【详解】解:由图象可知,a <0,c >0,故①正确;抛物线与x 轴有两个交点,则b²-4ac>0,故②错误;∵当x=-1时,y>0,即a-b+c>0,故③正确;由图象可知,图象开口向下,对称轴x >-1,在对称轴右侧,y 随x 的增大而减小,而在对称轴左侧和-1之间,是y 随x 的增大而减小,故④错误.故选:C .【点睛】本题考查了二次函数图象与系数的关系:二次项系数a决定抛物线的开口方向和大小.当a >0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时,对称轴在y轴左;当a与b异号时,对称轴在y 轴右.常数项c决定抛物线与y轴交点:抛物线与y轴交于(0,c).抛物线与x轴交点个数由判别式确定:△=b2-4ac>0时,抛物线与x轴有2个交点;△=b2-4ac=0时,抛物线与x 轴有1个交点;△=b2-4ac<0时,抛物线与x轴没有交点.6.B【分析】根据已知条件想办法证明BG=GH=DH,即可解决问题;【详解】解:∵四边形ABCD是平行四边形,∴AB∥CD,AD∥BC,AB=CD,AD=BC,∵DF=CF,BE=CE,∴12DH DFHB AB==,12BG BEDG AD==,∴13 DH BGBD BD==,∴BG=GH=DH,∴S△ABG=S△AGH=S△ADH,∴S平行四边形ABCD=6S△AGH,∴S△AGH :ABCDS平行四边形=1:6,∵E、F分别是边BC、CD的中点,∴12 EFBD=,∴14EFCBCDDSS=,∴18EFCABCDSS=四边形,∴1176824AGH EFCABCDS SS+=+=四边形=7∶24,故选B.【点睛】本题考查了平行四边形的性质、平行线分线段成比例定理、等底同高的三角形面积性质,题目的综合性很强,难度中等.7.53【分析】根据条件可知a 与b 的数量关系,然后代入原式即可求出答案.【详解】∵a b b-=23,∴b=35a,∴a b =5335a a =,故答案为:53.【点睛】本题考查了分式,解题的关键是熟练运用分式的运算法则.8.2【分析】根据根与系数的关系确定12x x +和12x x ∙,然后代入计算即可.【详解】解:∵2350x x +-=∴12x x +=-3,12x x ∙=-5∴1212x x x x +-∙=-3-(-5)=2故答案为2.【点睛】本题主要考查了根与系数的关系,牢记对于20ax bx c ++=(a≠0),则有:12b x x a+=-,12cx x a∙=是解答本题的关键.9.y =-5(x +2)2-3【分析】根据向左平移横坐标减,向下平移纵坐标减求出新抛物线的顶点坐标,再利用顶点式解析式写出即可.【详解】解:∵抛物线y=-5x2先向左平移2个单位长度,再向下平移3个单位长度,∴新抛物线顶点坐标为(-2,-3),∴所得到的新的抛物线的解析式为y=-5(x+2)2-3.故答案为:y=-5(x+2)2-3.【点睛】本题考查了二次函数图象与几何变换,掌握平移的规律:左加右减,上加下减是关键.10.∠P=∠B(答案不唯一)【分析】要使△APQ∽△ABC,在这两三角形中,由∠PAB=∠QAC可知∠PAQ=∠BAC,还需的条件可以是∠B=∠P或∠C=∠Q或AP AQ AB AC=.【详解】解:这个条件为:∠B=∠P ∵∠PAB=∠QAC,∴∠PAQ=∠BAC∵∠B=∠P,∴△APQ∽△ABC,故答案为:∠B=∠P或∠C=∠Q或AP AQ AB AC=.【点睛】本题考查了相似三角形的判定与性质的运用,掌握相似三角形的判定与性质是解题的关键.11.9π【分析】分别计算半径为10cm的圆的面积和边长为30cm的正方形ABCD的面积,然后计算SS半圆正方形即可求出飞镖落在圆内的概率;【详解】解:(1)∵半径为10cm的圆的面积=π•102=100πcm2,边长为30cm的正方形ABCD的面积=302=900cm2,∴P (飞镖落在圆内)=100==9009S S ππ半圆正方形,故答案为:9π.【点睛】本题考查了几何概率,掌握概率=相应的面积与总面积之比是解题的关键.12.15π.【分析】根据圆锥的主视图得到圆锥的底面圆的半径为3,母线长为5,然后根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式求解.【详解】解:根据题意得圆锥的底面圆的半径为3,母线长为5,所以这个圆锥的侧面积=12×5×2π×3=15π.【点睛】本题考查圆锥侧面积的计算,掌握公式,准确计算是本题的解题关键.13.32【分析】运用切线长定理和勾股定理求出DF ,进而完成解答.【详解】解:∵CF 与O 相切于点E ,与AD 交于点F ∴EF=AF,EC=BC=2设EF=AF=x,则CF=2+x,DF=2-x 在Rt △CDF 中,由勾股定理得:DF 2=CF 2-CD 2,即(2-x)2=(2+x)2-22解得:x=12,则DF=32∴CDF ∆的面积为13222⨯⨯=32故答案为32.【点睛】本题考查了切线长定理和勾股定理等知识点,根据切线长定理得到相等的线段是解答本题的关键.14.-3【分析】首先利用表中的数据求出二次函数,再利用求根公式解得x1,再利用夹逼法可确定x1的取值范围,可得k.【详解】解:把x=0,y=-3,x=1,y=-1,x=-1,y=-3代入y=ax2+bx+c得3 1 3ca b c a b c-=⎧⎪-=++⎨⎪-=-+⎩,解得113abc=⎧⎪=⎨⎪=-⎩,∴y=x²+x-3,∵△=b2-4ac=12-4×1×(-3)=13,∴x=122ba-±-±==−1±2,∵1x<0,∴1x2<0,∵,∴322-≤--,∴-3≤−1−2≤ 2.5 -,∵整数k满足k<x1<k+1,∴k=-3,故答案为:-3.【点睛】本题考查了二次函数的图象和性质,解题的关键是求出二次函数的解析式.15.1,8 3,32【分析】根据P的不同位置,分三种情况讨论,即可解答.【详解】解:如图:当DP∥AB时∴△DCP∽△BCA∴DC DPBC AB=即263DP=,解得DP=1如图:当P在AB上,即DP∥AC∴△DCP∽△BCA∴BD DPBC AC=即6264DP-=,解得DP=83如图,当∠CPD=∠B,且∠C=∠C时,∴△DCP∽△ACB∴PD CDAB AC=即243DP=,解得DP=32故答案为1,83,32.【点睛】本题考查了相似三角形的判定和性质,掌握分类讨论思想并全部找到不同位置的P点是解答本题的关键.16.1452【分析】先在CB上取一点F,使得CF=12,再连接PF、AF,然后利用相似三角形的性质和勾股定理求出AF,即可解答.【详解】解:如图:在CB 上取一点F ,使得CF=12,再连接PF 、AF ,∵∠DCE=90°,DE=4,DP=PE ,∴PC=12DE=2,∵14CF CP =,14CP CB =∴CF CPCP CB=又∵∠PCF=∠BCP ,∴△PCF ∽△BCP ,∴14PF CF PB CP ==∴PA+14PB=PA+PF ,∵PA+PF≥AF ,==∴PA+14PB ≥.2∴PA+14PB 的最小值为2,【点睛】本题考查了勾股定理、相似三角形的判定和性质等知识,正确添加常用辅助线、构造相似三角形是解答本题的关键.17.(1)x 1=1+3,x 2=1-3;(2)x 1=13,x 2=-3【分析】(1)利用配方法解方程即可;(2)先移项,然后利用因式分解法解方程.【详解】(1)解:x 2-2x =23x 2-2x +1=23+1(x -1)2=53x -1=∴x 1=1x 2=1(2)解:[(x -2)+(2x +1)][(x -2)-(2x +1)]=0(3x -1)(-x -3)=0∴x 1=13,x 2=-3【点睛】本题考查了解一元二次方程的应用,能灵活运用各种方法解一元二次方程是解题的关键.18.(1)8,8,23;(2)选择小华参赛.(3)变小【分析】(1)根据方差、平均数和中位数的定义求解;(2)根据方差的意义求解;(3)根据方差公式求解.【详解】(1)解:小华射击命中的平均数:7+8+7+8+9+96=8,小华射击命中的方差:2222122(78)2(88)2(98)63S ⎡⎤=-+-+-=⎣⎦,小亮射击命中的中位数:8+8=82;(2)解:∵x 小华=x 小亮,S 2小华<S 2小亮∴选小华参赛更好,因为两人的平均成绩相同,但小华的方差较小,说明小华的成绩更稳定,所以选择小华参赛.(3)解:小亮再射击2次,分别命中7环和9环,则小亮这8次射击成绩的方差变小.【点睛】本题考查了方差:一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差.方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.也考查了算术平均数和众数.19.(1)14;(2)14.【分析】(1)直接利用概率公式求解;(2)通过列表展示所有9种等可能结果,再找出通道不同的结果数,然后根据概率公式求解.【详解】(1)解:一名游客经过此检票口时,选择A通道通过的概率=1 4,故答案为:1 4;(2)解:列表如下:A B C DA(A,A)(A,B)(A,C)(A,D)B(B,A)(B,B)(B,C)(B,D)C(C,A)(C,B)(C,C)(C,D)D(D,A)(D,B)(D,C)(D,D)共有16种可能结果,并且它们的出现是等可能的,“甲、乙两人选择相同检票通道”记为事件E,它的发生有4种可能:(A,A)、(B,B)、(C,C)、(D,D)∴P(E)=416=14.【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.20.(1)b=2,c=3;(2)(0,3),(1,4)(3)见解析;(4)-12<y≤4【分析】(1)将点(2,3),(3,0)的坐标直接代入y =-x 2+bx +c 即可;(2)由(1)可得解析式,将二次函数的解析式华为顶点式即可;(3)根据二次函数的定点、对称轴及所过的点画出图象即可;(4)直接由图象可得出y 的取值范围.【详解】(1)解:把点(2,3),(3,0)的坐标直接代入y =-x 2+bx +c 得3=-4+2b+c0=-9+3b+c ⎧⎨⎩,解得23b c =⎧⎨=⎩,故答案为:b=2,c=3;(2)解:令x=0,c=3,二次函数图像与y 轴的交点坐标为则(0,3),二次函数解析式为y=y =-x 2+2x +3=-(x-1)²+4,则顶点坐标为(1,4).(3)解:如图所示…(4)解:根据图像,当-3<x <2时,y 的取值范围是:-12<y ≤4.【点睛】本题考查了待定系数法求二次函数的解析式:在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解.一般地,当已知抛物线上三点时,常选择一般式,用待定系数法列三元一次方程组来求解;当已知抛物线的顶点或对称轴时,常设其解析式为顶点式来求解;当已知抛物线与x 轴有两个交点时,可选择设其解析式为交点式来求解.也考查了二次函数的图象与性质.21.(1)4;(2)y=2x +83π-(0<4)【分析】(1)根据圆周角定理得到△AOB 是等边三角形,求出⊙O 的半径;(2)过点O 作OH ⊥AB ,垂足为H,先求出AH=BH=12AB=2,再利用勾股定理得出OH 的值,进而求解.【详解】(1)解:(1)∵∠APB=30°,∴∠AOB=60°,又OA=OB ,∴△AOB 是等边三角形,∴⊙O 的半径是4;(2)解:过点O 作OH ⊥AB ,垂足为H则∠OHA =∠OHB =90°∵∠APB =30°∴∠AOB =2∠APB =60°∵OA=OB ,OH ⊥AB ∴AH=BH=12AB=2在Rt △AHO 中,∠AHO =90°,AO =4,AH =2∴OH∴y =16×16π-1212×4×x=2x +83π-(0<4).【点睛】本题考查了圆周角定理,勾股定理、掌握一条弧所对的圆周角是这条弧所对的圆心角的一半是解题的关键.22.(1)见解析;(2)4.【分析】(1)先证∠AGD=∠B ,再根据∠ADG=∠BEF=90°,即可证明;(2)由(1)得ADG ∆∽FEB ∆,则△ADG 面积与△BEF 面积的比=2AD EF ⎛⎫⎪⎝⎭=4.【详解】(1)证:在矩形DEFG 中,GDE FED ∠=∠=90°∴GDA FEB ∠=∠=90°∵C GDA ∠=∠=90°∴A AGD A B ∠+∠=∠+∠=90°∴AGD B ∠=∠在ADG ∆和FEB ∆中∵AGD B ∠=∠,GDA FEB ∠=∠=90°∴ADG ∆∽FEB∆(2)解:∵四边形DEFG 为矩形,∴GD=EF ,∵△ADG ∽△FEB ,∴224ADG BEF S AD AD S EF GD ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭故答案为4.【点睛】本题考查了相似三角形的判定与性质,根据题意证得△ADG ∽△FEB 是解答本题的关键.23.(1)证明见解析;(2)k ≥34.【分析】(1)根据判别式的值得到△=(2m -1)2+3>0,然后根据判别式的意义得到结论;(2)把(0,-2)带入平移后的解析式,利用配方法得到k=(m+12)²+34,即可得出结果.【详解】(1)证:当y =0时x 2-mx +m 2+m -1=0∵b 2-4ac =(-m )2-4(m 2+m -1)=8m 2-4m 2-4m +4=4m 2-4m +4=(2m -1)2+3>0∴方程x 2-+m 2+m -1=0有两个不相等的实数根∴二次函数y =x 2-+m 2+m -1图像与x 轴有两个公共点(2)解:平移后的解析式为:y =x 2-mx +m 2+m -1-k,过(0,-2),∴-2=0-0+m²+m-1-k,∴k=m²+m+1=(m+12)²+34,∴k ≥34.【点睛】本题考查了二次函数图象与几何变换以及图象与x 轴交点个数确定方法,能把一个二次三项式进行配方是解题的关键.24.(1)2m n ;(2)见解析.【分析】(1)根据相似三角形的判定方法进行分析即可;(2)直接利用相似三角形的判定方法以及结合做一角等于已知角进而得出答案.【详解】(1)解:要使△APB ∽△ABC 成立,∠A 是公共角,则AB AC AC AP =,即m n n AP =,∴AP=2m n.(2)解:作∠DEQ =∠F,如图点Q 就是所求作的点【点睛】本题考查了相似变换,正确掌握相似三角形的判定方法是解题的关键.25.(1)DE 与⊙O 相切;理由见解析;(2)4.【分析】(1)连接OD ,由D 为 AC 的中点,得到 AD CD=,进而得到AD=CD ,根据平行线的性质得到∠DOA =∠ODE =90°,求得OD ⊥DE ,于是得到结论;(2)连接BD ,根据四边形对角互补得到∠DAB =∠DCE ,由 AD CD=得到∠DAC =∠DCA =45°,求得△ABD ∽△CDE ,根据相似三角形的性质即可得到结论.【详解】(1)解:DE 与⊙O 相切证:连接OD ,在⊙O 中∵D 为 AC 的中点∴AD CD ∴AD =DC∵AD =DC ,点O 是AC 的中点∴OD ⊥AC∴∠DOA =∠DOC =90°∵DE ∥AC∴∠DOA =∠ODE =90°∵∠ODE =90°∴OD ⊥DE∵OD ⊥DE ,DE 经过半径OD 的外端点D∴DE 与⊙O 相切.(2)解:连接BD∵四边形ABCD 是⊙O 的内接四边形∴∠DAB +∠DCB =180°又∵∠DCE +∠DCB =180°∴∠DAB =∠DCE∵AC 为⊙O 的直径,点D 、B 在⊙O 上,∴∠ADC =∠ABC =90°∵ AD CD=,∴∠ABD =∠CBD =45°∵AD =DC ,∠ADC =90°∴∠DAC =∠DCA =45°∵DE ∥AC∴∠DCA =∠CDE =45°在△ABD 和△CDE 中∵∠DAB =∠DCE ,∠ABD =∠CDE =45°∴△ABD ∽△CDE ∴AB CD =AD CE ∴6CD =163AD ∴AD =DC =CE =163,AB =6,在Rt △ADC 中,∠ADC =90°,AD =DC =,∴AC8∴⊙O 的半径为4.【点睛】本题考查了直线与圆的位置关系,等腰直角三角形的性质,圆周角定理,相似三角形的判定和性质,正确的识别图形是解题的关键.26.(1)①y =-10x +700;②当该商品的售价是50元/件时,月销售利润最大,最大利润是4000元.(2)2.【分析】(1)①将点(40,300)、(45,250)代入一次函数表达式:y=kx+b 即可求解;②设该商品的售价是x 元,则月销售利润w=y (x -30),求解即可;(2)根据进价变动后每件的利润变为[x-(m+30)]元,用其乘以月销售量,得到关于x 的二次函数,求得对称轴,判断对称轴大于50,由开口向下的二次函数的性质可知,当x=40时w 取得最大值2400,解关于m 的方程即可.【详解】(1)①解:设y =kx +b (k ,b 为常数,k ≠0)根据题意得:,4030045250k b k b +=⎧⎨+=⎩解得:10700k b =-⎧⎨=⎩∴y =-10x +700②解:当该商品的进价是40-3000÷300=30元设当该商品的售价是x 元/件时,月销售利润为w 元根据题意得:w =y (x -30)=(x -30)(-10x +700)=-10x 2+1000x -21000=-10(x -50)2+4000∴当x =50时w 有最大值,最大值为4000答:当该商品的售价是50元/件时,月销售利润最大,最大利润是4000元.(2)由题意得:w=[x-(m+30)](-10x+700)=-10x 2+(1000+10m )x-21000-700m对称轴为x=50+2m ∵m >0∴50+2m >50∵商家规定该运动服售价不得超过40元/件∴由二次函数的性质,可知当x=40时,月销售量最大利润是2400元∴-10×402+(1000+10m )×40-21000-700m=2400解得:m=2∴m 的值为2.【点睛】本题考查了待定系数法求一次函数的解析式及二次函数在实际问题中的应用,正确列式并明确二次函数的性质,是解题的关键.27.(1)见解析;(2)EFC ∆的面积为513;(3)53、5、15、5)3【分析】(1)先说明∠CEF=∠AFB 和90B C ∠=∠= ,即可证明ABF ∆∽FCE ∆;(2)过点F 作FG DC ⊥交DC 与点G ,交AB 于点H ,则90EGF AHF ∠=∠= ;再结合矩形的性质,证得△FGE ∽△AHF ,得到AH=5GF ;然后运用勾股定理求得GF 的长,最后运用三角形的面积公式解答即可;(3)分点E 在线段CD 上和DC 的延长线上两种情况,然后分别再利用勾股定进行解答即可.【详解】(1)解:∵矩形ABCD 中,∴90B C D ∠=∠=∠=o由折叠可得90D EFA ∠=∠=∵90EFA C ∠=∠=∴90CEF CFE CFE AFB ∠+∠=∠+∠=∴CEF AFB∠=∠在ABF ∆和FCE ∆中∵AFB CEF ∠=∠,90B C ∠=∠=∴ABF ∆∽FCE∆(2)解:过点F 作FG DC ⊥交DC 与点G ,交AB 于点H ,则90EGF AHF ∠=∠= ∵矩形ABCD 中,∴90D ∠=由折叠可得:90D EFA ∠=∠= ,1DE EF ==,5AD AF ==∵90EGF EFA ∠=∠=∴90GEF GFE AFH GFE ∠+∠=∠+∠=∴GEF AFH∠=∠在FGE ∆和AHF ∆中∵,90GEF AFH EGF FHA ∠=∠∠=∠=∴FGE ∆∽AHF∆∴EFGFFA AH=∴15GFAH=∴5AH GF=在Rt AHF ∆中,90AHF ∠=∵222AH FH AF +=∴222(5)(5)5GF GF +-=∴513GF =∴EFC ∆的面积为155221313⨯⨯=(3)设DE=x ,以点E 、F 、C 为顶点的三角形是直角三角形,则:①当点E 在线段CD 上时,∠DAE<45°,∴∠AED>45°,由折叠性质得:∠AEF=∠AED>45°,∴∠DEF=∠AED+∠AEF>90°,∴∠CEF<90°,∴只有∠EFC=90°或∠ECF=90°,a,当∠EFC=90°时,如图所示:由折叠性质可知,∠AFE=∠D=90°,∴∠AFE+∠EFC=90°,∴点A ,F ,C 在同一条线上,即:点F 在矩形的对角线AC 上,在Rt △ACD 中,AD=5,CD=AB=3,根据勾股定理得,由折叠可知知,EF=DE=x ,AF=AD=5,∴,在Rt △ECF 中,EF 2+CF 2=CE 2,∴x 2+)2=(3-x )2,解得x=5)3即:DE=5)3b,当∠ECF=90°时,如图所示:点F 在BC 上,由折叠知,EF=DE=x ,AF=AD=5,在Rt △ABF 中,根据勾股定理得,,∴CF=BC-BF=1,在Rt △ECF 中,根据勾股定理得,CE 2+CF 2=EF 2,(3-x )2+12=x 2,解得x=53,即:DE=53;②当点E 在DC 延长线上时,CF 在∠AFE 内部,而∠AFE=90°,∴∠CFE<90°,∴只有∠CEF=90°或∠ECF=90°,a 、当∠CEF=90°时,如图所示由折叠知,AD=AF=5,∠AFE=90°=∠D=∠CEF ,∴四边形AFED 是正方形,∴DE=AF=5;b 、当∠ECF=90°时,如图所示:∵∠ABC=∠BCD=90°,∴点F 在CB 的延长线上,∴∠ABF=90°,由折叠知,EF=DE=x ,AF=AD=5,在Rt △ABF 中,根据勾股定理得,22AF AB -,∴CF=BC+BF=9,在Rt △ECF 中,根据勾股定理得,CE 2+CF 2=EF 2,∴(x-3)2+92=x 2,解得x=15,即DE=15,5(345)3-53、5、15.【点睛】本题属于相似形综合题,主要考查了相似三角形的判定和性质、折叠的性质、勾股定理等知识点,正确作出辅助线构造相似三角形和直角三角形是解答本题的关键.。
