高一数学必修1第3章章末检测教师版
- 格式:doc
- 大小:77.50 KB
- 文档页数:3
第3章 函数概念与性质 章末测试(基础)一.单选题(每题只有一个选项为正确答案,每题5分,8题共40分) 1.已知1232x f x ⎛⎫-=+ ⎪⎝⎭,则(6)f 的值为( )A .15B .7C .31D .172.下列四组函数中,()f x 与()g x 表示同一函数是( ) A .()1f x x =-,()211x g x x -=+B .()1f x x =+,()1,11,1x x g x x x +≥-⎧=⎨--<-⎩C .()1f x =,()()01g x x =+D .()f x =()2g x =3.函数()12f x x -的定义域为( ) A .[)0,2B .()2,+∞C .()1,22,2⎡⎫⋃+∞⎪⎢⎣⎭D .()(),22,-∞+∞U4.已知幂函数()f x 的图象过点(2,2),则(8)f 的值为( )A B C .D .5.下列函数中,在区间(0,1) ) A .2y x = B .3y x =- C .1y x=D .24y x =-+6.设偶函数()f x 的定义域为R ,当[)0,x ∈+∞时,()f x 是增函数,则()2f -,()f π,()3f -的大小关系是( )A .()()()32f f f π>->-B .()()()23f f f π>->-C .()()()32f f f π<-<-D .()()()23f f f π<-<-7.函数211()()1x ax f x a R x ++=∈+,若对于任意的*N x ∈,()3f x ≥恒成立,则a 的取值范围是( )A .8,3⎡⎫-+∞⎪⎢⎣⎭B .2,3⎡⎫-+∞⎪⎢⎣⎭C .1,3⎡⎫-+∞⎪⎢⎣⎭D .[)1,-+∞8.若定义在R 的奇函数()f x 在(),0-∞单调递减,且()20f =,则满足()()210x f x ++≥的x 的取值范围是( )A .[][)3,21,--⋃+∞B .[][]5,32,1--⋃--C .[][)3,21,--⋃-+∞D .[][]3,21,1--⋃-二.多选题(每题至少两个选项为正确答案,少选且正确得2分,每题5分,4题共20分) 9.已知2(21)4f x x -=,则下列结论正确的是 A .(3)9f =B .(3)4f -=C .2()f x x =D .2()(1)f x x =+10.(新教材人教版必修第一册))设f (x )为偶函数,且在区间(-∞,0)内单调递增,f (-2)=0,则下列区间中使得xf (x )<0的有( ) A .(-1,1) B .(0,2) C .(-2,0)D .(2,4)11.已知函数()f x 是偶函数,()1f x +是奇函数,当[]2,3x ∈时,()12f x x =--,则下列选项正确的是( ) A .()f x 在()3,2--上为减函数 B .()f x 的最大值是1 C .()f x 的图象关于直线2x =-对称D .()f x 在()4,3--上()0f x <12.已知()f x 为奇函数,且()1f x +为偶函数,若()10f =,则( ) A .()30f = B .()()35f f = C .(3)(1)f x f x +=-D .(2)(1)1f x f x +++=三.填空题(每题5分,4题共20分)13.已知函数f (x )={3x −1,x ≥12−x +3,x <1,则f (−2)=________.14.函数2()21xxf x ax =+-是偶函数,则实数a =__________. 15. 11,1,()3,1x a x x f x a x ⎧⎛⎫-+<⎪ ⎪=⎝⎭⎨⎪≥⎩满足:对任意12x x ≠都有()()12120f x f x x x -<-成立,a 的取值范围________. 16.(新教材人教版必修第一册))函数y =的定义域为R ,则a ∈ _______.四.解答题(第17题10分,其余每题12分,7题共70分)17.已知()f x 是定义在R 上的奇函数,当时0x <时,2()21f x x x =+- (1)求()f x 解析式(2)画出函数图像,并写出单调区间(无需证明)18.已知f (x )=12x +(x ∈R ,x ≠-2),g (x )=x 2+1(x ∈R ). (1)求f (2),g (2)的值; (2)求f (g (3))的值;(3)作出f (x ),g (x )的图象,并求函数的值域.19.已知函数()21ax bf x x +=+是定义在()1,1-上的奇函数,且1225f ⎛⎫= ⎪⎝⎭. (1)确定函数()f x 的解析式;(2)用定义证明()f x 在上()1,1-是增函数: (3)解关于x 的不等式()()10f x f x -+<.20.函数2()4ax bf x x -=-是定义在(2,2)-上的奇函数,且1(1)3f =.(1)确定()f x 的解析式;(2)判断()f x 在(2,2)-上的单调性,并证明你的结论; (3)解关于t 的不等式(1)()0f t f t -+<.21.已知函数()f x 的定义域为()0,∞+,且对任意的正实数x 、y 都有()()()f xy f x f y =+,且当1x >时,()0f x >,()41f =.(1)求证:()10f =; (2)求116f ⎛⎫ ⎪⎝⎭;(3)解不等式()()31f x f x +-≤.22.已知()f x 是定义在[2,2]-上的奇函数,且当[)2,0x ∈-时,()2f x x x =-.(1)求函数()f x 在[2,2]-上的解析式.(2)若()229m x m f a --≥对所有[2,2]x ∈-,[1,1]a ∈-恒成立,求实数m 的取值范围.第3章 函数概念与性质 章末测试(基础)五.单选题(每题只有一个选项为正确答案,每题5分,8题共40分) 1.已知1232x f x ⎛⎫-=+ ⎪⎝⎭,则(6)f 的值为( )A .15B .7C .31D .17【答案】C 【解析】令12xt =-,则22x t =+,所以()()222347f t t t =++=+即()47f x x =+, 所以()646731f =⨯+=.故选:C .2.下列四组函数中,()f x 与()g x 表示同一函数是( ) A .()1f x x =-,()211x g x x -=+B .()1f x x =+,()1,11,1x x g x x x +≥-⎧=⎨--<-⎩C .()1f x =,()()01g x x =+D .()f x =()2g x =【答案】B【解析】两个函数如果是同一函数,则两个函数的定义域和对应法则应相同,A 选项中,()f x 定义域为R ,()g x 的定义域为(,1)(1,)-∞-⋃-+∞,所以二者不是同一函数,所以A 错误;B 选项中,1,1()11,1x x f x x x x +≥-⎧=+=⎨--<-⎩,与()g x 定义域相同,都是R ,对应法则也相同,所以二者是同一函数,所以B 正确;C 选项中,()f x 定义域为R ,()g x 的定义域为(,1)(1,)-∞-⋃-+∞,所以二者不是同一函数, 所以C 错误;D 选项中,()f x 定义域为R ,()g x 的定义域为[0,)+∞,所以二者不是同一函数,所以D 错误.故选:B3.函数()12f x x -的定义域为( ) A .[)0,2B .()2,+∞C .()1,22,2⎡⎫⋃+∞⎪⎢⎣⎭D .()(),22,-∞+∞U【答案】C【解析】由21020x x -≥⎧⎨-≠⎩,解得x ≥12且x ≠2.∴函数()12f x x -的定义域为()1,22,2⎡⎫⋃+∞⎪⎢⎣⎭. 故选:C .4.已知幂函数()f x 的图象过点),则(8)f 的值为( )A B C .D .【答案】A【解析】令()af x x =,由图象过)∴2a=,可得12a =-故12()f x x -=∴12(8)8f -==故选:A5.下列函数中,在区间(0,1)上是增函数的是( ) A .2y x = B .3y x =- C .1y x= D .24y x =-+【答案】A【解析】对于A ,2y x =是过原点,经过一、三象限的一条直线,在R 上为增函数,所以A 正确,对于B ,3y x =-是一次函数,且10-<,所以R 上为减函数,所以B 错误,对于C ,1y x=是反比例函数,图像在一、三象限的双曲线,在(0,1)上是减函数,所以C 错误,对于D ,24y x =-+是二次函数,对称轴为y 轴,开口向下的抛物线,在(0,1)上是减函数,所以D 错误, 故选:A6.