苏科版九年级上册期末测试数学试题(含答案)一、选择题1.若将半径为24cm 的半圆形纸片围成一个圆锥的侧面,则这个圆锥的底面圆半径为( ) A .3cmB .6cmC .12cmD .24cm2.甲、乙两人参加社会实践活动,随机选择“打扫社区卫生”和“参加社会调查”其中一项,那么两人同时选择“参加社会调查”的概率为( ) A .34B .14C .13D .123.如图,////AD BE CF ,直线12l l 、与这三条平行线分别交于点、、A B C 和点D E F 、、.已知AB =1,BC =3,DE =1.2,则DF 的长为( )A .3.6B .4.8C .5D .5.2 4.函数y=(x+1)2-2的最小值是( )A .1B .-1C .2D .-25.分别写有数字﹣4,0,﹣1,6,9,2的六张卡片,除数字外其它均相同,从中任抽一张,则抽到偶数的概率是( ) A .16B .13C .12D .236.已知⊙O 的半径为1,点P 到圆心的距离为d ,若关于x 的方程x 2-2x+d=0有实数根,则点P ( )A .在⊙O 的内部B .在⊙O 的外部C .在⊙O 上D .在⊙O 上或⊙O 内部7.一个扇形的半径为4,弧长为2 ,其圆心角度数是( ) A .45B .60C .90D .1808.生产季节性产品的企业,当它的产品无利润时就会及时停产.现有一生产季节性产品的企业,一年中获得利润y 与月份n 之间的函数关系式是y =-n 2+15n -36,那么该 企业一年中应停产的月份是( ) A .1月,2月 B .1月,2月,3月 C .3月,12月D .1月,2月,3月,12月9.如图,△ABC 中,∠BAC=90°,AB=3,AC=4,点D 是BC 的中点,将△ABD 沿AD 翻折得到△AED ,连CE ,则线段CE 的长等于( )A .2B .54C .53D .7510.某班有40人,一次体能测试后,老师对测试成绩进行了统计.由于小亮没有参加本次集体测试因此计算其他39人的平均分为90分,方差s 2=41.后来小亮进行了补测,成绩为90分,关于该班40人的测试成绩,下列说法正确的是( ) A .平均分不变,方差变大 B .平均分不变,方差变小 C .平均分和方差都不变 D .平均分和方差都改变 11.一组数据0、-1、3、2、1的极差是( )A .4B .3C .2D .112.如图,在⊙O 中,AB 为直径,圆周角∠ACD=20°,则∠BAD 等于( )A .20°B .40°C .70°D .80°13.在△ABC 中,点D 、E 分别在AB ,AC 上,DE ∥BC ,AD :DB =1:2,,则:ADE ABC S S ∆∆=( ), A .19B .14 C .16D .13 14.cos60︒的值等于( ) A .12B 2C .32D 3 15.若二次函数y =x 2﹣2x +c 的图象与坐标轴只有两个公共点,则c 应满足的条件是( ) A .c =0B .c =1C .c =0或c =1D .c =0或c =﹣1二、填空题16.平面直角坐标系内的三个点A (1,-3)、B (0,-3)、C (2,-3),___ 确定一个圆.(填“能”或“不能”)17.将二次函数y=2x 2的图像沿x 轴向左平移2个单位,再向下平移3个单位后,所得函数图像的函数关系式为______________.18.若一个圆锥的主视图是腰长为5,底边长为6的等腰三角形,则该圆锥的侧面积是____________.19.二次函数y =ax 2+bx +c (a ≠0)的图像如图所示,当y <3时,x 的取值范围是____.20.关于x 的方程(m ﹣2)x 2﹣2x +1=0是一元二次方程,则m 满足的条件是_____. 21.如图,Rt △ABC 中,∠ACB =90°,AC =BC =4,D 为线段AC 上一动点,连接BD ,过点C 作CH ⊥BD 于H ,连接AH ,则AH 的最小值为_____.22.如图,由边长为1的小正方形组成的网格中,点,,,A B C D 为格点(即小正方形的顶点),AB 与CD 相交于点O ,则AO 的长为_________.23.一个不透明的口袋中装有若干只除了颜色外其它都完全相同的小球,若袋中有红球6只,且摸出红球的概率为35,则袋中共有小球_____只. 24.点P 在线段AB 上,且BP APAP AB=.设4AB cm =,则BP =__________cm . 25.如图,圆锥的底面半径OB =6cm ,高OC =8cm ,则该圆锥的侧面积是_____cm 2.26.当21x -≤≤时,二次函数22()1y x m m =--++有最大值4,则实数m 的值为________.27.如图,在△ABC 中,AD 是BC 上的高,tan B =cos ∠DAC ,若sin C =1213,BC =12,则AD 的长_____.28.在某市中考体考前,某初三学生对自己某次实心球训练的录像进行分析,发现实心球飞行高度y (米)与水平距离x (米)之间的关系为21251233y x x =-++,由此可知该生此次实心球训练的成绩为_______米.29.已知二次函数2(0)y ax bx c a =++≠,y 与x 的部分对应值如下表所示:x… -1 0 1 2 3 4 … y…61-2-3-2m…下面有四个论断:①抛物线2(0)y ax bx c a =++≠的顶点为(23)-,; ②240b ac -=;③关于x 的方程2=2ax bx c ++-的解为12=13x x =,; ④=3m -.其中,正确的有___________________.30.如图,点O 为正六边形ABCDEF 的中心,点M 为AF 中点,以点O 为圆心,以OM 的长为半径画弧得到扇形MON ,点N 在BC 上;以点E 为圆心,以DE 的长为半径画弧得到扇形DEF ,把扇形MON 的两条半径OM ,ON 重合,围成圆锥,将此圆锥的底面半径记为r 1;将扇形DEF 以同样方法围成的圆锥的底面半径记为r 2,则r 1:r 2=_____.三、解答题31.“早黑宝”葡萄品种是我省农科院研制的优质新品种,在我省被广泛种植,邓州市某葡萄种植基地2017年种植“早黑宝”100亩,到2019年“卓黑宝”的种植面积达到196亩.(1)求该基地这两年“早黑宝”种植面积的平均增长率;(2)市场调查发现,当“早黑宝”的售价为20元/千克时,每天能售出200千克,售价每降价1元,每天可多售出50千克,为了推广宣传,基地决定降价促销,同时减少库存,已知该基地“早黑宝”的平均成本价为12元/千克,若使销售“早黑宝”每天获利1750元,则售价应降低多少元?32.某商店专门销售某种品牌的玩具,成本为30元/件,每天的销售量y(件)与销售单价x(元)之间存在着如图所示的一次函数关系.(1)求y与x之间的函数关系式;(2)当销售单价为多少元时,每天获取的利润最大,最大利润是多少?(3)为了保证每天的利润不低于3640元,试确定该玩具销售单价的范围.33.(1)如图1,在△ABC中,点D,E,Q分别在AB,AC,BC上,且DE∥BC,AQ交DE于点P,求证:DP EP BQ CQ=;(2)如图,在△ABC中,∠BAC=90°,正方形DEFG的四个顶点在△ABC的边上,连接AG,AF分别交DE于M,N两点.①如图2,若AB=AC=1,直接写出MN的长;②如图3,求证MN2=DM·EN.34.一只不透明的袋子中装有2个白球和1个红球,这些球除颜色外都相同.(1)搅匀后从袋子中任意摸出1个球,摸到红球的概率是多少?(2)搅匀后先从袋子中任意摸出1个球,记录颜色后不放回,再从袋子中任意摸出1个球,用画树状图或列表的方法列出所有等可能的结果,并求出两次都摸到白球的概率.35.一个四边形被一条对角线分割成两个三角形,如果被分割的两个三角形相似,我们被称为该对角线为相似对角线.(1)如图1,正方形ABCD 的边长为4,E 为AD 的中点,1AF =,连结CE .CP ,求证:EF 为四边形AECF 的相似对角线.(2)在四边形ABCD 中,120BAD ︒∠=,3AB =,6AC =,AC 平分BAD ∠,且AC 是四边形ABCD 的相似对角线,求BD 的长.(3)如图2,在矩形ABCD 中,6AB =,4BC =,点E 是线段AB (不取端点A .B )上的一个动点,点F 是射线AD 上的一个动点,若EF 是四边形AECF 的相似对角线,求BE 的长.(直接写出答案) 四、压轴题36.在平面直角坐标系xOy 中,对于任意三点A ,B ,C ,给出如下定义:若矩形的任何一条边均与某条坐标轴平行,且A ,B ,C 三点都在矩形的内部或边界上,则称该矩形为点A ,B ,C 的外延矩形.点A ,B ,C 的所有外延矩形中,面积最小的矩形称为点A ,B ,C 的最佳外延矩形.例如,图中的矩形,,都是点A ,B ,C 的外延矩形,矩形是点A ,B ,C 的最佳外延矩形.(1)如图1,已知A (-2,0),B (4,3),C (0,). ①若,则点A ,B ,C 的最佳外延矩形的面积为 ;②若点A ,B ,C 的最佳外延矩形的面积为24,则的值为 ; (2)如图2,已知点M (6,0),N (0,8).P (,)是抛物线上一点,求点M ,N ,P 的最佳外延矩形面积的最小值,以及此时点P 的横坐标的取值范围;(3)如图3,已知点D (1,1).E (,)是函数的图象上一点,矩形OFEG 是点O ,D ,E 的一个面积最小的最佳外延矩形,⊙H 是矩形OFEG 的外接圆,请直接写出⊙H 的半径r 的取值范围.37.已知,如图Rt△ABC中,∠C=90°,AC=6cm,BC=8cm,点P为AC的中点,Q从点A运动到B,点Q运动到点B停止,连接PQ,取PQ的中点O,连接OC,OB.(1)若△ABC∽△APQ,求BQ的长;(2)在整个运动过程中,点O的运动路径长_____;(3)以O为圆心,OQ长为半径作⊙O,当⊙O与AB相切时,求△COB的面积.38.如图,⊙M与菱形ABCD在平面直角坐标系中,点M的坐标为(﹣3,1),点A的坐标为(2,0),点B的坐标为(1,﹣3),点D在x轴上,且点D在点A的右侧.(1)求菱形ABCD的周长;(2)若⊙M沿x轴向右以每秒2个单位长度的速度平移,菱形ABCD沿x轴向左以每秒3个单位长度的速度平移,设菱形移动的时间为t(秒),当⊙M与AD相切,且切点为AD的中点时,连接AC,求t的值及∠MAC的度数;(3)在(2)的条件下,当点M与AC所在的直线的距离为1时,求t的值.39.(2015秋•惠山区期末)如图,在平面直角坐标系中,半径为1的⊙A的圆心与坐标原点O重合,线段BC的端点分别在x轴与y轴上,点B的坐标为(6,0),且sin∠OCB=.(1)若点Q是线段BC上一点,且点Q的横坐标为m.①求点Q的纵坐标;(用含m的代数式表示)②若点P是⊙A上一动点,求PQ的最小值;(2)若点A从原点O出发,以1个单位/秒的速度沿折线OBC运动,到点C运动停止,⊙A 随着点A的运动而移动.①点A从O→B的运动的过程中,若⊙A与直线BC相切,求t的值;②在⊙A整个运动过程中,当⊙A与线段BC有两个公共点时,直接写出t满足的条件.40.如图,在⊙O中,弦AB、CD相交于点E,AC=BD,点D在AB上,连接CO,并延长CO交线段AB于点F,连接OA、OB,且OA=5,tan∠OBA=12.(1)求证:∠OBA=∠OCD;(2)当△AOF是直角三角形时,求EF的长;(3)是否存在点F,使得S△CEF=4S△BOF,若存在,请求EF的长,若不存在,请说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】易得圆锥的母线长为24cm,以及圆锥的侧面展开图的弧长,也就是圆锥的底面周长,除以2π即为圆锥的底面半径. 【详解】解:圆锥的侧面展开图的弧长为:2π24224π⨯÷=, ∴圆锥的底面半径为:()24π2π12cm ÷=. 故答案为:C. 【点睛】本题考查的知识点是圆锥的有关计算,熟记各计算公式是解题的关键.2.B解析:B 【解析】试题解析:可能出现的结果的结果有1种, 则所求概率1.4P = 故选B.点睛:求概率可以用列表法或者画树状图的方法.3.B解析:B 【解析】 【分析】根据平行线分线段成比例定理即可解决问题. 【详解】 解:////AD BE CF ,AB DEBC EF ∴=,即1 1.23EF =, 3.6EF ∴=, 3.6 1.2 4.8DF EF DE ∴++===,故选B . 【点睛】本题考查平行线分线段成比例定理,解题的关键是熟练掌握基本知识,属于中考常考题型.4.D解析:D 【解析】【分析】抛物线y=(x+1)2-2开口向上,有最小值,顶点坐标为(-1,-2),顶点的纵坐标-2即为函数的最小值.【详解】解:根据二次函数的性质,当x=-1时,二次函数y=(x+1)2-2的最小值是-2.故选D.【点睛】本题考查了二次函数的最值.5.D解析:D【解析】【分析】根据概率公式直接计算即可.【详解】解:在这6张卡片中,偶数有4张,所以抽到偶数的概率是46=23,故选:D.【点睛】本题主要考查了随机事件的概率,随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数,灵活利用概率公式是解题的关键.6.D解析:D【解析】【分析】先根据条件x 2 -2x+d=0有实根得出判别式大于或等于0,求出d的范围,进而得出d与r 的数量关系,即可判断点P和⊙O的关系..【详解】解:∵关于x的方程x 2 -2x+d=0有实根,∴根的判别式△=(-2) 2 -4×d≥0,解得d≤1,∵⊙O的半径为r=1,∴d≤r∴点P在圆内或在圆上.故选:D.【点睛】本题考查了点和圆的位置关系,由点到圆心的距离和半径的数量关系对点和圆的位置关系作出判断是解答此题的重要途径,即当d>r时,点在圆外,当d=r时,点在圆上,当d<r时,点在圆内.7.C解析:C【解析】【分析】根据弧长公式即可求出圆心角的度数.【详解】解:∵扇形的半径为4,弧长为2π,∴4 2180nππ⨯=解得:90n=,即其圆心角度数是90︒故选C.【点睛】此题考查的是根据弧长和半径求圆心角的度数,掌握弧长公式是解决此题的关键.8.D解析:D【解析】【分析】【详解】当-n2+15n-36≤0时该企业应停产,即n2-15n+36≥0,n2-15n+36=0的两个解是3或者12,根据函数图象当n≥12或n≤3时n2-15n+36≥0,所以1月,2月,3月,12月应停产.故选D9.D解析:D【解析】【分析】如图连接BE交AD于O,作AH⊥BC于H.首先证明AD垂直平分线段BE,△BCE是直角三角形,求出BC、BE,在Rt△BCE中,利用勾股定理即可解决问题.【详解】如图连接BE交AD于O,作AH⊥BC于H.在Rt△ABC中,∵AC=4,AB=3,∴2234+,∵CD=DB,∴AD=DC=DB=52,∵12•BC•AH=12•AB•AC,∴AH=125,∵AE=AB,DE=DB=DC,∴AD垂直平分线段BE,△BCE是直角三角形,∵12•AD•BO=12•BD•AH,∴OB=125,∴BE=2OB=245,在Rt△BCE中,75 ==.故选D.点睛:本题考查翻折变换、直角三角形的斜边中线的性质、勾股定理等知识,解题的关键是学会利用面积法求高,属于中考常考题型.10.B解析:B【解析】【分析】根据平均数、方差的定义计算即可.【详解】∵小亮的成绩和其它39人的平均数相同,都是90分,∴40人的平均数是90分,∵39人的方差为41,小亮的成绩是90分,40人的平均分是90分,∴40人的方差为[41×39+(90-90)2]÷40<41,∴方差变小,∴平均分不变,方差变小故选B.【点睛】本题考查了平均数与方差,熟练掌握定义是解题关键.11.A解析:A【解析】【分析】根据极差的概念最大值减去最小值即可求解.【详解】解:这组数据:0、-1、3、2、1的极差是:3-(-1)=4.故选A.【点睛】本题考查了极差的知识,极差是指一组数据中最大数据与最小数据的差.12.C解析:C【解析】【分析】连接OD,根据∠AOD=2∠ACD,求出∠AOD,利用等腰三角形的性质即可解决问题.【详解】连接OD.∵∠ACD=20°,∴∠AOD=2∠ACD=40°.∵OA=OD,∴∠BAD=∠ADO=12(180°﹣40°)=70°.故选C.【点睛】本题考查了圆周角定理、等腰三角形的性质等知识,解题的关键是灵活运用所学知识解决问题,学会添加常用辅助线,属于中考常考题型.13.A解析:A【解析】【分析】根据DE∥BC得到△ADE∽△ABC,再结合相似比是AD:AB=1:3,因而面积的比是1:9.【详解】解:如图:∵DE∥BC,∴△ADE∽△ABC,∵AD:DB=1:2,∴AD:AB=1:3,∴S△ADE:S△ABC=1:9.故选:A.【点睛】本题考查的是相似三角形的判定与性质,熟知相似三角形面积的比等于相似比的平方是解答此题的关键.14.A解析:A【解析】【分析】根据特殊角的三角函数值解题即可.【详解】解:cos60°=1 2 .故选A.【点睛】本题考查了特殊角的三角函数值.15.C解析:C【解析】【分析】根据二次函数y=x2﹣2x+c的图象与坐标轴只有两个公共点,可知二次函数y=x2﹣2x+c的图象与x轴只有一个公共点或者与x轴有两个公共点,其中一个为原点两种情况,然后分别计算出c的值即可解答本题.【详解】解:∵二次函数y=x2﹣2x+c的图象与坐标轴只有两个公共点,∴二次函数y=x2﹣2x+c的图象与x轴只有一个公共点或者与x轴有两个公共点,其中一个为原点,当二次函数y=x2﹣2x+c的图象与x轴只有一个公共点时,(﹣2)2﹣4×1×c=0,得c=1;当二次函数y=x2﹣2x+c的图象与轴有两个公共点,其中一个为原点时,则c=0,y=x2﹣2x=x(x﹣2),与x轴两个交点,坐标分别为(0,0),(2,0);由上可得,c的值是1或0,故选:C.【点睛】本题考查了二次函数与坐标的交点问题,掌握解二次函数的方法是解题的关键.二、填空题16.不能【分析】根据三个点的坐标特征得到它们共线,于是根据确定圆的条件可判断它们不能确定一个圆.【详解】解:∵B(0,-3)、C(2,-3),∴BC∥x轴,而点A(1,-3)与C、解析:不能【解析】【分析】根据三个点的坐标特征得到它们共线,于是根据确定圆的条件可判断它们不能确定一个圆.【详解】解:∵B(0,-3)、C(2,-3),∴BC∥x轴,而点A(1,-3)与C、B共线,∴点A、B、C共线,∴三个点A(1,-3)、B(0,-3)、C(2,-3)不能确定一个圆.故答案为:不能.【点睛】本题考查了确定圆的条件:不在同一直线上的三点确定一个圆.17.y=2(x+2)2-3【解析】【分析】根据“上加下减,左加右减”的原则进行解答即可.【详解】解:根据“上加下减,左加右减”的原则可知,二次函数y=2x2的图象向左平移2个单位,再向下平移解析:y=2(x+2)2-3【解析】【分析】根据“上加下减,左加右减”的原则进行解答即可.【详解】解:根据“上加下减,左加右减”的原则可知,二次函数y=2x2的图象向左平移2个单位,再向下平移3个单位后得到的图象表达式为y=2(x+2)2-3本题考查的是二次函数的图象与几何变换,熟知“上加下减,左加右减”的原则是解答此题的关键.18.15π.【解析】【分析】根据圆锥的主视图得到圆锥的底面圆的半径为3,母线长为5,然后根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式求解析:15π.【解析】【分析】根据圆锥的主视图得到圆锥的底面圆的半径为3,母线长为5,然后根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式求解.【详解】解:根据题意得圆锥的底面圆的半径为3,母线长为5,所以这个圆锥的侧面积=12×5×2π×3=15π.【点睛】本题考查圆锥侧面积的计算,掌握公式,准确计算是本题的解题关键.19.-1<x<3【解析】【分析】根据图象,写出函数图象在y=3下方部分的x的取值范围即可.【详解】解:如图,根据二次函数的对称性可知,-1<x<3时,y<3,故答案为:-1<x<3.【点睛解析:-1<x<3【解析】【分析】根据图象,写出函数图象在y=3下方部分的x的取值范围即可.【详解】解:如图,根据二次函数的对称性可知,-1<x<3时,y<3,故答案为:-1<x<3.【点睛】本题考查了二次函数与不等式和二次函数的对称性,此类题目,利用数形结合的思想求解20.【解析】【分析】根据一元二次方程的定义ax2+bx+c=0(a≠0),列含m的不等式求解即可.【详解】解:∵关于x的方程(m﹣2)x2﹣2x+1=0是一元二次方程,∴m-2≠0,∴m≠解析:2m【解析】【分析】根据一元二次方程的定义ax2+bx+c=0(a≠0),列含m的不等式求解即可.【详解】解:∵关于x的方程(m﹣2)x2﹣2x+1=0是一元二次方程,∴m-2≠0,∴m≠2.故答案为:m≠2.【点睛】本题考查了一元二次方程的概念,满足二次项系数不为0是解答此题的关键.21.2﹣2【解析】【分析】取BC中点G,连接HG,AG,根据直角三角形的性质可得HG=CG=BG=BC=2,根据勾股定理可求AG=2,由三角形的三边关系可得AH≥AG﹣HG,当点H在线段AG上时,解析:2【解析】【分析】取BC中点G,连接HG,AG,根据直角三角形的性质可得HG=CG=BG=12BC=2,根据勾股定理可求AG=,由三角形的三边关系可得AH≥AG﹣HG,当点H在线段AG上时,可求AH的最小值.【详解】解:如图,取BC中点G,连接HG,AG,∵CH⊥DB,点G是BC中点∴HG=CG=BG=12BC=2,在Rt△ACG中,AG22AC CG+5在△AHG中,AH≥AG﹣HG,即当点H在线段AG上时,AH最小值为52,故答案为:52【点睛】本题考查了动点问题,解决本题的关键是熟练掌握直角三角形中勾股定理关系式. 22.【解析】【分析】如图所示,由网格的特点易得△CEF≌△DBF,从而可得BF的长,易证△BOF∽△AOD,从而可得AO与AB的关系,然后根据勾股定理可求出AB 的长,进而可得答案.【详解】解:817【解析】【分析】如图所示,由网格的特点易得△CEF≌△DBF,从而可得BF的长,易证△BOF∽△AOD,从而可得AO与AB的关系,然后根据勾股定理可求出AB的长,进而可得答案.【详解】解:如图所示,∵∠CEB=∠DBF=90°,∠CFE=∠DFB,CE=DB=1,∴△CEF≌△DBF,∴BF=EF=12BE=12,∵BF∥AD,∴△BOF∽△AOD,∴11248 BO BFAO AD===,∴89AO AB=,∵221417 AB=+=,∴817 AO=.故答案为:817【点睛】本题以网格为载体,考查了全等三角形的判定和性质、相似三角形的判定和性质以及勾股定理等知识,属于常考题型,熟练掌握上述基本知识是解答的关键.23.【解析】【分析】直接利用概率公式计算.【详解】解:设袋中共有小球只,根据题意得,解得x=10,经检验,x=10是原方程的解,所以袋中共有小球10只.故答案为10.【点睛】此题主解析:【解析】【分析】直接利用概率公式计算.【详解】解:设袋中共有小球只,根据题意得635x=,解得x=10,经检验,x=10是原方程的解,所以袋中共有小球10只.故答案为10.【点睛】此题主要考查概率公式,解题的关键是熟知概率公式的运用.24.【解析】【分析】根据题意,将问题转化为解一元二次方程的求解问题即可得出答案.【详解】解:设BP=x ,则AP=4-x ,根据题意可得,,整理为:,利用求根公式解方程得:,∴,(舍去).解析:(6-【解析】【分析】根据题意,将问题转化为解一元二次方程的求解问题即可得出答案.【详解】解:设BP=x ,则AP=4-x , 根据题意可得,444x x x -=-, 整理为:212160x x -+=,利用求根公式解方程得:x 6===±,∴16x =-264x =+>(舍去).故答案为:6-【点睛】本题考查的知识点是由实际问题抽化出来的一元二次方程问题,将问题转化为一元二次方程求解问题,熟记一元二次方程的求根公式是解此题的关键.25.60π【解析】【分析】先利用勾股定理求出BC 的长度,然后利用扇形的面积公式求解即可.【详解】解:∵它的底面半径OB =6cm ,高OC =8cm .∴BC==10(cm ),∴圆锥的侧面积是:(解析:60π【解析】【分析】先利用勾股定理求出BC 的长度,然后利用扇形的面积公式求解即可.【详解】解:∵它的底面半径OB =6cm ,高OC =8cm .∴BC ==10(cm ), ∴圆锥的侧面积是:12610602r l rl ππππ⋅⋅==⋅⨯=(cm 2). 故答案为:60π.【点睛】本题主要考查勾股定理及扇形的面积公式,掌握勾股定理及扇形的面积公式是解题的关键. 26.2或【解析】【分析】求出二次函数对称轴为直线x=m ,再分m <-2,-2≤m≤1,m >1三种情况,根据二次函数的增减性列方程求解即可.【详解】解:二次函数的对称轴为直线x=m ,且开口向下,解析:2或【解析】【分析】求出二次函数对称轴为直线x=m ,再分m <-2,-2≤m≤1,m >1三种情况,根据二次函数的增减性列方程求解即可.【详解】解:二次函数22()1y x m m =--++的对称轴为直线x=m ,且开口向下,①m <-2时,x=-2取得最大值,-(-2-m )2+m 2+1=4, 解得74m =-, 724->-, ∴不符合题意,②-2≤m≤1时,x=m 取得最大值,m 2+1=4,解得m =所以m =,③m >1时,x=1取得最大值,-(1-m )2+m 2+1=4,解得m=2,综上所述,m=2或时,二次函数有最大值.故答案为:2或【点睛】本题考查了二次函数的最值,熟悉二次函数的性质及图象能分类讨论是解题的关键.27.8【解析】【分析】在Rt△ADC中,利用正弦的定义得sinC==,则可设AD=12x,所以AC=13x,利用勾股定理计算出DC=5x,由于cos∠DAC=sinC得到tanB=,接着在Rt△A解析:8【解析】【分析】在Rt△ADC中,利用正弦的定义得sin C=ADAC=1213,则可设AD=12x,所以AC=13x,利用勾股定理计算出DC=5x,由于cos∠DAC=sin C得到tan B=1213,接着在Rt△ABD中利用正切的定义得到BD=13x,所以13x+5x=12,解得x=23,然后利用AD=12x进行计算.【详解】在Rt△ADC中,sin C=ADAC=1213,设AD=12x,则AC=13x,∴DC=5x,∵cos∠DAC=sin C=12 13,∴tan B=12 13,在Rt△ABD中,∵tan B=ADBD=1213,而AD=12x,∴BD=13x,∴13x+5x=12,解得x=23,∴AD=12x=8.故答案为8.【点睛】本题主要考查解直角三角形,熟练掌握锐角三角函数的定义,是解题的关键.28.10【解析】【分析】根据铅球落地时,高度,把实际问题可理解为当时,求x 的值即可.【详解】解:当时,,解得,(舍去),.故答案为10.【点睛】本题考查了二次函数的实际应用,解析式中自解析:10【解析】【分析】根据铅球落地时,高度0y =,把实际问题可理解为当0y =时,求x 的值即可.【详解】解:当0y =时,212501233y x x =-++=, 解得,2x =-(舍去),10x =.故答案为10.【点睛】本题考查了二次函数的实际应用,解析式中自变量与函数表达的实际意义;结合题意,选取函数或自变量的特殊值,列出方程求解是解题关键.29.①③.【解析】【分析】根据图表求出函数对称轴,再根据图表信息和二次函数性质逐一判断即可.【详解】由二次函数y =ax2+bx+c (a≠0),y 与x 的部分对应值可知:该函数图象是开口向上的抛解析:①③.【解析】【分析】根据图表求出函数对称轴,再根据图表信息和二次函数性质逐一判断即可.【详解】由二次函数y =ax 2+bx+c (a≠0),y 与x 的部分对应值可知:该函数图象是开口向上的抛物线,对称轴是直线x=2,顶点坐标为(2,-3);与x 轴有两个交点,一个在0与1之间,另一个在3与4之间;当y=-2时,x=1或x=3;由抛物线的对称性可知,m=1;∴①抛物线y=ax2+bx+c(a≠0)的顶点为(2,-3),结论正确;②b2﹣4ac=0,结论错误,应该是b2﹣4ac>0;③关于x的方程ax2+bx+c=﹣2的解为x1=1,x2=3,结论正确;④m=﹣3,结论错误,∴其中,正确的有. ①③故答案为:①③【点睛】本题考查了二次函数的图像,结合图表信息是解题的关键.30.【解析】分析:根据题意正六边形中心角为120°且其内角为120°.求出两个扇形圆心角,表示出扇形半径即可.详解:连OA由已知,M为AF中点,则OM⊥AF∵六边形ABCDEF为正六边形∴解析:3:2【解析】分析:根据题意正六边形中心角为120°且其内角为120°.求出两个扇形圆心角,表示出扇形半径即可.详解:连OA由已知,M为AF中点,则OM⊥AF∵六边形ABCDEF为正六边形∴∠AOM=30°设AM=a∴AB=AO=2a,3a∵正六边形中心角为60°∴∠MON=120°∴扇形MON 120323aa π⋅⋅=则r1=3 3a同理:扇形DEF 的弧长为:120241803a a ππ⋅⋅= 则r 2=23ar 1:r 2点睛:本题考查了正六边形的性质和扇形面积及圆锥计算.解答时注意表示出两个扇形的半径.三、解答题31.(1)该基地这两年“早黑宝”种植面积的平均增长率为40%.(2)售价应降低3元【解析】【分析】(1)设该基地这两年“早黑宝”种植面积的平均增长率为x ,根据题意列出关于x 的一元二次方程,求解方程即可;(2)设售价应降低y 元,则每天售出(200+50y )千克,根据题意列出关于y 的一元二次方程,求解方程即可.【详解】(1)设该基地这两年“早黑宝”种植面积的平均增长率为x ,根据题意得2100(1)196x +=解得10.440%x ==,2 2.4x =-(不合题意,舍去)答:该基地这两年“早黑宝”种植面积的平均增长率为40%.(2)设售价应降低y 元,则每天可售出(20050)y +千克根据题意,得(2012)(20050)1750y y --+=整理得,2430y y -+=,解得11y =,23y =∵要减少库存∴11y =不合题意,舍去,∴3y =答:售价应降低3元.【点睛】本题考查一元二次方程与销售的实际应用,明确售价、成本、销量和利润之间的关系,正确用一个量表示另外的量然后找到等量关系是列出方程的关键.32.(1)10700y x =-+;(2)销售单价为50元时,每天获取的利润最大,最大利润是4000元;(3)44≤x ≤56【解析】【分析】(1)直接利用待定系数法求出一次函数解析式即可;(2)利用w=销量乘以每件利润进而得出关系式求出答案;(3)利用w=3640,进而解方程,再利用二次函数增减性得出答案.【详解】解:(1)y 与x 之间的函数关系式为:y kx b =+把(35,350),(55,150)代入得:由题意得:3503515055k b k b =+⎧⎨=+⎩解得:10700k b =-⎧⎨=⎩∴y 与x 之间的函数关系式为:10700y x =-+.(2)设销售利润为W 元则W=(x ﹣30)•y =(x ﹣30)(﹣10x +700),W =﹣10x 2+1000x ﹣21000W =﹣10(x ﹣50)2+4000 ∴当销售单价为50元时,每天获取的利润最大,最大利润是4000元.(3)令W =3640∴﹣10(x ﹣50)2+4000=3640∴x 1=44,x 2=56如图所示,由图象得:当44≤x ≤56时,每天利润不低于3640元.【点睛】此题主要考查了二次函数的应用以及待定系数法求一次函数解析式,正确掌握二次函数的性质是解题关键.33.(1)证明见解析;(2)①29;②证明见解析. 【解析】【分析】(1)易证明△ADP ∽△ABQ ,△ACQ ∽△ADP ,从而得出DP EP BQ CQ=; (2)①根据等腰直角三角形的性质和勾股定理,求出BC 边上的高22,根据△ADE ∽△ABC ,求出正方形DEFG 的边长23.从而,由△AMN ∽△AGF 和△AMN 的MN 边上高26,△AGF 的GF 边上高22,GF=23,根据 MN :GF 等于高之比即可求出。
苏科版九年级上册数学期末试题一、单选题1.函数2(1)3y x =+-的最小值是()A .1B .1-C .3D .3-2.已知34(0)a b ab =≠,则下列各式正确的是()A .43a b =B .34a b =C .34a b =D .43=a b3.已知关于x 的方程x 2-kx -6=0的一个根为x =-3,则实数k 的值为()A .1B .-1C .2D .-24.若抛物线2y x bx c =-++经过点()2,3-,则2c b -的值是()A .7B .-1C .-2D .35.由下表:x6.17 6.186.19 6.202ax bx c++0.03-0.01-0.040.1可知方程20ax bx c ++=(0,,,a a b c ≠为常数)一个根(精确到0.01)的范围是()A .6 6.17x <<B .6.17 6.18x <<C .6.18 6.19x <<D .6.19 6.20x <<6.如图,以点O 为圆心作圆,所得的圆与直线a 相切的是()A .以OA 为半径的圆B .以OB 为半径的圆C .以OC 为半径的圆D .以OD 为半径的圆7.如图,二次函数2y ax bx c =++的图像开口向上,它的顶点的横坐标是1,图像经过点(3,0),下列结论中,①abc <0,②2a b +=0,③24b ac -<0,④-a b c +<0,正确的有()A .1个B .2个C .3个D .4个8.如图,⊙O 半径为5,PC 切⊙O 于点C ,PO 交⊙O 于点A ,PA=4,则PC 的长为()A .6B .C .D .二、填空题9.二次函数2323y x x =-+-图象的开口方向是_____10.一元二次方程230x x -=的根是_______.11.甲、乙两人在相同条件下进行射击练习,每人10次射击战绩的平均数都是8环,方差分别为221.4,0.6S S ==甲乙,则两人射击成绩比较稳定的是________(填“甲”或“乙”).12.实数m ,n 是一元二次方程2320x x -+=的两个根,则多项式mn m n --的值为____.13.将抛物线221y x =-向右平移3个单位,再向上平移3个单位,所得的抛物线的解析式为________.14.如图,AB 是⊙O 的直径,C 、D 是⊙O 上的两点,120AOC ∠=︒,则CDB ∠=_____︒.15.如图,在平行四边形ABCD 中,E 是AB 的中点,EC 交BD 于点F ,则△BEF 与△DCF的面积比为_____.16.如图,正方形ABCD 的边长为4,O 的半径为1.若O 在正方形ABCD 内平移(O 可以与该正方形的边相切),则点A 到O 上的点的距离的最大值为______.17.如图,O 的两条弦AB CD 、所在的直线交于点P ,AC BD 、交于点E ,=110AED ∠︒,50P ∠=︒,则ACD ∠等于___________.18.如图,正方形ABCD 的边长为1,点E 为AB 的中点,以E 为圆心,1为半径作圆,分别交AD BC 、于M N 、两点,与DC 切于P 点.则图中阴影部分的面积是________.三、解答题19.如图,在平面直角坐标系中,△AOB 的项点坐标分别为A (2,1)、O (0,0)、B (1,﹣2).(1)△AOB 向左平移3个单位,向上平移1个单位,请画出平移后的△A 1O 1B 1;(2)以点O 为位似中心,在y 轴的右侧画出△AOB 的一个位似△A 2OB 2,使它与△AOB 的相似比为2:1;(3)若△A 2OB 2与△A 1O 1B 1是关于某一点Q 为位似中心的位似图形,请在图中标出位似中心Q ,并写出点Q 的坐标.20.如图,在Rt ABC 和Rt ACD 中,90B ACD ∠=∠=︒,AC 平分BAD ∠.(1)求证:ABC ACD △△∽;(2)若4AB =,5AC =,求CD 的长.21.某中学为了解初三学生参加志愿者活动的次数,随机调查了该年级20名学生,统计得到该20名学生参加志愿者活动的次数如下:3;5;3;6;3;4;4;5;2;4;5;6;1;3;5;5;4;4;2;4根据以上数据,得到如下不完整的频数分布表:次数123456人数12a6b2(1)表格中的=a ________,b =________;(2)在这次调查中,参加志愿者活动的次数的众数为________,中位数为________;(3)若该校初三年级共有300名学生,根据调查统计结果,估计该校初三年级学生参加志愿者活动的次数为4次的人数.22.李老师为缓解小如和小意的压力,准备了四个完全相同(不透明)的锦囊,里面各装有一张纸条,分别写有:A .转移注意力,B .合理宣泄,C .自我暗示,D .放松训练.(1)若小如随机取走一个锦囊,则取走的是写有“自我暗示”的概率是_________;(2)若小如和小意每人先后随机抽取一个锦囊(取走后不放回),请用列表法或画树状图的方法求小如和小意都没有取走“合理宣泄”的概率.23.如图,疫情期间,某校在校门口用塑料膜围成一个临时隔离区,隔离区一面靠长为9m 的墙,隔离区分成两个区域,中间用塑料膜隔开,已知整个隔离区塑料膜总长为24m ,如果隔离区出入口的大小不计,并且隔离区靠墙的面不能超过墙长,设垂直于墙的一边为m x ,隔离区面积为2m S .(1)求S 关于x 的函数表达式,并写出x 的取值范围;(2)求隔离区面积的最大值.24.如图,O 是ABC 的外接圆,点O 在BC 边上,BAC 的平分线交O 于点D ,连接BD 、CD ,过点D 作O 的切线与AC 的延长线交于点P .(1)求证:DP BC ∥;(2)求证:ABD DCP △∽△.25.某游乐场的圆形喷水池中心O 有一雕塑OA ,从A 点向四周喷水,喷出的水柱为抛物线,且形状相同.如图,以水平方向为x 轴,点O 为原点建立直角坐标系,点A 在y 轴上,x 轴上的点C ,D 为水柱的落水点,水柱所在抛物线第一象限部分的函数表达式为()21566y x =--+.(1)求雕塑高OA .(2)求落水点C ,D 之间的距离.(3)若需要在OD 上的点E 处竖立雕塑EF ,10m OE =, 1.8m,EF EF OD =⊥.问:顶部F 是否会碰到水柱?请通过计算说明.26.在ABC 中,90ACB ∠=︒,8AC =,6BC =.(1)如图1,点D 为AC 上一点,DE BC ∥交AB 边于点E ,若116ADE ACB S S = ,求AD 及DE 的长;(2)如图2,折叠ABC ,使点A 落在BC 边上的点H 处,折痕分别交AC 、AB 于点G 、F ,且∥FH AC .①求证:四边形AGHF 是菱形;②求菱形的边长;(3)在(1)(2)的条件下,线段CD 上是否存在点P ,使得CPH DPE ∽?若存在,求出PD 的长;若不存在,请说明理由.27.如图,二次函数2y x bx c =-++的图像与x 轴交于点(10)A -,、(30)B ,两点,与y 轴交于点C ,点D 为OC 的中点.(1)求二次函数的表达式;(2)若点E 为直线BC 上方抛物线上一点,过点E 作EH x ⊥轴,垂足为H ,EH 与BC 、BD 分别交于点F 、G 两点,设点E 的横坐标为m .①用含m 的代数式表示线段EF 的长度;②若EF FG =,求此时点E 的坐标;(3)在抛物线的对称轴上是否存在一点P ,使90CPB ∠=︒,若存在,请求出点P 的坐标;若不存在,请说明理由.参考答案1.D【分析】利用二次函数的顶点式求函数的最小值即可.【详解】10a => ∴当=1x -时,y 有最小值为-3故选:D .【点睛】本题考查二次函数的最值问题,掌握顶点式的有关性质是解题的关键.2.A【分析】直接利用分式的基本性质即可得到ab的值,再进行选择即可.【详解】34a b =,等式两边同时除以3b .得:34a b =.故选:A .【点睛】本题考查分式的基本性质,灵活运用分式的基本性质进行变形是解答本题关键.3.B【分析】一元二次方程的根就是一元二次方程的解,就是能够使方程左右两边相等的未知数的值.即用这个数代替未知数所得式子仍然成立.【详解】解:因为x =-3是原方程的根,所以将x =-3代入原方程,即(-3)2+3k−6=0成立,解得k =-1.故选B .【点睛】本题考查的是一元二次方程的根即方程的解的定义,解题的关键是把方程的解代入进行求解.4.A【分析】把(-2,3)代入2y x bx c =-++即可解得2c b -的值【详解】把(-2,3)代入2y x bx c =-++可得-2b+c=7,即2c b -=7故选A.