设偶函数()f x 的定义域为R ,当[)0,x ∈+∞时,()f x 是增函数,则()2f -,()f π,()3f -的大小关系是( )A .()()()32f f f π>->-B .()()()23f f f π>->-C .()()()32f f f π<-<-D .()()()23f f f π<-<- 【答案】A【解析】因为函数()f x 是偶函数, 所以()(3),(2)(2)3,f f f f =-=- 因为[)0,x ∈+∞时,()f x 是增函数, 所以()()()32f f f π>>, 所以()()()32f f f π>->-. 故选:A7.函数211()()1x ax f x a R x ++=∈+,若对于任意的*N x ∈,()3f x ≥恒成立,则a 的取值范围是( )A .8,3⎡⎫-+∞⎪⎢⎣⎭B .2,3⎡⎫-+∞⎪⎢⎣⎭C .1,3⎡⎫-+∞⎪⎢⎣⎭D .[)1,-+∞【答案】A【解析】对任意*x ∈N ,()3f x ≥恒成立,即21131x ax x ++≥+恒成立,即知83a x x ⎛⎫≥-++ ⎪⎝⎭.设8()g x x x =+,*x ∈N ,则(2)6g =,17(3)3g =.∵(2)(3)g g >,∴min 17()3g x =,∴8833x x ⎛⎫-++≤- ⎪⎝⎭,∴83a ≥-,故a 的取值范围是8,3⎡⎫-+∞⎪⎢⎣⎭.故选:A.8.若定义在R 的奇函数()f x 在(),0-∞单调递减,且()20f =,则满足()()210x f x ++≥的x 的取值范围是( )A .[][)3,21,--⋃+∞B .[][]5,32,1--⋃--C .[][)3,21,--⋃-+∞D .[][]3,21,1--⋃-【答案】D【解析】根据题意,画出函数示意图:当2x <-时,210x -≤+≤,即32x -≤<-; 当2x >-时,012x ≤+≤,即11x -≤≤; 当2x =-时,显然成立, 综上[][]3,21,1x ∈--⋃-. 故选:D六.多选题(每题至少两个选项为正确答案,少选且正确得2分,每题5分,4题共20分) 9.已知2(21)4f x x -=,则下列结论正确的是 A .(3)9f = B .(3)4f -= C .2()f x x = D .2()(1)f x x =+【答案】BD【解析】令1212t t x x +=-⇒=,∴221()4()(1)2t f t t +==+. ∴2(3)16,(3)4,()(1)f f f x x =-==+. 故选:BD.10.(新教材人教版必修第一册))设f (x )为偶函数,且在区间(-∞,0)内单调递增,f (-2)=0,则下列区间中使得xf (x )<0的有( ) A .(-1,1) B .(0,2) C .(-2,0) D .(2,4)【答案】CD【解析】根据题意,偶函数f (x )在(-∞,0)上单调递增,又f (-2)=0,则函数f (x )在(0,+∞)上单调递减,且f (-2)=f (2)=0,函数f (x )的草图如图 又由xf (x )<0⇒0()0x f x >⎧⎨<⎩或0()0x f x <⎧⎨>⎩由图可得-2<x <0或x >2即不等式的解集为(-2,0)∪(2,+∞). 故选:CD11.已知函数()f x 是偶函数,()1f x +是奇函数,当[]2,3x ∈时,()12f x x =--,则下列选项正确的是( ) A .()f x 在()3,2--上为减函数 B .()f x 的最大值是1 C .()f x 的图象关于直线2x =-对称 D .()f x 在()4,3--上()0f x <【答案】BCD【解析】因为当[]2,3x ∈时,()[]121230,1f x x x x =--=-+=-∈,则函数()f x 在[]2,3x ∈上递减, 又函数()f x 是偶函数,所以()f x 在()3,2--上为增函数;故A 错; 因为函数()f x 是偶函数,()1f x +是奇函数,所以()()f x f x -=,()()11f x f x -+=-+,则()()11f x f x -=-+,所以()()2=-+f x f x ,则()()()24f x f x f x +=-+=-,即()()4f x f x +=, 所以()f x 以4为周期;则()()()222f x f x f x +=-=-,所以()f x 关于直线2x =对称, 因此当[]1,2x ∈时,()[]0,1f x ∈;当[]0,1x ∈时,[]22,3x +∈,则()212211f x x x x +=-+-=-=-,又()()2=-+f x f x ,所以()[]11,0f x x =-∈-;因为偶函数关于y 轴对称,所以当[]1,0x ∈-时,()[]1,0f x ∈-; 综上,当[]13,x ∈-时,()[]1,1f x ∈-;又()f x 是以4为周期的函数,所以x R ∀∈,()[]1,1f x ∈-,则()max 1f x =,故B 正确; 因为()()()222f x f x f x +=-=-+,函数()f x 为偶函数,所以()()22f x f x +=--,因此()()22f x f x -+=--,所以()f x 的图象关于直线2x =-对称;即C 正确; 因为()0,1x ∈时,()10f x x =-<显然恒成立,函数()f x 是以4为周期的函数, 所以()f x 在()4,3--上也满足()0f x <恒成立;故D 正确; 故选:BCD.12.已知()f x 为奇函数,且()1f x +为偶函数,若()10f =,则( ) A .()30f = B .()()35f f = C .(3)(1)f x f x +=- D .(2)(1)1f x f x +++=【答案】ABC【解析】因为函数()1f x +为偶函数,所以()()11f x f x +=-, 又因为f (x )是R 上的奇函数,所以()()()111f x f x f x +=-=--,所以()()()()()242f x f x f x f x f x +=-+=-+=,,所以f (x )的周期为4, 又()()()()()()103110510,f f f f f f ==-=-===Q ,,故A ,B 正确;()()()3341f x f x f x +=+-=-,∴C 正确;()()()2242f f f =-=-,同时根据奇函数的性质得()()()()22,2,2f f f f =--∴-既相等又互为相反数,故f (2)=0,所以()()2101f f +=≠,即(2)(1)1f x f x +++=对于0x =不成立,故D 不正确.故选:ABC.七.填空题(每题5分,4题共20分)13.已知函数f (x )={3x −1,x ≥12−x +3,x <1,则f (−2)=________.【答案】7【解析】因为f (x )={3x −1,x ≥12−x +3,x <1,所以f (−2)=22+3=7, 故答案为:7 14.函数2()21x xf x ax =+-是偶函数,则实数a =__________. 【答案】1【解析】因为2()(0)21xxf x ax x =+≠-,且()f x 是偶函数,则()()f x f x -=, 2222222,,20212121212121xx x x x x x x x ax ax a a a --⨯--=+--=++-=-----,即22a =,所以实数1a =. 故答案为: 1.15.11,1,()3,1x a x x f x a x ⎧⎛⎫-+<⎪ ⎪=⎝⎭⎨⎪≥⎩满足:对任意12x x ≠都有()()12120f x f x x x -<-成立,a 的取值范围________. 【答案】12,33⎛⎤⎥⎝⎦【解析】因为对任意12x x ≠都有()()12120f x f x x x -<-成立,不妨设12x x <,则有()()12f x f x >,所以()y f x =为减函数,所以需满足:1103011113a a a a ⎧-<⎪⎪⎪<<⎨⎪⎛⎫⎪-⨯+≥ ⎪⎪⎝⎭⎩,解得:1233a <≤.则a 的取值范围12,33⎛⎤⎥⎝⎦.故答案为:12,33⎛⎤⎥⎝⎦16.(新教材人教版必修第一册))函数y =的定义域为R ,则a ∈ _______. 【答案】{}|04a a ≤≤【解析】因为任意x ∈R,根式210ax ax ++≥的解集为R , 即不等式210ax ax ++≥在R 上恒成立. ①当0a =时,10≥恒成立,满足题意; ②当0a ≠时,2040a a a >⎧⎨∆=-≤⎩,解得04a <≤, 综上, {}04a a a ∈≤≤ 故答案为:{}|04a a ≤≤八.解答题(第17题1012分,7题共70分)17.已知()f x 是定义在R 上的奇函数,当时0x <时,2()21f x x x =+- (1)求()f x 解析式(2)画出函数图像,并写出单调区间(无需证明)【答案】(1)2221,0()0,021,0x x x f x x x x x ⎧+-<⎪==⎨⎪-++>⎩;(2)图见详解,单调区间为:单调递增区间为:(1,0)-,(0,1),单调递减区间为:(,1)-∞,(1,)+∞. 【解析】(1)当0x =时,(0)0f =,当0x >时,0x -<,2()()21f x f x x x =--=-++,所以2221,0()0,021,0x x x f x x x x x ⎧+-<⎪==⎨⎪-++>⎩,(2)()f x 的图像为:单调递增区间为:(1,0)-,(0,1), 单调递减区间为:(,1)-∞,(1,)+∞. 18.已知f (x )=12x +(x ∈R ,x ≠-2),g (x )=x 2+1(x ∈R ). (1)求f (2),g (2)的值; (2)求f (g (3))的值;(3)作出f (x ),g (x )的图象,并求函数的值域. 【答案】(1)14,5;(2)112;(3)图见解析,f (x )的值域为(-∞,0)∪(0,+∞),g (x )的值域为[1,+∞). 【解析】(1)f (2)=122+=14,g (2)=22+1=5; (2)g (3)=32+1=10,f (g (3))=f (10)=1102+=112; (3)函数f (x )的图象如图:函数g (x )的图象如图:观察图象得f (x )的值域为(-∞,0)∪(0,+∞),g (x )的值域为[1,+∞). 19.已知函数()21ax bf x x +=+是定义在()1,1-上的奇函数,且1225f ⎛⎫= ⎪⎝⎭. (1)确定函数()f x 的解析式;(2)用定义证明()f x 在上()1,1-是增函数: (3)解关于x 的不等式()()10f x f x -+<. 【答案】(1)()21x f x x =+;(2)证明见详解;(3)102x x ⎧⎫<<⎨⎬⎩⎭【解析】(1)∵函数()21ax bf x x +=+是定义在()1,1-上的奇函数 ∴()00f =,即01b=,∴0b = 又∵1225f ⎛⎫= ⎪⎝⎭,即21225112a b+=⎛⎫+ ⎪⎝⎭,∴1a = ∴函数()f x 的解析式为()21xf x x =+ (2)由(1)知()21xf x x =+ 令1211x x -<<<,则()()1212221211x x f x f x x x -=-++()()()()22122122121111x x x x x x +-+=++()()()()12122212111x x x x x x --=++ ∵1211x x -<<< ∴12120,1x x x x -<< ∴1210x x ->而221210,10x x +>+>∴()()120f x f x -<,即()()12f x f x < ∴()f x 在上()1,1-是增函数 (3)∵()f x 在上()1,1-是奇函数∴()()10f x f x -+<等价于()()1f x f x -<-,即()()1f x f x -<- 又由(2)知()f x 在上()1,1-是增函数∴111x x -<-<-<,即102x <<∴不等式()()10f x f x -+<的解集为102x x ⎧⎫<<⎨⎬⎩⎭. 20.函数2()4ax bf x x -=-是定义在(2,2)-上的奇函数,且1(1)3f =. (1)确定()f x 的解析式;(2)判断()f x 在(2,2)-上的单调性,并证明你的结论; (3)解关于t 的不等式(1)()0f t f t -+<. 【答案】(1)2()4xf x x =-;(2)增函数,证明见解析;(3)1(1,)2-. 【解析】(1)根据题意,函数2()4ax bf x x -=-是定义在(2,2)-上的奇函数, 则(0)04bf -==,解可得0b =; 又由f (1)13=,则有f (1)133a ==,解可得1a =; 则2()4xf x x =-; (2)由(1)的结论,2()4xf x x =-,在区间(2,2)-上为增函数; 证明:设1222x x -<<<,则1212122212(4)()()()(4)(4)x x x x f x f x x x +--=--,又由1222x x -<<<,则12(4)0x x +>,12()0x x -<,21(4)0x ->,22(4)0x ->, 则12())0(f x f x -<,则函数()f x 在(2,2)-上为增函数;(3)根据题意,212(1)()0(1)()(1)()221t f t f t f t f t f t f t t t t -<-<⎧⎪-+<⇒-<-⇒-<-⇒-<<⎨⎪-<-⎩,解可得:112t -<<,即不等式的解集为1(1,)2-.21.已知函数()f x 的定义域为()0,∞+,且对任意的正实数x 、y 都有()()()f xy f x f y =+,且当1x >时,()0f x >,()41f =.(1)求证:()10f =; (2)求116f ⎛⎫⎪⎝⎭;(3)解不等式()()31f x f x +-≤.【答案】(1)证明见解析;(2)1216f ⎛⎫=- ⎪⎝⎭;(3){|34}x x <≤.【解析】(1)令4x =,1y =,则()()()()44141f f f f =⨯=+, ∴()10f =;(2)∵()()()()1644442f f f f =⨯=+=,()()111161601616f f f f ⎛⎫⎛⎫=⨯=+= ⎪ ⎪⎝⎭⎝⎭,∴1216f ⎛⎫=- ⎪⎝⎭;(3)设1x 、20x >且12x x >,于是120x f x ⎛⎫> ⎪⎝⎭,∴()()()11122222x x f x f x f f x f x x x ⎛⎫⎛⎫=⋅=+> ⎪⎪⎝⎭⎝⎭, ∴()f x 在()0,∞+上为增函数,又∵()()()()3314f x f x f x x f +-=-≤=⎡⎤⎣⎦, ∴()03034x x x x ⎧>⎪->⎨⎪-≤⎩,解得34x <≤, ∴原不等式的解集为{|34}x x <≤.22.已知()f x 是定义在[2,2]-上的奇函数,且当[)2,0x ∈-时,()2f x x x =-.(1)求函数()f x 在[2,2]-上的解析式.(2)若()229m x m f a --≥对所有[2,2]x ∈-,[1,1]a ∈-恒成立,求实数m 的取值范围.【答案】(1)()[)()()(]()222,0,00,0,2.x x x f x x x x x ⎧-∈-⎪⎪==⎨⎪--∈⎪⎩;(2)[]1,1-.【解析】(1)函数()f x 为定义域上的奇函数,所以()00f =,当(]0,2x ∈时,()()()()22f x f x x x x x ⎡⎤=--=----=--⎣⎦, 所以()[)()()(]()222,0,00,0,2.x x x f x x x x x ⎧-∈-⎪⎪==⎨⎪--∈⎪⎩(2)根据题意得,函数()f x 为减函数,所以()f x 的最小值为()26f =-,要使()229m x m f a --≥对所有[]2,2x ∈-,[]1,1a ∈-恒成立,即2629m am -≥--对所有[]1,1a ∈-恒成立,则()()221230,1230,g m m g m m ⎧-=+-≤⎪⎨=--≤⎪⎩即31,13,m m -≤≤⎧⎨-≤≤⎩ ∴11m -≤≤,∴实数m 的取值范围是[]1,1-.。