【点睛】本题考查二次函数,解题关键在于熟练掌握计算法则.5.C【分析】根据二次函数的增减性,可得答案.【详解】解:由表格中的数据,得在6.17<x <6.20范围内,y 随x 的增大而增大,当x=6.18时,y=-0.01,当x=6.19时,y=0.04,方程ax 2+bx+c=0的一个根x 的取值范围是6.18<x <6.19,故选C .【点睛】本题考查了图象法求一元二次方程的近似解,解答此题的关键是利用函数的增减性.6.D【分析】根据直线与圆的位置关系进行判断.【详解】解:OD a ⊥ 于D ,∴以O 为圆心,OD 为半径的圆与直线a 相切,故选:D .【点睛】本题考查直线与圆的位置关系—相切,是重要考点,难度较易,掌握相关知识是解题关键.7.B【分析】根据二次函数图象开口向上,判断a 大于0,与y 轴交于负半轴,判断c 小于0,对称轴为直线x =1,判断b <0,据此对①作出判断;根据对称轴为直线x =1,即可对②作出判断;根据二次函数图象与x 轴有两个交点,即可对③作出判断;根据二次函数对称轴为直线x =1,图象经过(3,0),进而得到二次函数图象与x 轴另一个交点为(−1,0),坐标代入解析式,即可对④作出判断.【详解】解:∵二次函数图象开口向上,∴a >0,∵二次函数图象与y 轴交于负半轴,∴c <0,∵二次函数图象的对称轴是直线x =1,∴−2ba=1,∴b <0,2a +b =0,∴abc >0,∴①正确,②正确,∵二次函数与x 轴有两个交点,∴b 2−4ac >0,③错误,∵二次函数图象经过(3,0),对称轴为x =1,∴二次函数图象与x 轴另一个交点为(−1,0),∴a−b +c =0,④错误;综上①②正确.故选:B .【点睛】本题考查了二次函数图象与性质,掌握二次函数图象与系数的关系并灵活运用所学知识,学会利用图象信息解决问题,学会用转化的思想思考问题是解题的关键.8.D【分析】延长AO 交⊙O 于B ,连接AC ,证明△PAC ∽△PCB ,进而得到PC 2=PA•PB 即可求出PC 的长.【详解】解:如下图所示:连接OC ,延长AO 交⊙O 于B ,连接AC ,BC ,∵AB 为直径,∴∠1+∠2=90°,∵OC=OA ,∴∠1=∠3,∵PC 为圆的切线,∴∠3+∠4=90°,∴∠2=∠4,又∠P=∠P ,∴△PCA ∽△PBC ,∴=PC PAPB PC,即24(104)56=⨯=⨯+=PC PA PB ,∴=PC 故选:D .【点睛】本题考查了相似三角形的性质和判定,圆的切线及圆周角定理等,熟练掌握圆的性质及相似三角形的性质和判定是解决本题的关键.9.向下【分析】根据二次函数的二次项系数即可判断抛物线的开口方向【详解】解:∵2323y x x =-+-的二次项系数-3,∴抛物线开口向下,故答案为:向下【点睛】本题考查二次函数的性质.对于二次函数y=ax2+bx+c (a≠0),当a >0时,抛物线开口向上,当a <0时,抛物线开口向下.10.10x =,23x =【分析】利用因式分解法解方程即可.【详解】解:230x x -=-=(3)0x x ,0x =或30x -=,所以10x =,23x =.故答案为:10x =,23x =.【点睛】本题考查了解一元二次方程-因式分解法,解题的关键是掌握因式分解法就是利用因式分解求出方程的解的方法,这种方法简便易用,是解一元二次方程最常用的方法.11.乙【分析】根据方差的意义即方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,数据越稳定,即可得出答案.【详解】解:2 1.4S = 甲,20.6乙S =,22S S ∴>甲乙,∴两人射击成绩比较稳定的是乙.故答案为:乙.【点睛】此题主要考查了方差的意义和应用,要熟练掌握,解答此题的关键是要明确:方差越大,表明这组数据偏离平均数越大,数据越不稳定;方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,数据越稳定.12.1-【分析】根据一元二次方程根与系数的关系可得3,2m n mn +==,然后代入求解即可.【详解】解:∵m ,n 是一元二次方程2320x x -+=的两个根,∴根据一元二次方程根与系数的关系可得3,2m n mn +==,∴()231mn m n mn m n --=-+=-=-;故答案为1-.【点睛】本题主要考查一元二次方程根与系数的关系,熟练掌握一元二次方程根与系数的关系是解题的关键.13.22(3)2y x =-+【分析】根据抛物线平移的规律即可得出解析式.【详解】 抛物线221y x =-向右平移3个单位,再向上平移3个单位222(3)132(3)2y x x ∴=--+=-+故答案为:22(3)2y x =-+.【点睛】本题考查抛物线的平移规律,即“左加右减,上加下减”,熟练掌握平移规律并能够应用数形结合的思想是解题的关键.14.30【分析】先利用邻补角计算出BOC ∠,然后根据圆周角定理得到CDB ∠的度数.【详解】 180********BOC AOC ∠=︒-∠=︒-︒=︒,∴1302CDB BOC ∠∠=︒=.故答案为30.【点睛】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.15.1:4【分析】先根据平行四边形的性质和相似三角形的判定证明△BFE ∽△DFC ,再根据相似三角形的面积比等于相似比的平方求解即可.【详解】解:∵四边形ABCD 是平行四边形,E 是AB 的中点,∴BE ∥CD ,CD=AB=2BE ,∴∠EBF=∠CDF ,∠BEF=∠DCF ,∴△BFE ∽△DFC ,∴21()4BEF DCF S BE S CD == ,故答案为:1:4.【点睛】本题考查平行四边形的性质、平行线的性质、相似三角形的判定与性质,熟练掌握相似三角形的判定与性质,熟知相似三角形的面积比等于相似比的平方是解答的关键.16.1【分析】由题意易得当O 与BC 、CD 相切时,切点分别为F 、G ,点A 到O 上的点的距离取得最大,进而根据题意作图,则连接AC ,交O 于点E ,然后可得AE 的长即为点A 到O 上的点的距离为最大,由题意易得4,45AB BC ACB ==∠=︒,则有△OFC 是等腰直角三角形,AC =,根据等腰直角三角形的性质可得OC =【详解】解:由题意得当O 与BC 、CD 相切时,切点分别为F 、G ,点A 到O 上的点的距离取得最大,如图所示:90OFC ∠=︒连接AC ,OF ,AC 交O 于点E ,此时AE 的长即为点A 到O 上的点的距离为最大,如图所示,∵四边形ABCD 是正方形,且边长为4,∴4,45AB BC ACB ==∠=︒,∴△OFC 是等腰直角三角形,AC =∵O 的半径为1,∴1OF FC ==,∴OC =∴AO AC OC =-=∴1AE AO OE =+=+,即点A 到O 上的点的距离的最大值为1;故答案为1.【点睛】本题主要考查正方形的性质、切点的性质定理及等腰直角三角形的性质与判定,熟练掌握正方形的性质、切点的性质定理及等腰直角三角形的性质与判定是解题的关键.17.80︒【分析】设ABD ACD α∠=∠=,根据外角的性质列方程即可得到结论.【详解】解:设ABD ACD α∠=∠=,A D ∠=∠ ,50A D ACD P α∴∠=∠=∠-∠=-︒,110AED ACD D ∠=∠+∠=︒ ,(50)110αα∴+-︒=︒,80α∴=︒,故答案为:80︒.【点睛】本题考查了圆周角定理,三角形的外角性质,熟练掌握三角形的外角性质是解题的关键.18.164π--【详解】解:连接MN ,正方形ABCD 的边长为1,点E 为AB 的中点,以E 为圆心,1为半径作圆,分别交AD BC 、于M N 、两点,90,,,A B AE BE EM EN ∴∠=∠=︒==∴△AEM ≌△BEN ,,AM BN ∴=∴四边形AMNB 为矩形,1,MN AB ∴==∴△EMN 是等边三角形,∴∠MEN=60°,所以S 扇形MEN=601,3606ππ⨯=2AM ==而S △AEM=8,所以图中阴影部分的面积=正方形的面积-扇形的面积-2△AEM 的面积=12166ππ----故答案为:16π--19.(1)画图见解析;(2)画图见解析;(3)画图见解析,()6,2Q -【分析】(1)分别确定,,A O B 向左平移3个单位,向上平移1个单位后的对应点111,,A O B ,再顺次连接111,,A O B ,从而可得答案;(2)点O 为位似中心,分别确定,,A O B 的对应点22,,A O B ,再顺次连接22,,A O B 即可得到答案;(3)由1112,A A B B 的交点为,Q 从而可得位似中心,再根据Q 的位置可得点的坐标.【详解】解:(1)如图,111A O B 即为所求作的三角形;(2)如图,22A OB △即为所求作的三角形;(3)如图所示,由1112,A A B B 的交点为,Q 所以22A OB △与111A O B 是关于点Q 为位似中心的位似图形,此时()6,2Q -.【点睛】本题是相似三角形综合题,主要考查了作图-位似变换,平移变换,画位似图形的一般步骤为:①确定位似中心,②分别连接并延长位似中心和能代表原图的关键点;③根据相似比,确定能代表所作的位似图形的关键点;顺次连接上述各点,得到放大或缩小的图形.20.(1)见解析(2)154CD =【分析】(1)根据角平分线的性质可得∠BAC =∠DAC ,再根据∠B =∠ACD =90°,即可得证△ABC ∽△ACD .(2)用勾股定理求得3BC ==,再根据△ABC ∽△ACD ,可得AB BCAC CD =,代入即可求出CD 的长.(1)证明:∵AC平分∠BAD,∴∠BAC=∠DAC.∵∠B=∠ACD=90°,∴△ABC∽△ACD.(2)解:在Rt△ABC中,∠B=90°,∵AB=4,AC=5,∴3BC=.∵△ABC∽△ACD,∴AB BC AC CD=.∴435CD =,∴154 CD=.【点睛】此题考查了相似三角形的问题,解题的关键是掌握相似三角形的性质以及判定定理、勾股定理、角平分线的性质.21.(1)4,5;(2)4次;4次;(3)90人.【分析】(1)观察所给数据即可得到a,b的值;(2)根据众数和中位数的概念求解即可;(3)用300乘以样本中参加志愿者活动的次数为4次的百分比即可得到结论.【详解】解:(1)根据所给数据可知,参加3次志愿活动的有4人,参加5次志愿活动的有5人,所以,a=4,b=5故答案为:4,5;(2)完成表格如下次数123456人数124652由表格知,参加4次志愿活动的的人数最多,为6人,∴众数是4次20个数据中,最中间的数据是第10,11个,即4,4,∴中位数为4+4=42(次)故答案为:4次;4次;(3)20人中,参加4次志愿活动的有6人,所占百分比为6100%=30%20×,所以,∴该校初三年级学生参加志愿者活动的次数为4次的人数为:30030%=90⨯(人)答:该校初三年级学生参加志愿者活动的次数为4次的人数为90人.【点睛】本题考查众数、中位数、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.22.(1)14;(2)12【分析】(1)根据概率公式,直接求解即可;(2)画出树状图,展示所有等可能的结果,在利用概率公式即可求解.【详解】解:(1)根据题意:取走的是写有“自我暗示”的概率=1÷4=14,故答案是:14;(2)画树状图如下:∵一共有12种等可能的结果,小如和小意都没有取走“合理宣泄”的情况有6种,∴小如和小意都没有取走“合理宣泄”的概率=6÷12=12.【点睛】本题主要考查等可能事件的概率,画树状图,展示等可能的结果数,是解题的关键.23.(1)2324S x x =-+,x 的取值范围:5≤x <8(2)45m 2【分析】(1)垂直于墙的一边为xm ,则隔离区的另一边为(24-3x )m ,根据面积公式即可得到解析式,由24392430x x -≤⎧⎨->⎩即可得到x 的取值范围;(2)先将S 关于x 的函数表达式化为顶点式,即23(4)48S x =--+,求最值即可.(1)垂直于墙的一边为xm ,则隔离区的另一边为(24-3x )m ,∴S =x (24﹣3x ),化简得2324S x x=-+根据题意,得不等式组24392430x x -≤⎧⎨->⎩解得:5≤x <8,∴S 关于x 的函数解析式为:2324S x x =-+,x 的取值范围:5≤x <8(2)2324S x x=-+23(4)48S x =--+∵该抛物线开口向下,对称轴为直线x =4,∴当5≤x <8时,S 随x 的增大而减小,当x =5时,S 的值最大,最大值=45答:隔离区面积最大值为45m 2.【点睛】本题考查了二次函数在实际问题中的应用,涉及二次函数的性质、解一元一次不等式组,准确理解题意是解题的关键.24.(1)见解析(2)见解析【分析】(1)连接OD ,由∠BAC 是直径所对的圆周角,可知∠BAC=90°,再由AD 是∠BAC 的平分线,可得∠BAD=45°,根据同弧所对的圆周角与圆心角的关系,可得∠BOD=90°,再由切线DP ⊥OD ,可证DP ∥BC ;(2)由(1)DP ∥BC ,得∠ACB=∠P ,再由同弧所对圆周角相等,得∠ACB=∠ADB ,进而得到∠P=∠ADB ,又由∠ODC=45°,∠CDP=45°,即可证明△ABD ∽△DCP ;(1)证明:连接OD ,∵DP 是⊙O 的切线,∴DO ⊥DP ,∵AD 是∠BAC 的平分线,∴∠BAD=∠CAD ,∴ BD CD ,∵BC 是圆的直径,∴∠BAC=90°,∴∠BAD=45°,∴∠BOD=90°,∴OD ⊥BC ,∴DP ∥BC ;(2)证明:∵DP ∥BC ,∴∠ACB =∠P ,∵在⊙O 中∴∠ACB =∠ADB ,∴∠P =∠ADB ,∵在⊙O 中∵∠ABD+∠ACD=180º∠ACD+∠DCP=180º∴∠ABD=∠DCP∴△ABD ∽△DCP ;【点睛】本题考查圆的综合应用,熟练掌握切线的性质,能够灵活运用同弧所对的圆周角与圆心角的关系,准确找到角之间的等量关系是解题的关键.25.(1)11m 6;(2)22米;(3)不会【分析】(1)求雕塑高OA ,直接令0x =,代入()21566y x =--+求解可得;(2)可先求出OD 的距离,再根据对称性求CD 的长;(3)利用()21566y x =--+,计算出10x =的函数值y ,再与EF 的长进行比较可得结论.【详解】解:(1)由题意得,A 点在图象上.当0x =时,21(05 )66y =--+2511666=-+=11(m)6OA ∴=.(2)由题意得,D 点在图象上.令0y =,得21(5)606x --+=.解得:1211,1x x ==-(不合题意,舍去).11OD ∴=222(m)CD OD ∴==(3)当10x =时,21(105)66y =--+,25116 1.866=-+=>,∴不会碰到水柱.【点睛】本题考查了二次函数的图像与性质及图像关于y 轴对称问题,解题的关键是:掌握二次函数的图像与性质.26.(1)AD=2,32=DE (2)①见解析;②409(3)存在,5425【分析】(1)由△ADE ∽△ABC ,可求相似比为14,即可求AD 及DE 的长;(2)①由折叠的性质和平行线的性质,证明AG =AF =FH =HG ,即可求解;②由△FBH ∽△ABC 可得BH ︰FH ︰BF=3︰4︰5,设BH=3a ,FH=AF=4a ,BF=5a ,求得109a =,再求FH 即可;(3)由△CPH ∽△DPE ,可求BH 、CH ,再由CPDPCH DE =,即可求解.(1)∵DE ∥BC∴△ADE ∽△ABC ∴221(()16ADE ABC S AD DE S AC BC ∆∆===∴1864AD DE==∴AD=2,32=DE (2)①由翻折不变性可知:AF =FH ,AG =GH ,∠AFG =∠GFH ,∵FH ∥AC ,∴∠AGF =∠GFH ,∴∠AGF =∠AFG ,∴AG =AF ,∴AG =AF =FH =HG ,∴四边形AGHF 是菱形.②∵FH ∥AC∴△FBH ∽△ABC ∴BH FH BFBC AC AB==又∵BC=6,AC=8,AB=10∴BH ︰FH ︰BF=3︰4︰5∴设BH=3a ,FH=AF=4a ,BF=5a∴4a+5a=10∴109a =∴FH=1040499⨯=即菱形的边长为409(3)∵△CPH ∽△DPE ∴CP DP CH DE=∵BH 10103393a ==⨯=∴CH=108633-=∴68332DP DP -=∴5425DP =27.(1)223y x x =-++(2)①23EF m m =-+;②E (12,154)(3)存在,12(1,P P 【分析】(1)利用交点式可直接求得二次函数解析式;(2)①先求出直线BC 的表达式,设点E 的坐标为(m ,223)m m -++,可表示点F 的坐标,即可表示EF 的长;②先求出直线BD 的表达式,可表达点G 的坐标,进而表达线段FG 的长,利用等式建立方程,求解即可;(3)先得出抛物线的对称轴为直线x=1,取BC 的中点为M ,根据直角三角形斜边中线等于斜边一半可得,MB=MP ,由此建立方程,求解即可.(1)∵2y x bx c =-++与x 轴交于点(-1,0),(3,0)两点∴抛物线的表达式为:(1)(3)y x x =-+-即223y x x =-++(2)①由题意知:C(0,3),B(3,0)∴直线BC 的表达式为:3y x =-+∵E(m ,223)m m -++∴F (m ,3m -+)∴23EF m m=-+②∵D 为OC 的中点∵C(0,3)∴D(0,32又∵B(3,0)设BD 的表达式为:y kx b =+∴2303bk b⎧=⎪⎨⎪=+⎩∴1232k b ⎧=-⎪⎪⎨⎪=⎪⎩∴1322y x =-+∴G (m ,1322m -+)∴FG=131332222m m m -++-=-+∵EF=FG ∴213322m m m -+=-+∴13m =(舍去),212m =∴E (12,154)(3)∵A(-1,0),B(3,0)∴对称轴为:直线1x =设P (1,a )∵∠CPB=90º∴点P 为以BC 为直径的圆与直线1x =的交点∵B(3,0),C(0,3)∴BC 的中点M (32,32)则MB=MP ∴22223333(3(0)(1)()2222a -+-=-+-∴2320a a --=∴132a =,232a -=1233(1,(1,22P P +-∴。
苏科版九年级上册数学期末试题一、单选题1.下列方程中,是关于x 的一元二次方程的是()A .12x x +=B .2x 2﹣x =1C .3x 3=1D .xy =42.设方程2320x x -+=的两根分别是12,x x ,则12x x +的值为()A .3B .32-C .32D .2-3.如图,四边形ABCD 为O 的内接四边形,若60A ∠=︒,则C ∠等于()A .30︒B .60︒C .120︒D .300︒4.已知O 的半径是4,点P 到圆心O 的距离为5,则点P 在()A .O 的内部B .O 的外部C .O 上或O 的内部D .O 上或O 的外部5.从拼音“shuxue”中随机抽取一个字母,抽中字母u 的概率为()A .13B .14C .15D .166.一组数据x 、0、1、-2、3的平均数是1,则x 的值是()A .3B .1C .2.5D .07.将抛物线2(0)y ax bx c a =++≠向下平移两个单位,以下说法错误的是()A .开口方向不变B .对称轴不变C .y 随x 的变化情况不变D .与y 轴的交点不变8.表中列出的是一个二次函数的自变量x 与函数y 的几组对应值:x …-2013…y …6-4-6-4…下列各选项中,正确的是()A .这个函数的最小值为-6B .这个函数的图象开口向下C .这个函数的图象与x 轴无交点D .当2x >时,y 的值随x 值的增大而增大二、填空题9.抛物线()2225y x =-+-的顶点坐标是______.10.方程20x x -=的根是________.11.一组数据分别为:79、81、77、82、75、82,则这组数据的中位数是______.12.已知圆锥的底面圆半径为4,母线长为5,则圆锥的侧面积是______.13.二次函数()()1y x x a =--(a 为常数)的图象的对称轴为直线2x =.则=a _______.14.转动如图所示的转盘,当转盘停止时,指针落在红色区域的概率是___.15.二次函数2y ax bx c =++的图象如图所示,则三个代数式①abc ,②24b ac -,③a b c -+中,值为正数的有______.(填序号)16.如图中的三个图形都是边长为1的小正方形组成的网格,其中第一个图形有11⨯个正方形,所有线段的和为4,第二个图形有22⨯个小正方形,所有线段的和为12,第三个图形有33⨯个小正方形,所有线段的和为24,按此规律,则第n 个网格所有线段的和为____________.(用含n 的代数式表示)三、解答题17.解方程:(1)()2190x --=.(2)2250x x --=.18.已知二次函数243y x x =-+.(1)将243y x x =-+化成()2y a x h k =-+的形式:______;(2)这个二次函数图象与x 轴交点坐标为______;(3)这个二次函数图象的最低点的坐标为______;(4)当0y <时,x 的取值范围是______.19.已知关于x 的一元二次方程:()222220x k x k k -+++=.(1)当2k =时,求方程的根;(2)求证:这个方程总有两个不相等的实数根.20.已知关于x 的一元二次方程x 2+x−m=0.(1)设方程的两根分别是x 1,x 2,若满足x 1+x 2=x 1•x 2,求m 的值.(2)二次函数y=x 2+x−m 的部分图象如图所示,求m 的值.21.某学校从九年级同学中任意选取40人,随机分成甲、乙两个小组进行“引体向上”体能测试,每组20人,根据测试成绩绘制出统计表和如图所示的统计图(成绩均为整数,满分为10分)甲组成绩统计表:成绩78910人数1955根据上面的信息,解答下列问题:(1)甲组的平均成绩为______分,甲组成绩的中位数是______,乙组成绩统计图中m =______,乙组成绩的众数是______;(2)根据图表信息,请你判断哪个小组的成绩更加稳定?只需要直接写出结论.22.如图,AB 、AC 分别是半O 的直径和弦,OD AC ⊥于点D ,过点A 作半O 的切线AP ,AP 与OD 的延长线交于点P ,连接PC 并延长与AB 的延长线交于点F .(1)求证:PC 是半O 的切线;(2)若30CAB ∠=︒,6AB =,求由劣弧AC 、线段AC 所围成图形的面积S .23.【概念提出】圆心到弦的距离叫做该弦的弦心距.【数学理解】如图①,在O 中,AB 是弦,OP AB ⊥,垂足为P ,则OP 的长是弦AB 的弦心距.(1)若O 的半径为5,OP 的长为3,则AB 的长为______.(2)若O 的半径确定,下列关于AB 的长随着OP 的长的变化而变化的结论:①AB 的长随着OP 的长的增大而增大;②AB 的长随着OP 的长的增大而减小;③AB 的长与OP 的长无关.其中所有正确结论的序号是______.(3)【问题解决】若弦心距等于该弦长的一半,则这条弦所对的圆心角的度数为______°.(4)已知如图②给定的线段EF 和O ,点Q 是O 内一定点.过点Q 作弦AB ,满足AB EF =,请问这样的弦可以作______条.24.某水果超市经销一种高档水果,进价每千克40元.(1)若按售价为每千克50元,每天可售出500千克,经市场调查发现,在进货价不变的情况下,超市决定采取适当的涨价措施,但超市规定每千克涨价不能超过8元,若每千克涨价1元,日销售量将减少20千克.现该超市希望每天盈利6000元,那么每千克应涨价多少元?(2)在(1)的基础上,利用函数关系式求出每千克水果涨价多少元时,超市每天可获得最大利润?最大利润是多少?25.已知:如图,在△ABC 中,AB =BC ,D 是AC 中点,BE 平分∠ABD 交AC 于点E ,点O 是AB 上一点,⊙O 过B 、E 两点,交BD 于点G ,交AB 于点F .(1)求证:AC 与⊙O 相切;(2)当BD =6,sinC 35=时,求⊙O 的半径.26.如图1,在平面直角坐标系中,直线y=-6x+6与x 轴、y 轴分别交于A 、C 两点,抛物线y=x2+bx+c经过A、C两点,与x轴的另一交点为B.(1)抛物线解析式为______;(2)若点M为x轴下方抛物线上一动点,MN⊥x轴交BC于点N,当点M运动到某一位置时,线段MN的长度最大,求此时点M的坐标及线段MN的长度;(3)如图2,以B为圆心、2为半径的⊙B与x轴交于E、F两点(F在E右侧),若点P是⊙B上一动点,连接PA,以PA为腰作等腰Rt△PAD,使∠PAD=90°(P、A、D三点为逆时针顺序),连接FD.①将线段AB绕点A顺时针旋转90°,请直接写出B点的对应点B′的坐标;②求FD长度的取值范围.参考答案1.B【分析】根据一元二次方程的定义要求,含有一个未知数,未知数的最高指数是2,并且是整式方程,逐一判断即可.【详解】解:A 、是分式方程,不是整式方程,选项错误;B 、是一元二次方程,选项正确;C 、未知数的指数是3,不是一元二次方程;D 、含有两个未知数,不是一元二次方程故选:B【点睛】本题考查一元二次方程的定义,牢记定义是解题关键.2.A【分析】本题可利用韦达定理,求出该一元二次方程的二次项系数以及一次项系数的值,代入公式求解即可.【详解】由2320x x -+=可知,其二次项系数1a =,一次项系数3b =-,由韦达定理:12x x +(3)31b a -=-=-=,故选:A .【点睛】本题考查一元二次方程根与系数的关系,求解时可利用常规思路求解一元二次方程,也可以通过韦达定理提升解题效率.3.C【分析】直接根据圆内接四边形的性质即可得出结论.【详解】解:∵四边形ABCD 是⊙O 的内接四边形,∴∠A+∠C=180°.∵∠A=60°,∴∠C=180°-60°=120°.故选C .【点睛】本题考查的是圆内接四边形的性质,熟知圆内接四边形的对角互补是解答此题的关键.4.B【分析】根据d 、r 判断位置关系.【详解】∵O 的半径是4,点P 到圆心O 的距离为5,∴PO >r ,∴点P 在O 的外部,故选B .【点睛】本题考查了点与圆的位置关系,熟练掌握d 、r 判定法则是解题的关键.5.A【分析】拼音“shuxue”中,总共有6个字母,其中字母u 的个数为2,根据概率公式求解即可.【详解】解:拼音“shuxue”中,总共有6个字母,其中字母u 的个数为2,根据概率公式可得,抽中字母u 的概率为2163=故选A【点睛】此题考查了概率的求解方法,掌握概率的求解方法是解题的关键.6.A【分析】根据题意,得x+0+1-2+3=5,求得x 的值即可.【详解】∵x 、0、1、-2、3的平均数是1,∴x+0+1-2+3=5,解得x=3,故选A .【点睛】本题考查了算术平均数的定义即1231n n x x x x x x n -+++++=,正确进行公式变形计算是解题的关键.7.D【分析】根据二次函数的平移特点即可求解.【详解】将抛物线2(0)y ax bx c a =++≠向下平移两个单位,开口方向不变、对称轴不变、故y 随x 的变化情况不变;与y 轴的交点改变故选D .【点睛】此题主要考查二次函数的函数与图象,解题的关键是熟知二次函数图象平移的特点.8.D【分析】确定函数的解析式,后依次判断即可.【详解】设抛物线的解析式2y ax bx c =++,根据图表的意义得:69344a b c a b c c ++=-⎧⎪++=-⎨⎪=-⎩,解得134a b c =⎧⎪=-⎨⎪=-⎩,∴抛物线的解析式为2232534()24y x x x =--=--,∴抛物线开口向上,∴B 错误,不符合题意;当x=32时,有最小值254-,∴A 错误,不符合题意;当y=0时,2325()024x --=即2325()024x -=,∴方程有两个不同的实数根,∴抛物线与x 轴有两个不同的交点,∴C 错误,不符合题意;当x >32时,y 的值随x 值的增大而增大∴D 正确,符合题意;故选D .【点睛】本题考查了抛物线的待定系数法,图像信息,最值,增减性,开口方向,与x 轴的交点,熟练掌握待定系数法是解题的关键.9.(-2,-5)【分析】由二次函数的顶点式,直接写出顶点坐标即可.【详解】解:()2225y x =-+-的顶点坐标是(-2,-5);故答案为:(-2,-5).【点睛】本题考查了二次函数的顶点坐标,掌握二次函数的顶点式是解题的关键.10.10x =,21x =【分析】由因式分解法解一元二次方程,即可求出答案.【详解】解:∵20x x -=,∴(1)0-=x x ,∴10x =或21x =;故答案为:10x =,21x =.【点睛】本题考查了解一元二次方程,解题的关键是掌握因式分解法解一元二次方程.11.80【分析】根据中位数的定义即可求解.【详解】解:把这组数据按照从小到大顺序排列:75、77、79、81、82、82,∴中位数为:7981802+=.故答案为:80.【点睛】本题主要考查了中位数的定义:将数据按照从小到大或从大到小的顺序排列,如果数据个数是奇数,则处于最中间位置的数就是这组数据的中位数;如果数据的个数是偶数,则中间两个数据的平均数是这组数据的中位数.熟记中位数的定义是解题的关键.12.20π【分析】结合题意,根据圆锥侧面积和底面圆半径、母线的关系式计算,即可得到答案.【详解】解:∵圆锥的底面圆半径为4,母线长为5∴圆锥的侧面积4520Sππ=⨯⨯=故答案为:20π.【点睛】本题考查了圆锥的知识,解题的关键是熟练掌握圆锥的性质,从而完成求解.13.3【分析】根据抛物线解析式得到抛物线与x 轴的交点横坐标,结合抛物线的轴对称性质求得a 的值即可.【详解】解:由二次函数y =(x ﹣1)(x ﹣a )(a 为常数)知,当y=0时,()()01x x a =--,解得,11x =,2x a=该抛物线与x 轴的交点坐标是(1,0)和(a ,0).∵抛物线对称轴为直线x =2,∴12a +=2.解得a =3;故答案为:3.【点睛】本题考查了求抛物线与x 轴的交点和两点关于对称轴对称,根据函数解析式求出与x 轴的交点坐标,是解决本题的关键.14.13【分析】由图可得红色区域所对的圆心角为120°,然后根据概率公式可求解.【详解】解:由图可得:红色区域所对的圆心角为120°,∴12013603P ︒==︒;故答案为13.【点睛】本题主要考查概率,熟练掌握概率的求解公式是解题的关键.15.①②③【分析】根据对称轴位置,确定ab 的符号,根据抛物线与y 轴的交点位置,确定c 的符号;根据抛物线与x 轴交点的个数,确定24b ac -的符号,作直线x=-1,观察直线与抛物线的交点,x 轴上方,函数值为正,反之,为负.【详解】∵抛物线的对称轴在x 轴的正半轴,且抛物线与x 轴有两个不同交点,与y 轴交于负半轴,∴ab <0,c <0,24b ac ->0,∴abc >0,如图,直线x=-1,与抛物线的交点在x 轴上方,∴a b c -+>0,故答案为:①②③.【点睛】本题考查了抛物线的性质,抛物线与坐标轴交点性质,特殊值对应的函数值判断,熟练掌握抛物线的基本性质是解题的关键.16.2n 2+2n【分析】本题要通过第1、2、3和4个图案找出普遍规律,进而得出第n 个图案的规律为Sn=4n+2n×(n-1),得出结论即可.【详解】解:观察图形可知:第1个图案由1个小正方形组成,共用的木条根数141221,S =⨯=⨯⨯第2个图案由4个小正方形组成,共用的木条根数262232,S =⨯=⨯⨯第3个图案由9个小正方形组成,共用的木条根数383243,S =⨯=⨯⨯第4个图案由16个小正方形组成,共用的木条根数4104254,S =⨯=⨯⨯…由此发现规律是:第n 个图案由n 2个小正方形组成,共用的木条根数()22122,n S n n n n =+=+ 故答案为:2n 2+2n .【点睛】本题考查了规律型-图形的变化类,熟练找出前四个图形的规律是解题的关键.17.(1)14x =,22x =-;(2)11x =21x =-【分析】(1)两边开方,即可得出两个一元一次方程,求出方程的解即可;(2)先配方,再开方,即可得出两个一元一次方程,求出方程的解即可.【详解】(1)解:()2190x --=,∴13x -=±,解得:14x =,22x =-;(2)解:2250x x --=,225x x -=,22151x x -+=+,()216x -=,∴1x -=∴11x =21x =【点睛】本题考查了直接开平方法和配方法解一元二次方程,能把一元二次方程转化成一元一次方程是解此题的关键.18.(1)y =(x -2)2-1(2)(1,0)或(3,0)(3)(2,-1)(4)1<x <3【分析】(1)直接化为顶点式,即可得到答案;(2)令0y =,即可求出答案;(3)直接求出顶点坐标即可;(4)结合抛物线与x 轴的坐标,即可求出0y <时,x 的取值范围;(1)解:2243(2)1y x x x =-+=--;故答案为:2(2)1y x =--;(2)解:由题意,∵2(2)1y x =--,令0y =,则2(2)10x --=,解得:1x =或3x =;∴这个二次函数图象与x 轴交点坐标为(1,0)或(3,0);故答案为:(1,0)或(3,0);(3)解:∵2(2)1y x =--,∴该函数开口向上,有最低点,∴最低点为(2,-1);故答案为:(2,-1);(4)解:∵243y x x =-+与x 轴交点坐标为(1,0)或(3,0),且开口向上,∴当0y <时,x 的取值范围13x <<;故答案为:13x <<;19.(1)124,2x x ==(2)见解析【分析】(1)当k =2时,方程为2680x x -+=,用因式分解法解方程即可;(2)利用根的判别式进行证明即可.(1)当k =2时,方程为2680x x -+=(2)(4)0x x ∴--=即20x -=或40x -=124,2x x ∴==(2)()222220x k x k k -+++=22(22)4(2)40k k k ∆=+-+=> 恒成立∴不论k 取何值,这个方程总有两个不相等的实数根.20.(1)1m =(2)2m =【分析】(1)根据根与系数的关系求得x 1+x 2、x 1•x 2,然后代入列出方程,通过解方程来求m 的值;(2)把点(1,0)代入抛物线解析式,求得m 的值.【详解】(1)解:由题意得:x 1+x 2=-1,x 1•x 2=-m ,∴-1=-m .∴m=1.当m=1时,x 2+x-1=0,此时Δ=1+4m=1+4=5>0,符合题意.∴m=1;(2)解:图象可知:过点(1,0),当x=1,y=0,代入y=x 2+x-m ,得12+1-m=0.∴m=2.21.(1)8.7;8.5;3;8(2)乙组【分析】(1)用总人数减去其他成绩的人数,求出m ,再根据中位数和众数的定义即可求出甲组成绩的中位数和乙组成绩的众数;(2)先求出平均数,再根据方差公式求出甲、乙组的方差,然后进行比较,即可得出答案.(1)(1)甲组的平均成绩为:71+89+95+10520⨯⨯⨯⨯=8.7(分),甲组成绩的中位数是8+92=8.5(分),乙组成绩统计图中m=20-(2+9+6)=3,乙组成绩的众数是8分,故答案为:8.7,8.5分,3,8分;(2)(2)乙组的成绩更加稳定,甲组的方差为:120⨯[(7-8.7)2+9×(8-8.7)2+5×(9-8.7)2+5×(10-8.7)2]=0.81,乙组平均成绩是:120×(2×7+9×8+6×9+3×10)=8.5(分),乙组的方差为:120⨯[2×(7-8.5)2+9×(8-8.5)2+6×(9-8.5)2+3×(10-8.5)2]=0.75,∴2S 乙<2S 甲所以乙组的成绩更稳定.22.(1)见解析(2)3π【分析】(1)连接OC ,由题意可证△OCP ≌△OAP (SSS ),利用全等三角形的对应角相等以及切线的性质定理可得90OCP ∠=︒,即可证得结论;(2)根据AB =6,∠ADO =90°,∠CAB =30°,可求得OD 、AC ,然后根据S =S 扇形AOC -S △AOC 即可求得结果.【详解】(1)证明:如图,连接OC ,∵PA是半⊙O的切线,∴PA⊥OA,∴∠OAP=90°,∵OD⊥AC,OD经过圆心O,∴CD=AD,∴PC=PA,∵OC=OA,OP=OP,∴△OCP≌△OAP(SSS),∴∠OCP=∠OAP=90°,∵PC经过⊙O的半径OC的外端,且PC⊥OC,∴PC是⊙O的切线.(2)解:∵AB是⊙O的直径,且AB=6,∴OA=OB=3,∵∠ADO=90°,∠CAB=30°,∴OD=12OA=32,∴2222333322 AD AO OD⎛⎫=-=-=⎪⎝⎭,∴AC=2AD=33∴139333224 AOCS=⨯=△∵∠COB=2∠CAB=60°,∴∠AOC=180°-60°=120°,∴S扇形AOC =2 12033360ππ⨯=,∴S =S 扇形AOC -S △AOC =3π-.【点睛】本题主要考查了切线的性质和判定、扇形的面积公式、勾股定理、全等三角形的判定与性质、垂径定理和直角三角形中30°角所对直角边是斜边的一半.熟练掌握切线的性质和判定、扇形的面积公式和做辅助线的方法是解题的关键.23.(1)8;(2)②;(3)90°;(4)2条.【分析】(1)连接OA ,由勾股定理求出AP=4,再根据垂径定理得出答案;(2)设⊙O 的半径为r (r >0)(定值),OP=x (x >0),利用勾股定理得()()22222222244444AB AP AP r x x r ====-=-+,从而得出答案;(3)连接OA ,OB ,由题意知OP=AP ,则∠AOP=45°,可得答案;(4)作PMF OCB ≅ ,则AB=EF ,根据圆的轴对称性可知,这样的弦可以作2条.(1)解:连接OA ,如图,∵OP ⊥AB ,∴AP=BP=12AB ,在Rt △OAP 中,由勾股定理得:,∴AB=2AP=8,故答案为:8;(2)解:设⊙O 的半径为r (r >0)(定值),OP=x (x >0),由(1)知,AB=2AP ,()()22222222244444AB AP AP r x x r ====-=-+,∵二次项-4x 2的系数-4<0,∴x >0时,AB 2随x 的增大而减小,∵OP >0,∴AB 2随x 的增大而减小,∴AB 也随x 的增大而减小,即AB 的长随OP 的长增大而减小,故正确结论的序号是②,故答案为:②;(3)解:连接OA ,OB ,∵弦心距等于该弦长的一半,∴OP=AP ,∴∠AOP=45°,∴∠AOB=2∠AOP=90°,故答案为:90;(4)解:如图,作PMF OCB ≅ ,则AB=EF ,根据圆的轴对称性可知,这样的弦可以作2条,故答案为:2.24.(1)该超要保证每天盈利6000元,那么每千克应涨价5元(2)当每千克水果涨价7.5元时,超市每天可获得最大利润,最大利润是6125元【分析】(1)根据题意和题目中的数据,可以列出相应的方程,然后求解即可;(2)根据题意,可以写出利润与每千克涨价之间的函数关系式,然后根据二次函数的性质,即可得到每千克水果涨价多少元时,超市每天可获得最大利润,最大利润是多少.【详解】(1)解:设每千克应涨价x元,由题意,得(10+x)(500-20x)=6000,整理,得x2-15x+50=0,解得:x=5或x=10,∵超市规定每千克涨价不能超过8元,∴x=5,答:该超要保证每天盈利6000元,那么每千克应涨价5元;(2)解:设超市每天可获得利润为w元,则w=(10+x)(500-20x)=-20x2+300x+5000=-20(x-152)2+6125,∵-20<0,∴当x=152=7.5时,w有最大值,最大值为6125,答:当每千克水果涨价7.5元时,超市每天可获得最大利润,最大利润是6125元.25.(1)证明见解析;(2)15 4.【分析】(1)连接OE,只需证明OE⊥AC即可;(2)在△BCD中,根据BD=6,sinC=35可求BC=AB=10,设⊙O的半径为r,则AO=10-r,在Rt△AOE中,根据sinA=sinC=35,可求r的值.(1)证明:连接OE,∵AB=BC且D是BC中点,∴BD⊥AC,∵BE平分∠ABD,∴∠ABE=∠DBE,∵OB=OE,∴∠OBE=∠OEB,∴∠OEB=∠DBE,∴OE∥BD,∴OE⊥AC,∴AC与⊙O相切;(2)解:∵BD=6,sinC=35,BD⊥AC,∴BC=10,∴AB=4,设⊙O的半径为r,则AO=10-r,∵AB=BC=10,∴∠C=∠A∴sinA=sinC=3 5,∵AC与⊙O相切于点E,∴OE⊥AC。