三章函数的应用章末复习课网络构建核心归纳1.函数的零点与方程的根的关系函数f(x)的零点就是方程f(x)=0的解,函数f(x)的零点的个数与方程f(x)=0的解的个数相等,也可以说方程f(x)=0的解就是函数f(x)的图象与x轴交点的横坐标,即函数f(x)的函数值等于0时自变量x的取值.因此方程的解的问题可以转化为函数问题来解决.讨论方程的解所在的大致区间可以转化为讨论函数的零点所在的大致区间,讨论方程的解的个数可以转化为讨论函数的零点的个数.2.函数零点存在性定理(1)该定理的条件是:①函数f(x)在区间[a,b]上的图象是连续不断的;②f(a)·f(b)<0,即f(a)和f(b)的符号相反.这两个条件缺一不可.(2)该定理的结论是“至少存在一个零点”,仅仅能确定函数零点是存在的,但是不能确定函数零点的个数.3.函数应用(1)要解决函数应用问题,首先要增强应用函数的意识.一般来说,解决函数应用问题可分三步:第一步,理解题意,弄清关系;第二步,抓住关键,建立模型;第三步,数学解决、检验模型.其中第二步尤为关键.(2)在解题中要充分运用数形结合、转化与化归、函数与方程等数学思想及策略,寻求解题途径.(3)根据已知条件建立函数解析式是函数应用的一个重要方面.一般分为两类:一类是借助于生活经验、函数知识等建立函数模型,以二次函数模型为主,一般是求二次函数的最值.另一类是根据几何、物理概念建立函数模型.要点一 函数的零点与方程的根 函数的零点与方程的根的关系及应用1.函数的零点与方程的根的关系:方程f (x )=0有实数根⇔函数y =f (x )的图象与x 轴有交点⇔函数y =f (x )有零点.2.确定函数零点的个数有两个基本方法:利用图象研究与x 轴的交点个数或转化成两个函数图象的交点个数进行判断.【例1】 (1)函数f (x )=⎩⎪⎨⎪⎧x 2-2,x ≤0,2x -6+ln x ,x >0的零点个数是________;(2)若函数f (x )=|2x-2|-b 有两个零点,则实数b 的取值范围是________.解析 (1)①当x ≤0时,由f (x )=0,即x 2-2=0,解得x =2或x =- 2.因为x ≤0,所以x =- 2.②法一 (函数单调性法)当x >0时,f (x )=2x -6+ln x .而f (1)=2×1-6+ln 1=-4<0,f (3)=2×3-6+ln 3=ln 3>0,所以f (1)·f (3)<0,又函数f (x )的图象是连续的,故由零点存在性定理,可得函数f (x )在(1,3)内至少有一个零点.而函数y =2x -6在(0,+∞)上单调递增,y =ln x 在(0,+∞)上单调递增,所以函数f (x )=2x -6+ln x 在(0,+∞)上单调递增.故函数f (x )=2x -6+ln x 在(0,+∞)内有且只有1个零点.综上,函数f (x )共有2个零点.法二 (数形结合法)当x >0时,由f (x )=0,得2x -6+ln x =0, 即ln x =6-2x .如图,分别作出函数y =ln x 和y =6-2x 的图象.显然,由图可知,两函数图象只有一个交点,且在y 轴的右侧,故当x >0时,f (x )=0只有一个解.综上,函数f (x )共有2个零点.(2)由f(x)=0得|2x-2|=b,在同一坐标系中作出函数y=|2x-2|和y=b的图象,如图所示,由图可知,若f(x)有两个零点,则b的取值范围是(0,2).答案(1)2 (2)(0,2)【训练1】已知关于x的方程a·4x+b·2x+c=0(a≠0),常数a,b同号,b,c异号,则下列结论中正确的是( )A.此方程无实根B.此方程有两个互异的负实根C.此方程有两个异号实根D.此方程仅有一个实根解析由常数a,b同号,b,c异号,可得a,c异号,令2x=t,则方程变为at2+bt+c=0,t>0,由于此方程的判别式Δ=b2-4ac>0,故此方程有2个不等实数根,且两根之积为c<0,故关于t的方程只有一个实数根,故关于x的方程只有一个实数根.a答案 D要点二二分法求方程的近似解(或函数的零点)1.二分法求方程的近似解的步骤(1)构造函数,转化为求函数的零点.(2)明确精确度和函数的零点所在的区间(最好区间左右端点相差1).(3)利用二分法求函数的零点.(4)归纳结论.2.使用二分法的注意事项(1)二分法的实质是通过“取中点”,不断缩小零点所在区间的范围,所以要选好计算的初始区间,保证所选区间既符合条件,又使区间长度尽量小.(2)计算时注意依据给定的精确度,及时检验计算所得的区间是否满足精确度的要求.(3)二分法在具体使用时有一定的局限性,首先二分法只能一次求得一个零点,其次f(x)在(a,b)内有不变号零点时,不能用二分法求得.【例2】设函数f(x)=x3+3x-5,其图象在(-∞,+∞)上是连续不断的.先求值:f(0)=________,f(1)=________,f(2)=________,f(3)=________.所以f(x)在区间________内存在一个零点x0,填下表,结论x0解f(0)=-5,f(1)=-1,f(2)=9,f(3)=31,所以初始区间为(1,2).因为所以x0≈1.125(不唯一).【训练2】若函数f(x)=x3+x2-2x-2的一个正数零点附近的函数值用二分法逐次计算,参考数据如下:f(1)=-2,f(1.5)=0.625;f(1.25)=-0.984,f(1.375)=-0.260;f(1.438)=0.165.那么方程x3+x2-2x-2=0的一个近似根可以为(精确度为0.1)( )A.1.2B.1.35C.1.43D.1.5解析∵f(1.438)=0.165>0,f(1.375)=-0.260<0,∴函数f(x)在(1.375,1.438)内存在零点,又1.438-1.375<0.1,结合选项知1.43为方程f(x)=0的一个近似根.答案 C要点三函数的实际应用1.建立恰当的函数模型解决实际问题的步骤(1)对实际问题进行抽象概括,确定变量之间的主被动关系,并用x,y分别表示.(2)建立函数模型,将变量y表示为x的函数,此时要注意函数的定义域.(3)求解函数模型,并还原为实际问题的解.2.建模的三个原则(1)简化原则:建立模型,要对原型进行一定的简化,抓主要因素、主变量,尽量建立较低阶、较简便的模型.(2)可推演原则:建立的模型一定要有意义,既能对其进行理论分析,又能计算和推理,且能推演出正确结果.(3)反映性原则:建立的模型必须真实地反映原型的特征和关系,即应与原型具有“相似性”,所得模型的解应具有说明现实问题的功能,能回到具体研究对象中去解决问题. 【例3】 某产品生产厂家根据以往的生产销售经验得到下面有关生产销售的统计规律:每生产产品x (百台),其总成本为G (x )(万元),其中固定成本为2.8万元,并且每生产1百台的生产成本为1万元(总成本=固定成本+生产成本).销售收入R (x )(万元)满足R (x )=⎩⎪⎨⎪⎧-0.4x 2+4.2x (0≤x ≤5),11(x >5). 假定该产品产销平衡(即生产的产品都能卖掉),根据上述统计规律,请完成下列问题: (1)写出利润函数y =f (x )的解析式(利润=销售收入-总成本); (2)要使工厂有盈利,求产量x 的取值范围; (3)工厂生产多少台产品时,可使盈利最多? 解 (1)由题意得G (x )=2.8+x . ∴f (x )=R (x )-G (x )=⎩⎪⎨⎪⎧-0.4x 2+3.2x -2.8(0≤x ≤5),8.2-x (x >5). (2)①当0≤x ≤5时,由-0.4x 2+3.2x -2.8>0得x 2-8x +7<0,解得1<x <7,∴1<x ≤5. ②当x >5时,由8.2-x >0,得x <8.2, 所以5<x <8.2.综上,当1<x <8.2时,有y >0,即当产量x 大于100台,小于820台时,能使工厂有盈利. (3)当0≤x ≤5时,函数f (x )=-0.4(x -4)2+3.6, 当x =4时,f (x )有最大值为3.6; 当x >5时,∵函数f (x )单调递减, ∴f (x )<f (5)=3.2(万元).综上,当工厂生产4百台产品时,可使盈利最多,为3.6万元.【训练3】 《中华人民共和国个人所得税法》规定,个人所得税起征点为3 500元(即3 500元以下不必纳税,超过3 500元的部分为当月应纳税所得额),应缴纳的税款按下表分段累计计算:(1) (2)刘丽十二月份缴纳个人所得税款300元,那么她当月工资总额是多少?解 (1)依题意可得: ①当0<x ≤3 500时,y =0. ②当3 500<x ≤5 000时,y =(x -3 500)·3%=0.03x -105.③当5 000<x <8 000时,y =45+(x -5 000)·10%=0.1x -455.综上可得y =⎩⎪⎨⎪⎧0,0<x ≤3 500,0.03x -105,3 500<x ≤5 000,0.1x -455,5 000<x <8 000.(2)因为需交税300元, 故有5 000<x <8 000,所以300=0.1x -455,所以x =7 550. 答:刘丽十二月份工资总额为7 550元.基础过关1.函数f (x )=2x +ln 1x -1的零点所在的大致区间是( )A.(1,2)B.(2,3)C.(3,4)D.(1,2)与(2,3)解析 易知f (x )在(1,+∞)上单调递减,f (2)=1>0,f (3)=23+ln 12=23-ln 2<0,所以f (x )在(2,3)内只有一个零点.答案 B2.实数a ,b ,c 是图象连续不断的函数y =f (x )定义域中的三个数,且满足a <b <c ,f (a )·f (b )<0,f (c )·f (b )<0,则函数y =f (x )在区间(a ,c )上的零点个数为( )A.2B.奇数C.偶数D.至少是2解析 由零点存在性定理,f (a )f (b )<0,f (c )f (b )<0,则y =f (x )在区间(a ,b )上至少有一个零点,在(b ,c )上至少有一个零点,而f (b )≠0,所以y =f (x )在区间(a ,c )上的零点个数为至少2个.选D. 答案 D3.已知函数f (x )=⎩⎪⎨⎪⎧e x+a ,x ≤0,2x -1,x >0(a ∈R ),若函数f (x )在R 上有两个零点,则a 的取值范围是( ) A.(-∞,-1)B.(-∞,0)C.(-1,0)D.[-1,0)解析 易知当x >0时,2x -1=0有一个根,所以需使函数y =e x+a (x ≤0)有一个零点,即方程e x +a =0(x ≤0)有一个根,即a =-e x .由x ≤0,得-e x∈[-1,0),故a ∈[-1,0). 答案 D4.用二分法求方程x 2=2的正实根的近似解(精确度0.001)时,如果选取初始区间是[1.4,1.5],则要达到精确度要求至少需要计算________次.解析 设至少需要计算n 次,则n 满足0.12n <0.001,即2n >100,由于27=128,故要达到精确度要求至少需要计算7次. 答案 75.方程|x 2-2x |=a 2+1(a >0)的解的个数是________.解析 在同一个坐标系中作出函数y =|x 2-2x |和y =a 2+1的图象,如图所示,易知a 2+1>1,由图知方程有2个解.答案 26.方程x 2-1x=0在(-∞,0)内是否存在实数解?并说明理由.解 不存在.理由如下:因为当x <0时,-1x >0,所以x 2-1x>0恒成立,故不存在x ∈(-∞,0),使x 2-1x=0.7.某地的出租车价格规定:起步价为a 元,可行3公里,3公里以上按每公里b 元计算,可再行7公里;超过10公里按每公里c 元计算(这里a ,b ,c 规定为正的常数,且c >b ),假设不考虑堵车和红绿灯等所引起的费用,也不考虑实际收取费用去掉不足一元的零头等实际情况,即每一次乘车的车费由行车里程唯一确定.(1)若取a =14,b =2.4,c =3.6,小明乘出租车从学校到家,共8公里,请问他应付出租车费多少元?(2)求车费y (元)与行车里程x (公里)之间的函数解析式y =f (x ).解 (1)由题意可知,起步价(3公里以内)是14元,则这8公里内的前3公里的收费是14元,超过3公里而10公里以内每公里按2.4元计价,则8-3=5(公里)的收费是5×2.4=12(元),总共收费14+12=26(元),故他应付出租车费26元.(2)3公里以内,即起步价是a 元,即0<x ≤3时,y =a (元);大于3公里而不超过10公里时,即3<x ≤10时,收费y =a +(x -3)b =bx +a -3b (元);大于10公里时,即x >10时,收费y =a +7×b +(x -10)c =cx +a +7b -10c (元).所以y =⎩⎪⎨⎪⎧a ,0<x ≤3,bx +a -3b ,3<x ≤10,cx +a +7b -10c ,x >10.能力提升8.已知函数f (x )的图象如图所示,则它的一个可能的解析式为( )A.y =2xB.y =4-4x +1C.y =log 3(x +1)D.y =3x解析 由于图象过点(1,2),可排除C ,D ;由图象与直线y =4无限接近,但到达不了,即y <4,而y =2x 可无限大,排除A ,选B.答案 B9.若函数f (x )是定义在R 上的偶函数,在区间(-∞,0]上是减函数,且一个零点是2,则使得f (x )<0的x 的取值范围是( ) A.(-∞,-2] B.(-∞,-2]∪(2,+∞) C.(2,+∞)D.(-2,2)解析 ∵函数f (x )是定义在R 上的偶函数,在(-∞,0]上是减函数,∴函数f (x )在[0,+∞)上为增函数,且f (-2)=f (2)=0,作出函数f (x )的示意图,如图,则不等式f (x )<0的解为-2<x <2,故选D.答案 D10.已知函数f (x )=x 2+ax +a -1的两个零点一个大于2,一个小于2,则实数a 的取值范围是________.解析 ∵f (x )的两个零点一个大于2,一个小于2, ∴f (2)<0,∴22+2a +a -1<0,解得a <-1. 答案 (-∞,-1)11.在如图所示的锐角三角形空地中,欲建一个面积最大的内接矩形花园(阴影部分),则其边长x 为________m.解析 设内接矩形另一边长为y ,则由相似三角形性质可得x 40=40-y40,解得y =40-x ,所以面积S =x (40-x )=-x 2+40x =-(x -20)2+400(0<x <40),当x =20时,S max =400. 答案 2012.某租赁公司拥有汽车100辆,当每辆车的月租金为3 000元时,可全部租出.当每辆车的月租金每增加50元时,未租出的车将会增加一辆,租出的车每辆每月需要维护费150元,未租出的车辆每月需要维护费50元.(1)当每辆车的月租金定为3 600元时,能租出多少辆车?(2)当每辆车的月租金定为多少元时,租赁公司的月收益最大?最大月收益是多少? 解 (1)租金增加了600元,所以未租出的车有12辆,一共租出了88辆.(2)设每辆车的月租金为x 元(x ≥3 000),租赁公司的月收益为y 元,则y =x ⎝ ⎛⎭⎪⎫100-x -3 00050-x -3 00050×50-⎝⎛⎭⎪⎫100-x -3 00050×150=-x 250+162x -21 000=-150(x -4 050)2+307 050.当x =4 050时,y max =307 050.所以每辆车的月租金定为4 050元时,租赁公司的月收益最大,为307 050元.13.(选做题)设a ∈R ,试讨论关于x 的方程lg(x -1)+lg(3-x )=lg(a -x )的实根的个数.解 原方程等价于⎩⎪⎨⎪⎧x -1>0,3-x >0,a -x >0,(x -1)(3-x )=a -x ,⇒⎩⎪⎨⎪⎧x -1>0,3-x >0,(x -1)(3-x )=a -x ,整理得-x 2+5x -3=a (1<x <3).在同一平面直角坐标系中分别作出函数y =a , 及y =-x 2+5x -3,x ∈(1,3)的图象,如图所示.(1)当a >134或a ≤1时,两个函数的图象无交点,故原方程无实数根;(2)当a =134或1<a ≤3时,两个函数的图象有一个交点,故原方程有一个实数根;(3)当3<a <134时,两个函数的图象有两个交点,故原方程有两个实数根.章末检测(三)(时间:120分钟满分:150分)一、选择题(本大题共12个小题,每小题5分,共60分)1.已知下列四个函数图象,其中能用“二分法”求出函数零点的是( )解析由二分法的定义可知选A.答案 A2.已知函数f(x)在区间[a,b]上单调,且f(a)·f(b)<0,则函数f(x)的图象与x轴在区间[a,b]内( )A.至多有一个交点B.必有唯一个交点C.至少有一个交点D.