苏科版九年级上册数学期末试题一、单选题1.若关于x 的一元二次方程26=0x ax -+的一个根是2,则a 的值为()A .2B .3C .4D .52.如图,AB 是⊙O 的直径, 3AC BC=,则∠BAC 的度数为()A .22.5°B .30°C .45°D .67.5°3.将抛物线y =4﹣(x+1)2向右平移1个单位,再向下平移2个单位,所得抛物线必定经过点()A .(﹣2,2)B .(﹣1,1)C .(0,6)D .(1,﹣3)4.如图,AB 为⊙O 的直径,点C 、D 均在⊙O 上,∠ABC=58°,则∠D 为()A .32°B .42°C .29°D .22°5.关于x 的二次函数21(1)22y x =--+下列说法正确的是()A .图象开口向上B .图象顶点坐标为()12,-C .图象与x 轴的交点坐标为()30,和()10,-D .当1x >时,y 随x 的增大而增大6.如图,已知抛物线2y x =-上有A ,B 两点,其横坐标分别为1,2--;在y 轴上有一动点C ,则AC BC +的最小值为()A .22B .32C 3D .57.一组数据3,6,7,7,6,9,7,3的众数是()A .3B .6C .7D .3和68.一个布袋中装有7个红球,2个黑球和1个白球,它们除颜色外都相同.从中任意摸出一个球,被摸到的可能性最大的球是()A .红球B .黑球C .白球D .黄球9.方程22x x =的的解为()A .0x =B .2x =C .0x =或2x =D .0x =或2x =-10.如图,圆锥的底面半径为5,高为12,则该圆锥的侧面积为()A .30πB .60πC .65πD .90π二、填空题11.一元二次方程x 2﹣5=x 两根的和为_____.12.二次函数y =-3x 2-2的最大值为_____.13.若二次函数y =x 2﹣2x+c 的图象与x 轴的一个交点为(﹣1,0),则方程x 2﹣2x+c =0的两根为_____.14.已知一个圆锥的侧面积与全面积的比为3:5,则其侧面展开图的圆心角为_____°.15.二次函数y =ax 2﹣6ax ﹣5(a≠0),当5≤x≤6时,对应的y 的整数值有4个,则a 的取值范围是_____.16.掷一枚质地均匀的硬币,前9次都是反面朝上,则掷第10次时反面朝上的概率是_____.17.已知2,3,5,m ,n 五个数据的方差是1.5,那么3,4,6,m+1,n+1五个数据的方差是________.18.如图,⊙O 的半径为5, AB 的长为3π,则以∠AOB 为内角正多边形的边数为_____.19.如图,四边形ABCD 是平行四边形,△ABD 的外接圆⊙O 与CD 相切,CB 的延长线交⊙O 于E 点,连接AE ,若∠DAE =100°,则∠CDB =_____°.三、解答题20.解下列方程:(1)2(3)6(3)x x x +=+(2)2250x x --=21.一个不透明的袋子中装有4个只有颜色不同的小球,其中2个红球,2个白球,摇匀后从中一次性摸出两个小球.(1)请用列表格或画树状图的方法列出所有可能性;(2)若摸到两个小球的颜色相同,甲获胜;摸到两个小球颜色不同,乙获胜.这个游戏对甲、乙双方公平吗?请说明理由.22.已知二次函数y =x 2﹣4mx+3m 2,0m ≠.(1)求证:该二次函数的图象与x 轴总有两个公共点;(2)若m >0,且两交点间的距离为2,求m 的值并直接写出y >3时,x 的取值范围.23.如图,Rt ABC △中,90ABC ∠=︒,点O ,D 分别在AB ,AC 上,CD CB =,O 经过点B ,D ,弦DF AB ⊥于点E ,连接BF .(1)求证:AC 为O 的切线;(2)若30A ∠=︒,3AE =,求DF 的长.24.如图,BE 是⊙O 的直径,点A 和点D 是⊙O 上的两点,过点A 作⊙O 的切线交BE 延长线于点C .(1)若∠ADE =25°,求∠C 的度数;(2)若AC =CE =4,求阴影部分的面积.25.如图,小明家要建一个面积为150平方米的养鸡场,养鸡场的一边靠墙,另三边(门除外)用竹篱笆围成.这堵墙长18米,在与墙平行的一边,要开一扇2米宽的门.已知围建养鸡场的竹篱笆总长为33米(没有剩余材料,接头忽略不计),那么小明家养鸡场的长和宽应分别为多少米?26.如图,一次函数y kx b =+与二次函数2y ax =的图象交于()1,A m 和()2,4B -(1)直接写出两个函数的解析式;(2)点P 为直线AB 下方抛物线线上一个动点,过P 作PH y ∥轴与AB 交于H 点,当PH 为最大值时,求P 点坐标.27.如图,抛物线247y x mx n =-++与x 轴交于A B ,两点,与y 轴交于点C ,抛物线的对称轴交x 轴于点D ,已知(1004())A C -,,,.(1)求抛物线的表达式;(2)点E 是线段BC 上的一个动点,过点E 作x 轴的垂线与抛物线相交于点F ,当点E 运动到什么位置时,四边形CDBF 的面积最大?求出此时E 点的坐标以及四边形CDBF 的最大面积;(3)在抛物线的对称轴上是否存在点P ,使PCD 是以CD 为边的等腰三角形?如果存在,直接写出P 点的坐标;如果不存在,请说明理由.参考答案1.D2.A3.B4.A5.C6.B7.C8.A9.C 10.C 11.1【分析】先将一元二次方程x2﹣5=x转化为一般形式,然后根据韦达定理x1+x2=ba-填空.【详解】解:由原方程,得x2﹣x﹣5=0,∴由韦达定理,得x1+x2=11--=1;故答案是:1.【点睛】本题考查了根与系数的关系.在利用根与系数的关系x1+x2=ba-解题时,一定要弄清楚公式中的a、b所表示的含义.12.-2【分析】根据二次函数的性质即可求得最值【详解】解:由于二次函数y=-3x2-2的图象是抛物线,开口向下,对称轴为y轴,所以当x=0时,函数取得最大值为-2,故答案为-2.【点睛】本题考查了二次函数y=ax2+k的性质,熟练掌握二次函数y=ax2+k的性质是解题的关键.13.x1=-1,x2=3##x1=3,x2=-1【分析】将(-1,0)代入y=x 2-2x+c 即可求出c 的值,将c 的值代入x 2-2x+c=0,再求出方程的两个根即可.【详解】解:将(-1,0)代入y=x 2-2x+c 得,0=1+2+c ,解得c=-3,∴x 2-2x-3=0,∴(x+1)(x-3)=0,∴x 1=-1,x 2=3.故答案为:x 1=-1,x 2=3.【点睛】本题考查了抛物线与x 轴的交点,抛物线上的点符合函数的解析式,同时要知道一元二次方程的解法.14.240【分析】首先根据圆锥的侧面积与全面积的比为3:5,得到圆锥的侧面积与底面积的比为3:2,即可得到母线l 与底面半径的关系,然后根据侧面展开图的弧长等于底面周长,利用弧长公式即可求得.【详解】解:设圆锥的底面半径长是r ,母线长是l ,∵圆锥的侧面积与全面积的比为3:5,∴圆锥的侧面积与底面积的比为3:2.则2:3:2rl r ππ=,解得23r l =,∴侧面展开图的圆心角度数为根据弧长公式:2180n lr °π=π,解得:n =240°.故答案为:240.【点睛】正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长.15.4355a -<≤-或3455a ≤<【分析】根据265y ax ax =--关于632ax a-=-=对称,分当0a >时,开口向上,当3x >时,y 随x 的增大而增大,当a<0时,开口向下,当3x >时,y 随x 的增大而增小,根据y 的整数值有4个,列出不等式进行求解.【详解】解:265y ax ax =-- 关于632ax a-=-=对称,当0a >时,开口向上,当3x >时,y 随x 的增大而增大,当5x =时,2530555y a a a =--=--,当6x =时,363655y a a =--=-,555a y ∴--≤≤-,y 的整数值有4个,9558a ∴-<--≤-,解得:3455a ≤<;当a<0时,开口向下,当3x >时,y 随x 的增大而增小,当5x =时,2530555y a a a =--=--,当6x =时,363655y a a =--=-,555y a ∴-≤≤--,y 的整数值有4个,2551a ∴-≤--<-,解得:4355a -<≤-;综上:4355a -<≤-或3455a ≤<.【点睛】本题考查了二次函数的性质、不等式组的整数解问题,解题的关键是掌握相应的运算法则.16.12.【分析】投掷一枚硬币,是一个随机事件,可能出现的情况有两种:反面朝上或者反面朝下,而且机会相同.据此回答.【详解】解:第10次掷硬币,出现反面朝上的机会和朝下的机会相同,都为12;故答案为:12.【点睛】此题考查概率的意义,如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率()m P A n=.17.1.5##32##112【分析】设2,3,5,m ,n 五个数据的平均数为x ,则3,4,6,m+1,n+1五个数据的平均数为1x +,根据2,3,5,m ,n 五个数据的方差:22222211(2)(3(5)(( 1.55S x x x m x n x ⎡⎤=-+-+-+-+-=⎣⎦,则3,4,6,m+1,n+1五个数据的方差:22222221(211)(311)(511)(11)(11)5S x x x m x n x ⎡⎤=+--++--++--++--++--⎣⎦进行化简计算即可得.【详解】解:设2,3,5,m ,n 五个数据的平均数为x ,则3,4,6,m+1,n+1五个数据的平均数为1x +,2,3,5,m ,n 五个数据的方差:22222211(2(3(5()( 1.55S x x x m x n x ⎡⎤=-+-+-+-+-=⎣⎦,则3,4,6,m+1,n+1五个数据的方差:22222221(211)(311)(511)(11)(11)5S x x x m x n x ⎡⎤=+--++--++--++--++--⎣⎦=222221(2)(3)(5)()()5x x x m x n x ⎡⎤-+-+-+-+-⎣⎦=1.5,故答案为:1.5.【点睛】本题考查了方差,解题的关键是掌握方差,认真计算.18.5【分析】先利用利用弧长的计算公式计算出∠AOB 的度数,即可求得以∠AOB 为内角正多边形的边数.【详解】解:∵180n rl π=,∴n 18031085ππ⨯==,∴∠AOB=108°,设这个正多边形的边数为x .∵正多边形的一个内角为108°,∴这个正多边形的每个外角等于72°.∴360x︒=72°.∴x=5.故答案为:5.【点睛】本题考查的是弧长公式、多边形的内角与外角公式,正确掌握弧长的计算公式是解决本题的关键.求正多边形的边数时,内角转化为外角,利用外角和360°知识求解更简单.19.40【分析】利用平行四边形的定义得出对边AB CD BC ∥∥,AD ,从而由平行线的性质得出ABE DAB ∠=∠,BDC ABD ∠=∠,然后用切线性质得出BDC DAB ∠=∠,进而得出ABE ABD ∠=∠,再由圆内接四边形的性质求出80DBE ABE ABD ∠=∠+∠=︒,从而得出结论.【详解】如图1,连接DO ,并延长DO 交⊙O 于点F ,连接BF .四边形ABCD 是平行四边形,∴AB CD BC ∥∥,AD ;∴ABE DAB ∠=∠,BDC ABD∠=∠ △ABD 的外接圆⊙O 与CD 相切,∴DF DC ⊥,∴90FDC FDB BDC ∠=∠+∠=︒DF 是⊙O 的直径,∴90DBF ∠=︒,∴90F FDB ∠+∠=︒,∴F BDC ∠=∠,又 F DAB ∠=∠,∴BDC DAB∠=∠∴ABE ABD BDC DAB∠=∠=∠=∠ 四边形AEBD 内接于圆⊙O ,∠DAE =100°∴18010080DBE ∠=︒-︒=︒ABE ABD BDC DAB ∠=∠=∠=∠,DBE ABE ABD ∠=∠+∠,∴1402ABE ABD DBE ∠=∠=∠=︒故答案为:40【点睛】本题是圆的综合题,考查了圆的有关知识,切线的性质、圆周角定理、圆内接四边形性质定理等知识,灵活运用这些性质进行推理是本题的关键.20.(1)123,3x x ==-;(2)11x =21x =【分析】(1)先移项、然后运用因式分解法求解即可;(2)运用公式法求解一元二次方程即可.【详解】(1)解:2(3)6(3)x x x +=+2(3)6(3)0x x x +-+=(26)(3)0x x -+=260x -=或+30x =.所以该方程的解是123,3x x ==-(2)解:125a b c =,=-,=-∴()()22415240=--⨯⨯-=>212x ±===所以该方程的解为11x =21x =【点睛】本题主要考查了解一元二次方程,掌握运用公式法和因式分解法解一元二次方程是解答本题的关键.21.(1)见解析;(2)这个游戏对甲、乙双方不公平,明显乙获胜的概率更高【分析】(1)列表格列出所有可能性;(2)分别求出甲乙获胜的情况个数后比较大小即可.【详解】(1)所有可能性如下表:甲乙红1红2白1白2红1(红,红)(白,红)(白,红)红2(红,红)(白,红)(白,红)白1(红,白)(红,白)(白,白)白2(红,白)(红,白)(白,白)总共12种情况.(2)摸到两个小球的颜色相同有4种,摸到两个小球颜色不同有8种∴甲获胜概率=41123=,乙获胜概率=82123=∴这个游戏对甲、乙双方不公平,明显乙获胜的概率更高.【点睛】本题考查的是游戏公平性的判断.判断游戏公平性就要计算每个人取胜的概率,概率相等就公平,否则就不公平.用到的知识点为:概率=所求情况数与总情况数之比.22.(1)证明见解析(2)m 的值为1;x 的取值范围为x<0或x>4【分析】(1)由题意得一元二次方程22430x mx m -+=,判断判根公式 与0的大小即可;(2)由题意知2121243x x m x x m +=⨯=,,122x x -==解得符合要求的m 的值,然后得到二次函数解析式,令3y =,解得交点坐标,根据图象,即可求解x 的取值范围.【详解】(1)解:证明:由22430y x mx m y ⎧=-+⎨=⎩可得一元二次方程22430x mx m -+=∴该二次方程的()222=4434m m m --⨯= ∵0m ≠∴240m =>∴方程总有两个实数根,二次函数图象与x 轴总有两个公共点.(2)解:由题意知2121243x x m x x m +=⨯=,∴1222x x m -===解得1m =或1m =-(舍去)∴243y x x -+=∵3y =∴2433x x -+=解得10x =或24x =∴由二次函数图象可知,3y >时x 的取值范围为0x <或4x >∴m 的值为1,3y >时x 的取值范围为0x <或>4x .【点睛】本题考查了二次函数与x 轴的交点,二次函数与不等式的解集,一元二次方程根的判别式、一元二次方程根与系数的关系,完全平方公式等知识.解题的关键在于对知识的灵活运用.23.(1)见解析(2)DF =【分析】(1)连接OD ,OC ,根据“SSS ”可得ΔΔOBC ODC ≅,进而可得结论;(2)根据30A ∠=︒可得DE ,再由垂径定理可得DF .【详解】(1)连接OD ,OC ,如图:CD CB = ,OD OB =,OC OC =,∴ΔΔOBC ODC ≅(SSS),90ODC OBC ∴∠=∠=︒,AC ∴是O 的切线.(2)∵30A ∠=︒,3AE =,DF AB⊥∴2AD DE =,222AE DE AD +=∴2223(2)DE DE +=解得:DE =∵BE DF⊥∴2DF DE ==【点睛】本题考查了切线的判定,垂径定理,勾股定理,正确的作出辅助线是解题的关键.24.(1)∠C=40°;(2)阴影部分的面积为83π.【分析】(1)连接OA ,利用切线的性质和角之间的关系解答即可;(2)设OA=OE=r,根据勾股定理得出方程,求出方程的解得出OA=4,由扇形的面积公式和三角形的面积可得出答案.【详解】(1)解:如图,连接OA ,∵AC 是⊙O 的切线,OA 是⊙O 的半径,∴OA ⊥AC ,∴∠OAC=90°,∵∠ADE=25°,∴∠AOE=2∠ADE=50°,∴∠C=90°-∠AOE=90°-50°=40°;(2)解:设OA=OE=r ,在Rt △OAC 中,由勾股定理得:222OA AC OC +=,即222(4)r r +=+,解得:r=4,∴OC=8,∴OA=12OC ,∴∠C=30°,∴∠AOC=60°,∴AOC S ∆=12OA•AC=12∴阴影部分的面积260483603AOC AOE S S ππ∆⋅⋅=-=-=-扇形.【点睛】本题考查了圆周角定理,扇形的面积公式,切线的性质和勾股定理等知识点,熟记圆的切线垂直于经过切点的半径是解题的关键.25.小明家养鸡场的长和宽应分别为15米,10米【分析】设垂直于墙的一边长为x 米,结合题意可得到平行于墙的一边长为()3322x -+米,再通过面积150平方米列出方程,从而计算得到答案.【详解】设垂直于墙的一边长为x 米,则平行于墙的一边长为()3322x -+米,由题意得()3322150x x ⨯-+=∴22351500x x -+=∴1152x =,210x =当10x =时,33221518x -+=<当152x =时,33222018x -+=>(152x =不符合题意,舍去)∴这个养鸡场与墙垂直的一边应长10米.则33210215-⨯+=米∴小明家养鸡场的长和宽应分别为15米,10米.【点睛】本题考查了一元二次方程的应用;求解的关键是熟练掌握一元二次方程的解法并运用到实际问题的求解过程中,即可得到答案.26.(1)2y x =,2y x =-+(2)11,24P ⎛⎫- ⎪⎝⎭【分析】(1)先把()2,4B -代入2y ax =求出a 的值,然后把()1,A m 代入2y ax =,求出m 的值,最后把()2,4B -,()1,A m 代入y kx b =+求出k ,b 的值即可;(2)设()2,P m m ,则(),2H m m -+,22PH m m =--+,然后根据二次函数的性质求解即可.【详解】(1)解:∵()2,4B -在二次函数2y ax =的图象,∴()224a -=,∴1a =,∴二次函数解析式为2y x =,∵()1,A m 在二次函数2y x =的图象,∴1m =,∴()1,1A ,∵()1,1A ,()2,4B -在一次函数y kx b =+的图象上,∴124k b k b +=⎧⎨-+=⎩,解得12k b =-⎧⎨=⎩,∴一次函数解析式为2y x =-+;(2)解:设()2,P m m ,则(),2H m m -+,根据题意得222192224PH m m m m m ⎛⎫=-+-=--+=-++ ⎪⎝⎭,10a =-<,∴当12m =-时,PH 有最大值,∴11,24P ⎛⎫- ⎪⎝⎭.【点睛】本题考查了待定系数法求二次函数、一次函数解析式,二次函数的性质等知识,掌握待定系数法以及二次函数的性质是解题的关键.27.(1)抛物线解析式为2447472y x x =-++;(2)点E 运动到722⎛⎫ ⎪⎝⎭时,四边形CDBF 的面积最大,最大面积为652(3)存在,点P (3)8,或(35),或(3)5-,或2538⎛⎫ ⎪⎝⎭,【分析】(1)点(1004())A C -,,,待定系数法求解析式即可求解;(2)先求出B 点坐标,再求出直线BC 的解析式,设)4,47(E m m -+,用m 表示EF ,再把四边形CDBF 的面积用含m 的代数式表示,最后根据二次函数性质求出最值,进而求得E 点坐标;(3)根据抛物线的对称轴,设出P 点坐标,再求出CD 的长,再分两种情况:CD PD =,CD PC =,PC PD =列出方程求出P 点的坐标即可.【详解】(1)解:将点(1004())A C -,,,代入抛物线247y x mx n =-++得4074m n n ⎧--+=⎪⎨⎪=⎩,解得2474m n ⎧=⎪⎨⎪=⎩.所以,抛物线解析式为2447472y x x =-++;(2)解:令0y =,则20247447x x -++=,整理得,2670x x --=,解得1217x x =-=,,所以,点B 的坐标为()70,∵BCD △的面积不变,∴BCF △的面积最大时四边形CDBF 的面积最大,设直线BC 的解析式为y kx b =+,则704k b b +=⎧⎨=⎩,解得474k b ⎧=-⎪⎨⎪=⎩,所以,447y x =-+,设)4,47(E m m -+则2()424,477F m m m -++,所以:22424444447777EF m m m m m ⎛⎫⎛⎫=-++--+=-+ ⎪ ⎪⎝⎭⎝⎭,所以,22214749(4)72142()2722BCF S m m m m m ∆=-+⨯=-+=--+,∵20-<,∴当72m =时,BCF S 有最大值492,此时,47424272y =-⨯+=-+=,∵1(73)482BCD S =⨯-⨯= ,∴四边形CDBF 的最大面积为4965822+=,所以,点E 运动到722⎛⎫ ⎪⎝⎭,时,四边形CDBF 的面积最大,最大面积为652;(3)解:∵2447472y x x =-++,∴()3,0D .()0,4C ,5CD ∴==,假设在抛物线的对称轴上存在一点P ,使得PCD 是以CD 为边的等腰三角形,设()3,P t ,则DP t =,()222234825PC t t t =+-=-+.①当CD PD =时,有5t =,解得5t =±,此时P 点的坐标为:()3,5或()3,5-;②当CD PC =时,有22CD PC =,即225825t t =-+,解得:8t =或0=t (与D 点重合,故舍去),此时P 点的坐标为()3,8.③当PC PD =时,22825t t t -+=,解得258t =,此时P 点的坐标为2538⎛⎫ ⎪⎝⎭,综上所述存在点P ,使PCD 是以CD 为边的等腰三角形,()3,5或()3,5-或()3,8或2538⎛⎫ ⎪⎝⎭,.【点睛】本题考查了二次函数综合,待定系数法求解析式,面积问题,等腰三角形的定义,勾股定理,掌握二次函数的性质以及数形结合思想方法是解题的关键.。