没有交点解析∵f(a)·f(b)<0,∴f(a)与f(b)异号,即:f(a)>0,f(b)<0或者f(a)<0,f(b)>0,显然,在[a,b]内,必有一点c,使得f(c)=0.又f(x)在区间[a,b]上单调,所以,这样的点只有一个,故选B.答案 B3.若方程f(x)-2=0在(-∞,0)内有解,则y=f(x)的图象是( )解析A:与直线y=2的交点是(0,2),不符合题意,故不正确;B:与直线y=2无交点,不符合题意,故不正确;C:与直线y=2只在区间(0,+∞)上有交点,不符合题意,故不正确;D :与直线y =2在(-∞,0)上有交点,故正确.故选D. 答案 D4.甲、乙两人在一次赛跑中,从同一地点出发,路程s 与时间t 的函数关系如图所示,则下列说法正确的是( )A.甲比乙先出发B.乙比甲跑的路程多C.甲、乙两人的速度相同D.甲比乙先到达终点解析 由题图可知,甲到达终点用时短,故选D. 答案 D5.据统计某地区1月、2月、3月的用工人数分别为0.2万,0.4万和0.76万,则该地区这三个月的用工人数y 万人关于月数x 的函数关系近似的是( ) A.y =0.2x B.y =110(x 2+2x )C.y =2x10D.y =0.2+log 16x解析 当x =1时,否定B ;当x =2时,否定D ;当x =3时,否定A ,故选C. 答案 C6.若函数f (x )=log 3x +x -3的一个零点附近的函数值用二分法逐次计算的参考数据如下:那么方程x -3+3A.2.1 B.2.2 C.2.3D.2.4解析 由参考数据可知f (2.25)·f (2.312 5)<0,且|2.312 5-2.25|=0.062 5<0.1,所以当精确度为0.1时,可以将2.3作为函数f (x )=log 3x +x -3零点的近似值,也即方程x -3+log 3x =0的根的近似值. 答案 C7.函数f (x )=(x -1)ln (-x )x -3的零点个数为( )C.3D.4解析 ∵函数f (x )=(x -1)ln (-x )x -3的零点个数,即为f (x )=0的根的个数,∴f (x )=(x -1)ln (-x )x -3=0,即(x -1)ln(-x )=0,∴x -1=0或ln(-x )=0,∴x =1或x =-1.∵⎩⎪⎨⎪⎧-x >0,x -3≠0,解得x <0,∴函数f (x )的定义域为{x |x <0},∴x =-1,即方程f (x )=0只有一个根,∴函数f (x )=(x -1)ln (-x )x -3的零点个数为1.故选A.答案 A8.函数f (x )=3x+12x -2的零点所在的一个区间是( )A.(-2,-1)B.(-1,0)C.(0,1)D.(1,2)解析 由已知可知,函数f (x )=3x+12x -2单调递增且连续,∵f (-2)=-269<0,f (-1)=-136<0,f (0)=-1<0,f (1)=32>0,∴f (0)·f (1)<0,由函数零点存在性定理可知,函数f (x )=3x +12x -2的一个零点所在的区间是(0,1),故选C.答案 C9.已知0<a <1,则方程a |x |=|log a x |的实根个数为( ) A.2 B.3C.4D.与a 的值有关解析 设y 1=a |x |,y 2=|log a x |,分别作出它们的图象如图所示.由图可知,有两个交点,故方程a |x |=|log a x |有两个根.故选A.答案 A10.某商店计划投入资金20万元经销甲或乙两种商品,已知经销甲商品与乙商品所获得的利润分别为P (万元)和Q (万元),且它们与投入资金x (万元)的关系是:P =x 4,Q =a2x(a >0);若不管资金如何投放,经销这两种商品或其中的一种商品所获得的纯利润总不少于5万元,则a 的最小值应为( )C.± 5D.- 5解析 设投放x (0≤x ≤20)万元经销甲商品,则投放(20-x )万元经销乙商品,总利润y =P +Q =x 4+a 2·20-x ,令y ≥5,则x 4+a2·20-x ≥5,∴a 20-x ≥10-x 2,即a ≥1220-x 对0≤x ≤20恒成立,而f (x )=1220-x 的最大值为5,且x =20时,a 20-x ≥10-x2也成立,∴a min = 5.答案 A11.已知函数f (x )=|lg x |-⎝ ⎛⎭⎪⎫12x有两个零点x 1,x 2,则有( ) A.x 1x 2<0 B.x 1x 2=1 C.x 1x 2>1D.0<x 1x 2<1解析 f (x )=|lg x |-⎝ ⎛⎭⎪⎫12x有两个零点x 1,x 2,即y =|lg x |与y =2-x有两个交点,由题意x >0,分别画y =2-x 和y =|lg x |的图象,发现在(0,1)和(1,+∞)上分别有一个交点,不妨设x 1∈(0,1),x 2∈(1,+∞),那么在(0,1)上有2-x 1=-lg x 1,即-2-x 1=lg x 1.①在(1,+∞)上有2-x 2=lg x 2.②①②相加有2-x 2-2-x 1=lg x 1x 2,∵x 2>x 1,∴2-x 2<2-x 1, 即2-x 2-2-x 1<0,∴lg x 1x 2<0, ∴0<x 1x 2<1,故选D. 答案 D12.某学校制定奖励条例,对在教育教学中取得优异成绩的教职工实行奖励,其中有一个奖励项目是针对学生高考成绩的高低对任课教师进行奖励的.奖励公式为f (n )=k (n )(n -10),n >10(其中n 是任课教师所在班级学生参加高考该任课教师所任学科的平均成绩与该科省平均分之差,f (n )的单位为元),而k (n )=⎩⎪⎨⎪⎧0,n ≤10,100,10<n ≤15,200,15<n ≤20,300,20<n ≤25,400,n >25.现有甲、乙两位数学任课教师,甲所教的学生高考数学平均分超出省平均分18分,而乙所教的学生高考数学平均分超出省平均分21分.则乙所得奖励比甲所得奖励多( )A.600元B.900元C.1 600元D.1 700元解析∵k(18)=200(元),∴f(18)=200×(18-10)=1 600(元).又∵k(21)=300(元),∴f(21)=300×(21-10)=3 300(元),∴f(21)-f(18)=3 300-1 600=1 700(元).故选D.答案 D二、填空题(本大题共4个小题,每小题5分,共20分)13.如果函数f(x)=x2+mx+m+3的一个零点为0,则另一个零点是________.解析函数f(x)=x2+mx+m+3的一个零点为0,则f(0)=0,∴m+3=0,∴m=-3,则f(x)=x2-3x,于是另一个零点是3.答案 314.若方程|x2-4x|-a=0有四个不相等的实根,则实数a的取值范围是________.解析由|x2-4x|-a=0得a=|x2-4x|,作出函数y=|x2-4x|的图象,则由图象可知,要使方程|x2-4x|-a=0有四个不相等的实根,则0<a<4,故答案为(0,4).答案(0,4)15.将进货单价为8元的商品按10元一个销售,每天可卖出100个.若每个涨价1元,则日销售量减少10个.为获得最大利润,则此商品销售价应定为每个________元.解析设每个涨价x元,则实际销售价为(10+x)元,销售的个数为100-10x.则利润为y =(10+x)(100-10x)-8(100-10x)=-10(x-4)2+360(0≤x<10,x∈N).因此,当x=4,即售价定为每个14元时,利润最大.答案1416.给出下列四个命题:①函数y=f(x),x∈R的图象与直线x=a可能有两个不同的交点;②函数y=log2x2与函数y=2log2x是相等函数;③对于指数函数y=2x与幂函数y=x2,总存在x0,当x>x0时,有2x>x2成立;④对于函数y=f(x),x∈[a,b],若有f(a)·f(b)<0,则f(x)在(a,b)内有零点.其中正确的序号是________.解析 对于①,函数表示每个输入值对应唯一输出值的一种对应关系,根据定义进行判定即可判断①错;对于②,函数y =log 2x 2与函数y =2log 2x 的定义域不相同,故不是相等函数,故②错;对于③,当x 0取大于等于4的值都可使当x >x 0时,有2x >x 2成立,故③正确;对于④,函数y =f (x )的图象在区间[a ,b ]上不连续时,既使有f (a )·f (b )<0,f (x )在(a ,b )内也不一定有零点.