九年级数学(上)期末考试模拟试卷1一、选择题(本大题有8小题,每小题3分,共24分)1. 若△ABC ∽△DEF ,相似比为1∶2,则△ABC 与△DEF 的周长比为( )A .2∶1B .1∶2C .4∶1D .1∶42. s i n 60°的值是( )A .12B .3C .2D .33.为调查某班学生每天使用零花钱的情况,童老师随机调查了30名同学,结果如下表:则这30名同学每天使用的零花钱的众数和中位数分别是( )每天使用零花钱(单位:元)510152025人数25896A .20、15B .20、20C .20、17.5D .15、154. 如图,点D 、E 、F 分别是△ABC 的边AB 、AC 、BC 上的点,若DE ∥BC ,EF ∥AB ,则下列比例式一定成立的是( )A . =B . =C . =D . =5. 如图,AB为⊙O 的直径,点C ,D 在圆上,若∠BAC =25°,则∠D =( )A . 50°B . 55°C . 65°D . 70°6.如果一个正多边形的外角是锐角,且它的余弦值是,那么它是( )A .等边三角形B .正六边形C .正八边形D .正十二边形7.二次函数y =x 2+bx 的对称轴为直线x =1,若关于x 的方程x 2+bx ﹣t =0(t 为实数)在﹣1<x <4的范围内有实数解,则t 的取值范围是( )A .t ≥﹣1B .﹣1≤t <3C .﹣1≤t <8D .t <38. 已知二次函数(m 是实数),当自变量任取,时,分别与之对应的函数AD DB DE BC BF BC EF AD AE ECBF FC EF AB DE BC 第4题第5题26y x x m =-+1x 2x值,满足>,则,应满足的关系式是()A .B .C .D . 二、填空题(本大题共8个小题,每小题4分,共32分)9. 已知x =1是关于x 的一元二次方程2x 2-x +a =0的一个根,则a 的值是.10. 二次函数y =-(x +2)2+3的图象的最大值是_____.11.如果在比例尺为1∶1000000的地图上,甲、乙两地的图上距离是5.8c m ,那么甲、乙两地的实际距离是 km .12.在Rt △ABC 中,∠C =90°,co sA =,则∠A = 度. 13. 将抛物线y =﹣3x 2向上平移2个单位,再向右1个平移单位所得抛物线的表达式为 .14.如图,A 、B 、C 是正方形网格中的格点,将△ABC 绕A 点逆时针旋转45°得到△ADE ,则t anD 的值为 .15. 如图,在等边三角形ABC 中,D 为BC 的中点,弧ADB 交AC 于点E ,若AB =2,则弧DE 的长为 .16. 如图,在平面直角坐标系中,点A 在抛物线y =x 2﹣2x +5上运动,过点A 作AB ⊥x 轴于点B ,以AB 为斜边作Rt △ABC ,则AB 边上的中线CD 的最小值为 .三、解答题(本大题9个小题,共86分)17.(本题10分)(1)计算:2s i n 60°-3t an 45°+9;(2)解方程:x 2-4x -1=0.1y 2y 1y 2y 1x 2x 1233x x -<-1233x x ->-12|3||3|x x -<-12|3||3|x x ->-12第14题第15题第16题18.(本题8分)如图,在平面直角坐标系中,△ABC的三个顶点都在格点上,点A的坐标为(2,-1),请解答下列问题:(1)画出△ABC关于x轴对称的△A1B1C1,点A1的坐标为;(2)在网格内以点(1,1)为位似中心,把△A1B1C1按相似比2∶1放大,得到△A2B2C2,请画出△A2B2C2;若边AC上任意一点P的坐标为(m,n),则两次变换后对应点P2的坐标为.19. (本题8分)在一次中学生田径运动会上,根据参加男子跳高初赛的运动员的成绩(单位:m).绘制出如下的统计图①和图②,请根据相关信息,解答下列问题:(1)图①中a的值为 ;(2)求统计的这组初赛成绩数据的平均数、众数和中位数;(3)根据这组初赛成绩,由高到低确定10人能进入复赛,请直接写出初赛成绩为1.65m 的运动员能否进入复赛.20. (本题8分)如图所示,破残的圆形轮片上,弦AB的垂直平分线交弧AB于点C,交弦A B于点D.已知:AB=16cm,CD=4cm.(1)求作此残片所在的圆(不写作法,保留作图痕迹);(2)求(1)中所作圆的半径.21.(本题10分)如图,大楼A N上悬挂一条幅AB,小颖在坡面D处测得条幅顶部A的仰角为30°,沿坡面向下走到坡脚E处,然后向大楼方向继续行走10米来到C处,测得条幅的底部B的仰角为45°,此时小颖距大楼底端N处20米.已知坡面DE=20米,山坡的坡度i=1:(即tan∠DE M=1:),且D、M、E、C、N、B、A在同一平面内,E、C、N在同一条直线上,求条幅的长度。
苏科版九年级上册数学期末试题一、单选题1.下列关于x 的方程中,一定是一元二次方程的是()A .20ax bx c ++=B .2(2)(3)(1)x x x +-=-C .210x +=D .11x x+=2.已知一组数据2,3,5,x ,5,3有唯一的众数3,则x 的值是()A .3B .5C .2D .无法确定3.若一元二次方程2210ax x ++=有两个不相等的实数根,则实数a 的取值范围是()A .1a<B .1a ≤C .1a ≤且0a ≠D .1a<且0a ≠4.⊙O 的直径为10cm ,点A 到圆心O 的距离OA=6cm ,则点A 与⊙O 的位置关系为()A .点A 在圆上B .点A 在圆外C .点A 在圆内D .无法确定5.二次函数22y x x =-的顶点坐标是()A .(2,4)-B .(2,4)C .(1,1)-D .(1,1)6.将半径为16cm 的半圆形纸片围成一个圆锥的侧面,则这个圆锥的底面半径是()A .4cmB .6cmC .8cmD .10cm7.如图,在ABCD Y 中,E 为BC 边上的点,若:2:3BE EC =,AE 交BD 于F ,则:BF FD 等于()A .4:5B .2:5C .5:9D .4:98.抛物线23y x bx =++的对称轴为直线1x =.若关于x 的一元二次方程230x bx t ++-=(t 为实数)在13x -<<的范围内有实数根,则t 的取值范围是()A .211t ≤<B .2t ≥C .611t <<D .26t ≤<9.二次函数()20y ax bx c a =++≠的图象如图所示,对称轴是直线=1x -,下列结论:①>0abc ;②24>0b ac -;③42<0a b c ++;④2b a =.其中正确的是()A .③④B .①②③C .①②④D .①②③④10.如图,点A ,B ,C 在O 上,=90AOC ︒∠,2AB =1BC =,则O 的半径为()A 3B 52C 102D .212二、填空题11.四边形ABCD 内接于⊙O ,若85B ∠=︒,则D ∠=______︒.12.已知234x y z==,则x y z+=______.13.已知点(0,),(4,)A a B b 是抛物线222022y x x =-+上的两点,则a ,b 的大小关系是_____.14.甲、乙、丙、丁四人参加射击比赛,经过三轮的初赛,他们成绩的方差分别是22220.2,0.3,0.25,0.4s s s s ====乙丁甲丙,你认为成绩更稳定的是__________.15.已知1x ,2x 是一元二次方程2430x x -+=的两根,则12122x x x x +-=_______.16.已知圆心角为135︒的扇形面积为24π,则扇形的半径为______.17.如图,在O 中,3OA =,45C ∠=︒,则图中阴影部分的面积是_________.(结果保留π)18.在平面直角坐标系中,二次函数2(0)y ax bx c a =++≠的图象如图所示,现给出以下结论:①<0abc ;②20c a +<;③930a b c -+=;④()a b m am b -≥+(m 为实数),其中正确的结论有___.(只填序号)19.如图,在Rt ABC 中,90,8,6ACB AC BC ∠=︒==,点P 是平面内一个动点,且4AP =,Q 为BP 的中点,在P 点运动过程中,设线段CQ 的长度为m ,则m 的取值范围是_______.三、解答题20.计算:(1)2230x x --=(2)先化简,再求值:2224124422a a a a a a⎛⎫--÷ ⎪-+--⎝⎭,其中a 满足2330a a +-=.21.关于x 的一元二次方程x 2﹣(k+1)x+2k ﹣2=0.(1)求证:方程总有两个实数根;(2)若方程有一根小于2,求k 的取值范围.22.将4张印有“梅”“兰”“竹”“菊”字样的卡片(卡片的形状、大小、质地都相同)放在一个不透明的盒子中,将卡片搅匀.(1)从盒子中任意取出1张卡片,恰好取出印有“兰”字的卡片的概率为.(2)先从盒子中任意取出1张卡片,记录后放回并搅匀,再从中任意取出1张卡片,求取出的两张卡片中,至少有1张印有“兰”字的概率(请用画树状图或列表等方法求解).23.如图,在Rt ABC 中,90,C AE ∠=︒平分BAC ∠交BC 于点E ,点D 在AB 上,DE AE ⊥.⊙O 是Rt ADE △的外接圆,交AC 于点F .(1)求证:BC 是⊙O 的切线;(2)若⊙O 的半径为10,16AC =,求ADE S .24.某校利用课外活动时间,开设了书法、健美操、兵兵球和朗诵四个社团活动,每个学生选择一项活动参加,为了了解活动开展情况,学校随机抽取了部分学生进行调查,将调查结果绘制成如下不完整的条形统计图和扇形统计图.(1)请直接填写抽取的学生有人,n =,=a .(2)补全条形统计图;(3)若该校有学生4000人,估计参加书法社团活动的学生人数.25.如图,河对岸有一路灯杆AB ,在灯光下,小明在点D 处,自己的影长4m DF =,沿BD 方向到达点F 处再测自己的影长5m FG =,如果小明的身高为1.6m ,求路灯杆AB 的高度.26.老李在驻村干部的帮助下,销售一批成本为每件30元的商品,按单价不低于成本价,且不高于50元销售,经调查发现,该商品每天的销售量y (件)与销售单价x (元)之间满足一次函数关系,部分数据如表所示.销售单价x (元)304045销售数量y (件)1008070(1)求该商品每天的销售量y (件)与销售单价x (元)之间的函数关系式;(2)销售单价定为多少元时,每天的销售利润为800元?(3)销售单价定为多少元时,才能使销售该商品每天获得的利润w (元)最大?最大利润是多少元?27.如图①,ABC 和ADE V 是有公共顶点的等腰直角三角形,90BAC DAE ∠=∠=︒,点P 为射线,BD CE 的交点.(1)如图②,将ADE V 绕点A 旋转,当C 、D 、E 在同一条直线上时,连接BD 、BE ,求证:BD CE =且BD CE ⊥.(2)若8,4AB AD ==,把ADE V 绕点A 旋转,①当90EAC ∠=︒时,求PB 的长;②旋转过程中线段BP 长的最小值是_______.28.如图,在平面直角坐标系内,抛物线28(0)y ax bx a =+-≠与x 轴交于点A 、点B ,与y 轴交于点C ,且2OB OA =.过点A 的直线4y x =+与抛物线交于点E .点P 为第四象限内抛物线上的一个动点,过点P 作PH AE ⊥于点H .(1)抛物线的表达式中,=a ________,b =________;(2)在点P 的运动过程中,若PH 取得最大值,求这个最大值和点P 的坐标;(3)在(2)的条件下,在x 轴上求点Q ,使以A ,P ,Q 为顶点的三角形与ABE 相似.参考答案1.C【分析】本题根据一元二次方程的定义解答.一元二次方程必须满足四个条件:(1)未知数的最高次数是2;(2)二次项系数不为0;(3)是整式方程;(4)含有一个未知数.由这四个条件对四个选项进行验证,满足这四个条件者为正确答案.【详解】解:A 、a =0时,不是一元二次方程,选项错误;B 、原式可化为:x−7=0,是一元一次方程,故选项错误;C 、符合一元二次方程的定义,正确;D 、是分式方程,选项错误.故选:C.【点睛】本题考查一元二次方程的定义,判断一个方程是否是一元二次方程,首先要看是否是整式方程,然后看化简后是否是只含有一个未知数且未知数的最高次数是2.2.A【分析】根据众数的定义,结合这组数据的具体情况进行判断即可.【详解】解:在这组已知的数据中,“3”出现2次,“5”出现2次,“2”出现1次,要使这组数据有唯一的众数3,因此x所表示的数一定是3.故选:A.【点睛】本题考查众数的定义,掌握一组数据中出现次数最多的数据是这这组数据的众数是正确判断的关键.3.D【分析】根据一元二次方程的定义和判别式的意义得到a≠0且△=22-4a>0,然后求出两不等式的公共部分即可.【详解】解:根据题意得a≠0且△=22-4a>0,解得a<1且a≠0.故选:D.【点睛】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.4.B【分析】根据题意得⊙O的半径为5cm,则点A到圆心O的距离大于圆的半径,则根据点与圆的位置关系可判断点A在⊙O外.【详解】解:∵⊙O的直径为10cm,∴⊙O的半径为5cm,而点A到圆心O的距离OA=6cm>5cm,∴点A在⊙O外.故选B.【点睛】本题考查了点与圆的位置关系:设⊙O的半径为r,点P到圆心的距离OP=d,则有点P在圆外,则d>r;点P在圆上,则d=r;点P在圆内,则d<r.5.C【分析】将抛物线解析式化为顶点式求解.【详解】解:∵()22211y x x x =-=--,∴二次函数22y x x =-的顶点坐标为(1,−1),故选:C .【点睛】本题考查二次函数的性质,解题关键是掌握将抛物线解析式化为顶点式的方法.6.C【分析】易得圆锥的母线长为16cm ,以及圆锥的侧面展开图的弧长,也就是圆锥的底面周长,除以2π即为圆锥的底面半径.【详解】解:圆锥的侧面展开图的弧长为2π×16÷2=16π(cm ),∴圆锥的底面半径为16π÷2π=8(cm ),故选:C .【点睛】本题考查了圆锥的计算.用到的知识点为:圆锥的弧长等于底面周长.7.B【分析】通过证明△ADF ∽△EBF ,可求解.【详解】解:∵四边形ABCD 是平行四边形,∴AD ∥BC ,AD =BC ,∵BE :EC =2:3,∴BE :AD =2:5,∵AD ∥BC ,∴△ADF ∽△EBF ,∴BF :FD =BE :AD =2:5,故选:B .【点睛】本题考查的是平行四边形的性质和相似三角形的判定和性质,灵活运用平行四边形的性质定理和相似三角形的判定和性质定理是解题的关键.8.D【分析】由抛物线的对称轴可得抛物线解析式,将x 2+bx+3﹣t =0转化为抛物线y =x 2+bx+3与直线y =t 在﹣1<x <3的范围内有交点的问题,进而求解.【详解】解:∵抛物线y =x 2+bx+3的对称轴为直线x =2b-=1,∴b =﹣2,∴y =x 2﹣2x+3,∵y =x 2﹣2x+3=(x ﹣1)2+2,∴抛物线开口向上,顶点坐标为(1,2),将x 2+bx+3﹣t =0整理为x 2﹣2x+3=t ,∴当t =2时,抛物线顶点落在直线y =2上,满足题意,把(﹣1,t )代入y =x 2﹣2x+3得t =6,把(3,t )代入y =x 2﹣2x+3得t =6,∴2≤t <6满足题意,故选:D .【点睛】本题考查二次函数的性质,解题关键是掌握二次函数与方程的关系,掌握二次函数图像与系数的关系.9.D【分析】根据二次函数的图象和性质逐个判断求解即可.【详解】∵对称轴是直线=1x -,∴12ba-=-,即2b a =,故④正确;∵抛物线开口向下,∴0<a ,∴<0b ,∵抛物线与y 轴交于正半轴,∴0c >,∴>0abc ,故①正确;∵抛物线与x 轴有两个交点,∴20ax bx c ++=有两个不相等的实数根,∴24>0b ac -,故②正确;当2x =时,42<0y a b c =++,故③正确;综上所述,正确的有①②③④.故选:D .【点睛】本题考查的是二次函数图象与系数的关系,掌握二次函数()20y ax bx c a =++≠系数符号与抛物线开口方向、对称轴、抛物线与y 轴的交点、抛物线与x 轴交点的个数的关系是解题的关键.10.C【分析】作AD CB ⊥交CB 的延长线于点D ,连结AC ,OB .只要证明ADB 是等腰直角三角形,即可推出1AD DB ==,再利用勾股定理即可求出AC ,进而求出O 的半径.【详解】解:如图,作AD CB ⊥交CB 的延长线于点D ,连结AC .∵OB OC =,OB OA =,∴OBC OCB ∠=∠,OBA OAB ∠=∠,又∵=90AOC ︒∠,∴()13601352ABC OBA OBC AOC ∠=∠+∠=︒-∠=︒,∴1359045BAD ABC BDA ∠=∠-∠=︒-︒=︒,∴ADB 是等腰直角三角形.∴22222AD DB AD AB +==,∴122AD DB AB ====,∴112DC DB BC =+=+=,∴AC ===∵OC OA =,=90AOC ︒∠,∴OC AC ==⨯=,∴O 故选C .【点睛】本题考查圆的基本认识,三角形外角的性质,勾股定理,等腰三角形的判定与性质等,解题的关键是证明ADB 是等腰直角三角形.11.95【分析】根据圆内接四边形的对角互补列式计算即可.【详解】解:∵四边形ABCD 内接于⊙O ,∴∠B+∠D=180°,∵∠B=85°,∴∠D=180°-85°=95°,故答案为:95.【点睛】本题考查的是圆内接四边形的性质,掌握圆内接四边形的对角互补是解题的关键.12.54【分析】利用设k 法进行计算即可解答.【详解】解:设234xy z k ===,∴x =2k ,y =3k ,z =4k ,∴23544x y k k z k ++==.故答案为:54.【点睛】本题考查了比例的性质,熟练掌握设k 法是解题的关键.13.a b<【分析】根据抛物线解析式可得抛物线对称轴与开口方向,根据点A ,B 到抛物线对称轴的距离求解.【详解】解:∵()222202212021y x x x =-+=-+,∴抛物线的对称轴为直线x=1,且开口向上,∵1-0<4-1,∴点A 到对称轴的距离小于点B 到对称轴的距离,∴a<b ,故答案为:a<b【点睛】本题考查二次函数图象上点的坐标特征,解题关键是掌握二次函数的性质,14.甲【分析】根据方差的定义,方差越小数据越稳定即可求解.【详解】解:∵22220.2,0.3,0.25,0.4s s s s ====乙丁甲丙,∴方差最小的为甲,∴成绩更稳定的是甲.故答案为:甲.【点睛】本题考查了方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.15.2-【分析】根据根与系数的关系得到x 1+x 2=4,x 1x 2=3,然后利用整体代入的方法计算x 1+x 2﹣2x 1x 2的值.【详解】解:根据题意得x 1+x 2=4,x 1x 2=3,∴x 1+x 2﹣2x 1x 2=4﹣2×3=﹣2.故答案为﹣2.【点睛】本题考查了一元二次方程根与系数的关系:若x 1,x 2是一元二次方程ax 2+bx+c =0(a≠0)的两根时,x 1+x 2=b a -,x 1x 2=c a,掌握根与系数的关系是解题的关键.16.8【分析】根据扇形面积的计算公式进行计算即可得出答案.【详解】解:根据S =2360n r π,可得:24π=2135360r π,解得:r =8.故答案为:8.【点睛】本题主要考查了扇形面积的计算,熟练掌握扇形面积的计算方法进行计算是解决本题的关键.17.9942π-【分析】由45C ∠=︒,根据圆周角定理得出90AOB ∠=︒,根据S 阴影=S 扇形AOB -AOB S 可得出结论.【详解】解:∵45C ∠=︒,∴90AOB ∠=︒,∴S 阴影=S 扇形AOB -AOBS29031=333602π⨯⨯-⨯⨯99=42π-,故答案为:9942π-.【点睛】本题主要考查圆周角定理、扇形的面积计算,根据题意求得三角形与扇形的面积是解答此题的关键.18.①②③【分析】由抛物线的开口方向判断a 的正负,由抛物线与y 轴交点判断c 的正负,由抛物线对称轴判断a 与b 的关系,根据抛物线的图象的性质对结论进行判断.【详解】由图象可得a>0,c<0,-2b a<0,∴b>0,∴abc<0,故①正确,符合题意.由抛物线对称轴-2b a =-1可得b=2a ,∵x=1时,y=a+b+c=0,a+2a+c=0,即c+3a=0,c+2a=-a<0,故②正确,符合题意.