故④错. 答案 ③三、解答题(本大题共6个小题,共70分)17.(10分)判断下列函数是否存在零点,如果存在,请求出. (1)f (x )=-8x 2+7x +1; (2)f (x )=x 2+x +2; (3)f (x )=x 3+1.解 (1)因为f (x )=-8x 2+7x +1=-(8x +1)(x -1), 令f (x )=0,可解得x =-18,或x =1,所以函数f (x )的零点为-18和1.(2)因为f (x )=x 2+x +2,令x 2+x +2=0,Δ=12-4×1×2=-7<0,所以方程x 2+x +2=0无实数解.所以f (x )=x 2+x +2不存在零点. (3)因为f (x )=x 3+1=(x +1)(x 2-x +1), 令(x +1)(x 2-x +1)=0,解得x =-1. 所以函数f (x )的零点为-1.18.(12分)定义在R 上的偶函数y =f (x )在(-∞,0]上递增,函数f (x )的一个零点为-12,求满足f (log 14x )≥0的x 的取值集合.解 ∵-12是函数的一个零点,∴f ⎝ ⎛⎭⎪⎫-12=0.∵y =f (x )是偶函数且在(-∞,0]上递增,∴当log 14x ≤0,即x ≥1时,log 14x ≥-12,解得x ≤2,即1≤x ≤2.由对称性可知,当log14x >0,即0<x <1时,log 14x ≤12,解得12≤x <1.综上所述,x 的取值范围是⎣⎢⎡⎦⎥⎤12,2.19.(12分)已知函数f (x )=x -1+12x 2-2,试利用基本初等函数的图象,判断f (x )有几个零点,并利用零点存在性定理确定各零点所在的区间(各区间长度不超过1).解 令y 1=x -1,y 2=-12x 2+2,在同一直角坐标系中分别画出它们的图象(如图所示),其中抛物线的顶点坐标为(0,2),与x 轴的交点分别为(-2,0),(2,0),y 1与y 2的图象有3个交点,从而函数f (x )有3个零点.由f (x )的解析式知x ≠0,f (x )的图象在(-∞,0)和(0,+∞)上分别是连续不断的曲线,且f (-3)=136>0,f (-2)=-12<0,f ⎝ ⎛⎭⎪⎫12=18>0,f (1)=-12<0,f (2)=12>0,即f (-3)·f (-2)<0,f ⎝ ⎛⎭⎪⎫12·f (1)<0,f (1)·f (2)<0,∴3个零点分别在区间(-3,-2),⎝ ⎛⎭⎪⎫12,1,(1,2)内.20.(12分)燕子每年秋天都要从北方飞向南方过冬,研究燕子的科学家发现,两岁燕子的飞行速度可以表示为函数v =5log 2Q10,单位是m/s ,其中Q 表示燕子的耗氧量.(1)求燕子静止时的耗氧量是多少个单位;(2)当一只燕子的耗氧量是80个单位时,它的飞行速度是多少?解 (1)由题知,当燕子静止时,它的速度v =0,代入题给公式可得:0=5log 2Q10,解得Q=10,即燕子静止时的耗氧量是10个单位.(2)将耗氧量Q =80代入题给公式得:v =5log 28010=5log 28=15(m/s),即当一只燕子的耗氧量是80个单位时,它的飞行速度为15 m/s.21.(12分)如图,直角梯形OABC 位于直线x =t (t ≥0)右侧的图象的面积为f (t ).(1)试求函数f (t )的解析式; (2)画出函数y =f (t )的图象. 解 (1)当0≤t ≤2时,f (t )=S 梯形OABC -S △ODE =(3+5)×22-12t ·t =8-12t 2,当2<t ≤5时,f (t )=S 矩形DEBC =DE ·DC =2(5-t )=10-2t , 所以f (t )=⎩⎪⎨⎪⎧8-12t 2,0≤t ≤2,10-2t ,2<t ≤5.(2)函数f (t )的图象如图所示.22.(12分)某服装厂生产一种服装,每件服装的成本为40元,出厂单价定为60元.该厂为鼓励销售商订购,决定当一次订购量超过100件时,每多订购一件,订购的全部服装的出厂单价就降低0.02元,根据市场调查,销售商一次订购量不会超过600件. (1)设一次订购x 件,服装的实际出厂单价为p 元,写出函数p =f (x )的表达式; (2)当销售商一次订购多少件服装时,该厂获得的利润最大?其最大利润是多少? 解 (1)当0<x ≤100时,p =60; 当100<x ≤600时,p =60-(x -100)×0.02=62-0.02x .∴p =⎩⎪⎨⎪⎧60, 0<x ≤100,62-0.02x , 100<x ≤600.(2)设利润为y 元,则当0<x ≤100时,y =60x -40x =20x ; 当100<x ≤600时,y =(62-0.02x )x -40x =22x -0.02x 2.∴y =⎩⎪⎨⎪⎧20x , 0<x ≤100,22x -0.02x 2, 100<x ≤600. 当0<x ≤100时,y =20x 是单调增函数,当x =100时,y 最大,此时y =20×100=2 000;当100<x ≤600时,y =22x -0.02x 2=-0.02(x -550)2+6 050,∴当x =550时,y 最大,此时y =6 050. 显然6 050>2 000.∴当一次订购550件时,利润最大,最大利润为6 050元.模块检测(时间:120分钟 满分:150分)一、选择题(本大题共12个小题,每小题5分,共60分)1.已知全集U ={0,1,2,3,4},集合A ={1,2,3},B ={2,4},则(∁U A )∪B 为( ) A.{1,2,4} B.{2,3,4} C.{0,2,4}D.{0,2,3,4}解析 ∵全集U ={0,1,2,3,4},集合A ={1,2,3},∴∁U A ={0,4},又B ={2,4},则(∁U A )∪B ={0,2,4}.故选C. 答案 C2.可作为函数y =f (x )的图象的是( )解析 由函数的定义可知:每当给出x 的一个值,则f (x )有唯一确定的实数值与之对应,只有D 符合.故正确答案为D. 答案 D3.同时满足以下三个条件的函数是( )①图象过点(0,1);②在区间(0,+∞)上单调递减;③是偶函数 A.f (x )=-(x +1)2+2B.f (x )=3|x |C.f (x )=⎝ ⎛⎭⎪⎫12|x |D.f (x )=x -2解析 A.若f (x )=-(x +1)2+2,则函数图象关于x =-1对称,不是偶函数,不满足条件③.B.若f (x )=3|x |,则f (x )在区间(0,+∞)上单调递增,不满足条件②.C.若f (x )=⎝ ⎛⎭⎪⎫12|x |,则三个条件都满足.D.若f (x )=x -2,则f (0)无意义,不满足条件①.故选C. 答案 C4.设f (x )=⎩⎪⎨⎪⎧2e x -1,x <2,log 3(2x-1),x ≥2,则f (f (2))等于( ) A.0 B.1 C.2D.3 解析 f (2)=log 3(22-1)=1,f (1)=2e1-1=2,即f (f (2))=2. 答案 C5.函数f (x )=2x -1+log 2x 的零点所在区间是( )A ⎝ ⎛⎭⎪⎫18,14 B.⎝ ⎛⎭⎪⎫14,12 C.⎝ ⎛⎭⎪⎫12,1 D.(1,2)解析 ∵函数f (x )=2x -1+log 2x ,∴f ⎝ ⎛⎭⎪⎫12=-1,f (1)=1,∴f ⎝ ⎛⎭⎪⎫12·f (1)<0,故连续函数f (x )的零点所在区间是⎝ ⎛⎭⎪⎫12,1,故选C.答案 C6.幂函数y =f (x )的图象经过点⎝ ⎛⎭⎪⎫-2,-18,则满足f (x )=27的x 的值是( ) A.13 B.-13C.3D.-3解析 设幂函数为y =x α,因为图象过点⎝ ⎛⎭⎪⎫-2,-18,所以有-18=(-2)α,解得:α=-3,所以幂函数解析式为y =x -3,由f (x )=27,得:x -3=27,所以x =13.答案 A7.函数f (x )=2-x +ln(3x +2)+12x-1的定义域为( ) A.⎝ ⎛⎭⎪⎫-23,0∪(0,2] B.⎝ ⎛⎦⎥⎤23,2 C.⎝ ⎛⎭⎪⎫-23,1∪(1,2] D.⎝ ⎛⎦⎥⎤-23,2 解析 由⎩⎪⎨⎪⎧2-x ≥0,3x +2>0,2x -1≠0,解得-23<x ≤2且x ≠0,故f (x )的定义域为⎝ ⎛⎭⎪⎫-23,0∪(0,2].答案 A8.