∵图象对称轴为直线x=-1,且经过点(1,0)∴抛物线与x 轴另一个交点坐标为(-3,0),x=-3时,y=9a-3b+c=0,故③正确,符合题意.当x=-1时,函数有最小值为a-b+c ,当x=m 时,y=am 2+bm+c ,∴am 2+bm+c≥a-b+c ,整理得a-b≤m(am +b),故④错误,故不符合题意.所以正确的有:①②③故答案为:①②③.【点睛】本题考查二次函数图象与系数的关系,解题关键是掌握二次函数的性质,掌握二次函数与不等式的关系,二次函数与方程的关系.19.3m 7≤≤【分析】取AB 的中点M ,连接QM 、CM ,得到QM 是△APB 的中位线,CM 是Rt ABC 斜边上的中线,求得QM 、CM 的长,在△QMC 中利用三角形三边关系得到CQ 的范围即可.【详解】取AB 的中点M ,连接QM 、CM ,∴QM 是△APB 的中位线,CM 是Rt ABC 斜边上的中线,∴122QM AP ==,12CM AB =,在Rt ABC 中,90,8,6ACB AC BC ∠=︒==,∴10AB =,∴CM=5,∵点P 是平面内一个动点,∴点Q 是动点,且点Q 以点M 为圆心,QM 长为半径的圆上运动,∴C 、Q 、M 可以三点共线,∴CM-MQ ≤CQ ≤CM+MQ ,∴3m 7≤≤,故答案为:3m 7≤≤.【点睛】本题考查勾股定理、直角三角形斜边中线的性质,中位线定理、三角形三边关系等知识,分析点Q 的运动是解题的关键.20.(1)121,3x x =-=(2)232+a a ,32【分析】(1)利用因式分解法求解可得;(2)先根据分式的减法法则进行计算,再根据分式的除法法则进行计算,求出a 2+3a =3,最后把a 2+3a =3代入化简的结果,即可求出答案.(1)解:x 2﹣2x ﹣3=0,(x ﹣3)(x+1)=0,可得x ﹣3=0或x+1=0,解得:x 1=3,x 2=﹣1;(2)解:原式=()()()()22221222a a a a a a ⎛⎫+-- ⎪+⨯ ⎪--⎝⎭()221222a a a a a -+⎛⎫=+⨯ ⎪--⎝⎭()2322a a a a -+=⨯-232a a +=,由a 2+3a ﹣3=0得a 2+3a =3,∴原式32=.【点睛】本题考查了解一元二次方程,分式的化简求值,熟练掌握运算法则是解本题的关键.21.(1)见解析.(2)3k <.【分析】(1)利用根的判别式,求出0≥ 恒成立,即可得出结论.(2)利用因式分解法得到该方程的两个根,一个是2,一个是1k -,根据方程有一根小于−3,即可求出k 的取值范围.(1)∵a =1,b =﹣(k+1),c =2k ﹣2,∴Δ=b 2﹣4ac =[﹣(k+1)]2﹣4×1×(2k ﹣2)=k 2﹣6k+9=(k ﹣3)2≥0,∴方程总有两个实数根.(2)∵x 2﹣(k+1)x+2k ﹣2=0,即[x ﹣(k ﹣1)](x ﹣2)=0,∴x 1=2,x 2=k ﹣1,又∵方程有一个根小于2,∴k ﹣1<2,∴k <3,即k 的取值范围为k <3.【点睛】本题考查一元二次方程根的判别式和利用因式分解法解一元二次方程,解题的关键是熟练运用这些知识点进行求解.22.(1)14;(2)716【分析】(1)直接利用概率公式求解可得;(2)画树状图列出所有等可能结果,从中找到符合条件的结果数,再利用概率公式求解可得.【详解】(1)从盒子中任意取出1张卡片,恰好取出印有“兰”字的卡片的概率为14,故答案为:14;(2)画树状图如下:由树状图知,共有16种等可能结果,其中至少有1张印有“兰”字的有7种结果,∴至少有1张印有“兰”字的概率为716.【点睛】本题考查了用列表法或树状图法求随机事件的概率,解题时需要注意是放回试验还是不放回试验.用到的知识点为:概率=所求情况数与总情况数之比.23.(1)见解析(2)80【分析】(1)连接OE ,利用角平分线的性质和等腰三角形的性质证明AC ∥OE ,即可解答;(2)先证明△ACE ∽△AED ,求出AE 的长,再利用勾股定理求出DE 的长,进行计算即可解答.(1)证明:连接OE ,∵OA =OE ,∴∠1=∠OEA ,∵AE 平分∠BAC ∴∠1=∠2,∴∠2=∠OEA ,∴AC ∥OE ,∴∠C =∠OEB =90°,∵OE 是⊙O 的半径,∴BC 是⊙O 的切线;(2)∵AD 是⊙O 的直径,∴∠AED =90°,∴∠C =∠AED =90°,∵∠1=∠2,∴△ACE ∽△AED ,ACE AED ∽,∴AC AE AE AD =,即1620AE AE =,∴85AE =去),∴DE ()2222208545AD AE --=,∴S △ADE =12AE•DE =1855802⨯.【点睛】本题考查了切线的判定与性质,三角形外接圆与外心,圆周角定理,熟练掌握角平分线的性质和等腰三角形的性质证明平行线是解题的关键.24.(1)200,54,25(2)见解析(3)约1000人【分析】(1)根据参加乒乓球社团的人数为80人,占抽取的总人数的40%,可求得抽取的总人数,从而求得n与a的值.(2)根据(1)问中求得的抽取的总人数,计算其中参加朗诵社团的人数,从而补全条形统计图.(3)根据参加书法社团的人数占抽取的总人数的25%,估算全校参加书法社团的学生人数.(1)解:∵参加乒乓球社团的人数为80人,占抽取的总人数的40%,∴抽取的总人数为8040%200÷=(人),∵参加健美操社团的人数为30人,抽取的总人数为200人,∴参加健美操社团的人数占抽取的总人数的30100%200⨯=15%,在扇形统计图中,36015%54n︒=︒⨯=︒,即n=54,∵参加书法社团的人数为50人,抽取的总人数为200人,∴参加书法社团的人数占抽取的人数的50100%200⨯=25%,即a=25,故答案为:200;54;25;(2)解:∵抽取的总人数为200人,又∵参加健美操社团的人数为30人,参加书法社团的人数为50人,参加乒乓球社团的人数为80人,∴参加朗诵社团的人数为,200-30-50-80=40(人)∴条形统计图如下:(3)解:4000×25%=1000(人)答:估计参加书法社团活动的学生人数为1000人.【点睛】本题考查了数据的整理和分析,熟练掌握各社团人数及其所占百分比是解题的关键.25.8m【分析】在同一时刻物高和影长成正比,根据相似三角形的性质即可解答.【详解】解:∵CD EF AB ∥∥,∴可以得到ABF CDF ∽,ABG EFG △∽△,∴AB BF CD DF =,AB BG EF FG=,又∵CD EF =,∴BF BG DF FG=∵4DF =,5FG =,4BF BD DF BD =+=+,9BG BD DF FG BD =++=+,∴4945BD BD ++=,∴16,16420BD BF ==+=,∴201.64AB =,解得8AB =.答:路灯杆AB 的高度为8米.【点睛】本题主要考查了相似三角形的应用,本题只要是把实际问题抽象到相似三角形中,利用相似三角形的性质对应边成比例就可以求出结果.26.(1)y =-2x +160(2)销售单价定为40元时,每天的销售利润为800元(3)销售单价定为50元时,每天的利润最大,最大利润是1200元【分析】(1)设该商品每天的销售量y (件)与销售单价x (元)之间的函数关系式为y kx b =+,用待定系数法求解即可;(2)根据每件的利润乘以销售量等于利润800元,列出方程并求解,再结合单价不低于成本价,且不高于50元销售,可得符合题意的答案;(3)根据每件的利润乘以销售量等于利润得出w 关于x 的二次函数,将其写成顶点式,根据二次函数的性质及自变量的取值范围可得答案.(1)解:设y =kx +b 把(30,100),(40,80)代入得301004080k b k b +=⎧⎨+=⎩解得:k =-2b=160∴y =-2x +160当x =45,y =70时也适合.所以y 与x 的一次函数关系式是y =-2x +160;(2)解:根据题意,得800=(x -30)(-2x +160)整理,得211028000x x +=-解得1240,70x x ==∵30≤x≤502x =70(不合题意,舍去)∴销售单价定为40元时,每天的销售利润为800元;(3)解:由题意,得w =(x -30)(-2x +160)=-222204800x x +-=2-2(55)x -+1250∵a =-2<0,∴w 有最大值.∵30≤x ≤50,当x <55时,w 随x 的增大而增大,∴当x =50时,w 有最大值,此时,w =-2(50-55)2+1250=1200答:销售单价定为50元时,每天的利润最大,最大利润是1200元.【点睛】本题考查了二次函数和一元二次方程在销售问题中的应用,明确成本利润问题的基本数量关系并熟练掌握二次函数的性质是解题的关键.27.(1)见解析(2)①PB =4【分析】(1)证明ABD ACE ≌△△,可得BD CE =,ABD ACE ∠=∠,再由90CAB ∠=︒,可得90ACE AFB ∠+∠=︒.再根据三角形的内角和定理,即可求证;(2)①分两种情况讨论:当点E 在AB 上时;当点E 在BA 延长线上时,即可求解;②以A 为圆心AD 为半径画圆,当CE 在A 下方与A 相切时,PB的值最小.根据勾股定理可得BD CE ==AEPD 是矩形,可得4PD AE ==,即可求解.(1)解:如图,∵ABC 和ADE V 是等腰直角三角形,∴AB=AC ,AD=AE ,∵90BAC DAE ∠=∠=︒,∴BAC DAC DAE DAC ∠+∠=∠+∠,即BAD CAE ∠=∠.在ABD△和ACE △中,AD AE BAD CAE AB AC =⎧⎪∠=∠⎨⎪=⎩,∴ABD ACE SAS △≌△(),∴BD CE =,ABD ACE ∠=∠,∵90CAB ∠=︒,∴90ABD AFB ∠+∠=︒,∴90ACE AFB ∠+∠=︒.∵DFC AFB ∠=∠,∴90ACE DFC ∠+∠=︒,∴90FDC ∠=︒,∴BD CE ⊥;(2)解:①如图,当点E 在AB 上时,844BE AB AE =-=-=.∵90EAC ∠=︒,AE=4,AC=8,∴22228445CE AE AC =+=+=,同(1)可证△≌△ADB AEC .∴DBA ECA ∠=∠.∵PEB AEC ∠=∠,∴△∽△PEB AEC .∴PB BE AC CE =,∴4845PB =,∴855PB =.如图,当点E 在BA 延长线上时,12BE AB AE =+=.∵90EAC ∠=︒,∴22224845CE AE AC =+=+=,同(1)可证:△≌△ADB AEC ,∴DBA ECA ∠=∠,∵BEP CEA ∠=∠,∴△∽△PEB AEC ,∴PB BE AC CE =,∴12845PB =,∴2455PB =.综上.855PB =或2455.②如图,以A 为圆心AD 为半径画圆,当CE 在A 下方与A 相切时,PB 的值最小.理由:设AB 交PC 于点M ,∵∠BAC=∠DAE=90°,∴∠BAD=∠CAE ,∵AB=AC ,AD=AE ,∴△ABD ≌△ACE ,∴∠ABD=∠ACE ,∠ADP=∠AEC=∠AEP=90°,BD=CE ,∵∠BMP=∠AMC ,∴∠BPM=∠CAB=90°,∴PBC 是直角三角形,∵斜边BC 为定值,∴BCE ∠最小,因此PB最小,∵AE EC ⊥,∴EC ===,∴BD CE ==,∵90ADB AEC ∠=∠=︒,∴90ADP DAE AEP ∠=∠=∠=︒,∴四边形AEPD 是矩形,∴4PD AE ==,∴4PB BD PD =-=.综上所述,PB长的最小值是4【点睛】本题主要考查了相似三角形的判定和性质,切线的性质,解直角三角形,全等三角形的判定和性质,勾股定理等知识,熟练掌握相似三角形的判定和性质,切线的性质,解直角三角形,全等三角形的判定和性质,勾股定理等知识是解题的关键.28.(1)14,1-(2)PH的最大值为P 的坐标为(4,8)-(3)(2,0)或52,03⎛⎫ ⎪⎝⎭【分析】(1)根据直线y=x+2与x 轴交于点A ,先求出点A 的坐标,再根据OB=2OA 求出点B 的坐标,将点A 、B 的坐标代入y=ax 2+bx-8得到方程组,解方程组求出a 、b 的值即可;(2)过点P 作PF ⊥x 轴交直线y=x+4于点F ,由(1)得抛物线的表达式为y =14x 2−x−8,设P(x ,14x 2−x−8)(0<x <8),到得PF 关于x 的函数表达式,再根据二次函数的性质求出PH 的最大值以及此时点P 的坐标;(3)作PG ⊥x 轴于点G ,则∠PGA=90°,先证明∠BAP=∠BAE=45°,再求出AP 、AE 的长;A ,P ,Q 为顶点的三角形与△ABE 相似分两种情况,一是∠AQP=∠ABE 时,△AQP ∽△ABE ,二是∠AQP=∠ABE 时,△AQP ∽△ABE ,根据相似三角形的对应边成比例求出AQ 的长,再转化为点Q 的坐标.(1)直线y=x+4,当y=0时,则x+4=0,解得x=-4,∴A (-4,0),OA=4,∴OB=2OA=8,∴B (8,0),把A (-4,0),B (8,0)代入y=ax 2+bx-8,得1648064880a b a b --=⎧⎨+-=⎩,解得141a b ⎧=⎪⎨⎪=-⎩,故答案为:14,-1;(2)如图1,过点P 作PF x ⊥轴交直线4y x =+于点F ,由(1)得抛物线的表达式为2184y x x =--,设21,8(08)4P x x x x ⎛⎫--<< ⎪⎝⎭,则4(),F x x +,∴2211(4)821244PF x x x x x ⎛⎫=+---=-++ ⎪⎝⎭,21(4)164x =--+当4x =时PF 取得最大值,且最大值为16,此时16PH ===2144884⨯--=-∴点P 的坐标为(4,8)-∴当4x =时,PH 的最大值为P 的坐标为(4,8)-(3)如图2,作PG x ⊥轴于点G ,则90,(4,0)PGA G ∠=︒∴8AG PG ==,∴45BAP BAE ∠=∠=︒,∵4AE y x =+抛物线2184y x x =--∴(12,16)E ,∴AE AP ==,当AQP ABE ∠=∠时,AQP ABE ∽,∴AQ AP AB AE =,∵8(4)12AB =--=,∴6AB AP AQ AE -===,∴462Q x =-+=,∴(2,0)Q ;如图3,当APQ ABE ∠=∠时,APQ ABE ∽,∴AQ AP AE AB =,∴64123AE AP AQ AB ⋅===,∴6452433Q x =-+=,∴52,03Q ⎛⎫ ⎪⎝⎭,综上所述,点Q 的坐标为(2,0)或52,03⎛⎫ ⎪⎝⎭.。
2008~2009学年度上学期期末模拟考试
1、和3是同类二次根式的是 ( )
A. 18 B .3.0 C.30 D. 300
2、E 、F 、G 、H 分别是四边形ABCD 四条边的中点,要使四边形EFGH 为矩形,四边形ABCD 应具备的条件是 ( )
A. 一组对边平行而另一组对边不平行
B. 对角线相等
C. 对角线互相垂直
D. 对角线互相平分
3、某超市一月份的营业额为200万元,已知第一季度的总营业额共1000万元, 如果平均每月增长率为x,则由题意列方程应为 ( ) A 、200(1+x)2
=1000 B 、200+200×2x=1000 C 、200+200×3x=1000 D 、200[1+(1+x)+(1+x)2
]=1000
4、如图,矩形ABCD 的周长为20cm ,两条对角线相交于O 点,过点O 作AC 的垂线..EF ,分别交AD BC ,于E F ,点,连结CE ,则CDE △的周长为( ) A .5cm B .8cm C .9cm D .10cm
5、已知抛物线3)4(3
1
2--=
x y 的部分图像(如图所示),图像再次与x 轴相交时的坐标是 ( ) A 、(5,0) B 、(6,0) C 、(7,0) D 、(8,0)
6、如图,如果函数b kx y +=的图象在第一、二、三象限,那么函数12
-+=bx kx y 的图
象大致是 ( )
7、一个直角三角形斜边长为
10cm ,内切圆半径为1cm ,则这个三角形周长是 ( ) A 、15cm B 、22cm C 、24cm D 、26cm
8、如下图,实线部分是半径为9m 的两条等弧组成的花圃,若每条弧所在的圆都经过另一个圆的圆心,则花圃的周长为( )
A
O
B
C
D
E
F
x y o x
y o x y o x
y
o 11-1-1
A B
C
D
第6题图
A .12m π
B .24m π
C .18m π
D .20m π
8.二次函数2(0)y ax bx c a =++≠的图象如图所示,则下列说法不正确的是(▲)
A .0a >
B .0c >
C .2
40b ac ->
D .02b
a
-
<
9.如图,
D 、
E 分别是AB 、AC 上两点,CD 与BE 相交于点O ,下列条件中不能使△ABE 和△ACD 相似的是(▲) A.∠B=∠C
B.∠ADC=∠AEB
C.BE=CD ,AB=AC
D.AD ∶AC=AE ∶AB
10.如图,∠APD =90°,AP =PB =BC =CD ,则下列结论成立的是(▲) A .△PAB ∽△PCA
B .△PAB ∽ΔPDA
C .△ABC ∽△DBA
D .△ABC ∽△DCA
二、填空题: (32分) 1、当x 时,
3
22-x 在实数范围内有意义。
2、已知一组数据x 1,x 2,x 3,x 4,x 5的平均数是2,方差是3,那么另一组数据2x 1-1,2x 2-1, 2x 3-1,2x 4-1,2x 5-1的平均数是________,方差是________。
3、实数a 在数轴上的位置如图所示,化简:()
2
|1|2a a -+
-=_______.
4、如图为二次函数y=ax 2
+b x +c 的图象,在下列说法中:
①ac <0; ②方程ax 2
+b x +c=0的根是x 1= -1, x 2= 3 ③a +b +c >0 ④当x >1时,y 随x 的增大而增大。
正确的说法有_____________。
(把正确的答案的序号都填在横线上)
13.抛物线422
-=x y 的顶点坐标是。
P
A
B
C
D
第8题图 第9题图 第10题图
14.如图,在ABC △中,P 是AC 上一点,连结BP ,要使ABP ACB △∽△, 还需要补充一个..
条件。
这个条件可以是 . 15.△ABC ∽△DEF ,相似比为1:9,△ABC 的周长是2,则△DEF 的周长为 。
16. 如图,AB ∥CD ,BO :OC =1:4,点E 、F 分别是OC 、OD 的中点,若AB=2,则EF 的长为 。
17.如图,王芳同学跳起来把一个排球打在离她2米远的地上,然后反弹碰到墙上,如果她跳起击球时的高度是1.8米,排球落地点离墙的距离是6米,假设球一直沿直线运动,球碰到墙面的地方离地面的高度是 米。
三、解答题: 19 (8分)
-1
33-⎛⎫
⎪ ⎪
⎝⎭
+)13(3--02008-23-
20(10分)已知二次函数2
y x bx c =++中,函数y 与自变量x 的部分对应值如下表:
x
… 1- 0 1 2 3 4 … y
… 10 5 2 1 2 5
…
(1)求该二次函数的关系式;
(2)当x 为何值时,y 有最小值,最小值是多少?
(3)若1()A m y ,,2(1)B m y +,两点都在该函数的图象上,试比较1y 与2y 的大小.
22、(本题满分10分)
P
A
O
第14题图 第15题图 第16题图
如图,P A 、PB 是⊙O 的切线,A 、B 为切点,∠OAB =30°. (1)求∠APB 的度数;
(2)当OA =3时,求AP 的长.
23、(本题满分12分)如图12,P 是边长为1的正方形ABCD 对角线AC 上一动点(P 与A 、
C 不重合),点E 在射线BC 上,且PE =PB . (1)求证:① PE =P
D ; ② P
E ⊥PD ; (2)设AP =x , △PBE 的面积为y .
① 求出y 关于x 的函数关系式,并写出x 的取值范围; ② 当x 取何值时,y 取得最大值,并求出这个最大值.
24、(本题12分) 在同一平面直角坐标系中有6个点: (11)(31)(31)(22)A B C D -----,,,,,,,,(23)E --,,
(04)F -,.
(1)画出ABC △的外接圆⊙P ,并指出点D 与⊙P 的位 (2)置关系;
(2)若将直线EF 沿y 轴向上平移,当它经过点D 时, (3)设此时的直线为1l .
①判断直线1l 与⊙P 的位置关系,并说明理由;
②再将直线1l 绕点D 按顺时针方向旋转,当它经过点C 时,设此时的直线为2l .求直线2l 与的劣弧..CD 围成的图形的面积(结果保留π).
A
B
C
P
D
E 图12
x
y
654321------ 1
2
3456
------ 123 321
O。