设a =0.50.5,b =0.30.5,c =log 0.30.2,则a ,b ,c 的大小关系是( ) A.c <a <b B.b <a <c C.c <b <aD.a <b <c解析 因为y =x 0.5在(0,+∞)上是增函数,且0.5>0.3,所以0.50.5>0.30.5,即a >b ,c =log 0.30.2>log 0.30.3=1,而1=0.50>0.50.5,所以b <a <c .故选B.答案 B9.若函数f (x )=(k -1)a x-a -x(a >0,且a ≠1)在R 上既是奇函数,又是减函数,则g (x )=log a (x +k )的图象是( )解析 由f (x )=(k -1)a x-a -x(a >0,且a ≠1)在R 上既是奇函数,又是减函数,所以k =2,0<a <1,再由对数的图象可知A 正确. 答案 A10.定义在R 上的函数f (x )满足f (-x )=f (x ),f (x -2)=f (x +2)且x ∈(-1,0)时,f (x )=2x+15,则f (log 220)等于( )A.1B.45C.-1D.-45解析 由f (x -2)=f (x +2)⇒f (x )=f (x +4), 因为4<log 220<5,所以0<log 220-4<1,-1<4-log 220<0, 所以f (log 220)=f (log 220-4)=f (4-log 220) =f ⎝ ⎛⎭⎪⎫log 245=2log 245+15=1.故选A. 答案 A11.若f (x )是奇函数,且在(0,+∞)上是增函数,又f (-3)=0,则(x -1)f (x )<0的解集是( )A.(-3,0)∪(1,+∞)B.(-3,0)∪(0,3)C.(-∞,-3)∪(3,+∞)D.(-3,0)∪(1,3)解析 ∵f (x )是R 上的奇函数,且在(0,+∞)内是增函数,∴在(-∞,0)内f (x )也是增函数,又∵f (-3)=0,∴f (3)=0,∴当x ∈(-∞,-3)∪(0,3)时,f (x )<0;当x ∈(-3,0)∪(3,+∞)时,f (x )>0;∵(x -1)·f (x )<0,∴⎩⎪⎨⎪⎧x -1<0,f (x )>0或⎩⎪⎨⎪⎧x -1>0,f (x )<0,可解得-3<x <0或1<x <3,∴不等式的解集是(-3,0)∪(1,3),故选D. 答案 D12.已知当x ∈[0,1]时,函数y =(mx -1)2的图象与y =x +m 的图象有且只有一个交点,则正实数m 的取值范围是( ) A.(0,1]∪[23,+∞) B.(0,1]∪[3,+∞) C.(0,2]∪[23,+∞)D.(0,2]∪[3,+∞)解析 y =(mx -1)2=m 2⎝ ⎛⎭⎪⎫x -1m 2,相当于y =x 2向右平移1m 个单位,再将函数值放大m 2倍得到的;y =x +m 相当于y =x 向上平移m 个单位.①若0<m ≤1,两函数的图象如图1所示,可知两函数图象在x ∈[0,1]上有且只有1个交点,恒成立;②若m >1,两函数的大致图象如图2所示,为使两函数在x ∈[0,1]上有且只有1个交点,需要(m -1)2≥1+m ,得m ≥3.综上,m ∈(0,1]∪[3,+∞). 答案 B二、填空题(本大题共4个小题,每小题5分,共20分) 13.当a >0且a ≠1时,函数f (x )=ax -2-3必过定点________.解析 因为a 0=1,故f (2)=a 0-3=-2,所以函数f (x )=a x -2-3必过定点(2,-2).答案 (2,-2)14.用二分法求函数y =f (x )在区间(2,4)上的近似解,验证f (2)f (4)<0,给定精确度ε=0.01,取区间(2,4)的中点x 1=2+42=3,计算得f (2)·f (x 1)<0,则此时零点x 0∈________(填区间).解析 ∵f (2)·f (4)<0,f (2)·f (3)<0, ∴f (3)·f (4)>0,故x 0∈(2,3). 答案 (2,3)15.设U ={1,2,3,4,5,6,7,8,9},(∁U A )∩B ={3,7},(∁U B )∩A ={2,8},(∁U A )∩(∁U B )={1,5,6},则集合A =________,B =________.解析 (∁U A )∩(∁U B )=∁U (A ∪B )={1,5,6}, 所以A ∪B ={2,3,4,7,8,9},又(∁U A )∩B ={3,7},(∁U B )∩A ={2,8},所以A ∩B ={4,9},所以A ={2,4,8,9},B ={3,4,7,9}.答案 {2,4,8,9} {3,4,7,9}16.已知函数f (x )=⎩⎪⎨⎪⎧1+4x ,(x ≥4),log 2x ,(0<x <4),若关于x 的方程f (x )=k 有两个不同的实根,则实数k 的取值范围是________.解析 关于x 的方程f (x )=k 有两个不同的实根,等价于函数f (x )与函数y =k 的图象有两个不同的交点,作出函数的图象如图.由图可知实数k 的取值范围是(1,2). 答案 (1,2)三、解答题(本大题共6个小题,共70分) 17.(10分)计算下列各式的值: (1)1.5-13×⎝ ⎛⎭⎪⎫-760+80.25×42-;(2)(log 3312)2+log 0.2514+9log 55-log 31.解 (1)原式=⎝ ⎛⎭⎪⎫2313×1+23×14×214-⎝ ⎛⎭⎪⎫2313=2.(2)原式=⎝ ⎛⎭⎪⎫122+1+9×12-0=14+1+92=234.18.(12分)已知函数f (x )是R 上的奇函数,当x ∈(0,+∞)时,f (x )=2x+x ,求f (x )的解析式.解 由题意,当x =0时,f (x )=0.∵x >0时,f (x )=2x+x ,∴当x <0时,-x >0,f (-x )=2-x-x ,又∵函数y =f (x )是定义在R 上的奇函数, ∴x <0时,f (x )=-f (-x )=-2-x+x , 综上所述,f (x )=⎩⎪⎨⎪⎧-2-x+x ,x <0,0,x =0,2x +x ,x >0.19.(12分)已知集合A ={x |3≤3x≤27},B ={x |log 2x >1}. (1)分别求A ∩B ,(∁R B )∪A ;(2)已知集合C ={x |1<x <a },若C ⊆A ,求实数a 的取值范围. 解 (1)A ={x |3≤3x≤27}={x |1≤x ≤3},B ={x |log 2x >1}={x |x >2}. A ∩B ={x |2<x ≤3},(∁R B )∪A ={x |x ≤2}∪{x |1≤x ≤3}={x |x ≤3}. (2)①当a ≤1时,C =∅,此时C ⊆A ; ②当a >1时,C ⊆A ,则1<a ≤3; 综合①②,可得a 的取值范围是(-∞,3].20.(12分)已知函数f (x )=log a (2x +1),g (x )=log a (1-2x )(a >0且a ≠1). (1)求函数F (x )=f (x )-g (x )的定义域;(2)判断F (x )=f (x )-g (x )的奇偶性,并说明理由; (3)确定x 为何值时,有f (x )-g (x )>0.解 (1)要使函数有意义,则有⎩⎪⎨⎪⎧2x +1>0,1-2x >0,∴-12<x <12.∴函数F (x )的定义域为⎩⎨⎧⎭⎬⎫x |-12<x <12.(2)由(1)知F (x )的定义域关于原点对称, 又F (-x )=f (-x )-g (-x )=log a (-2x +1)- log a (1+2x )=-F (x ), ∴F (x )为奇函数.(3)∵f (x )-g (x )>0,∴log a (2x +1)-log a (1-2x )>0, 即log a (2x +1)>log a (1-2x ).①当0<a <1时,0<2x +1<1-2x ,∴-12<x <0.②当a >1时,2x +1>1-2x >0,∴0<x <12.21.(12分)甲、乙两人连续6年对某县农村鳗鱼养殖业的规模(总产量)进行调查,提供了两个方面的信息,分别得到甲、乙两图:甲调查表明:每个鱼池平均产量直线上升,从第1年1万条鳗鱼上升到第6年2万条. 乙调查表明:全县鱼池总个数直线下降,由第1年30个减少到第6年10个. 请你根据提供的信息说明:(1)第2年全县鱼池的个数及全县出产的鳗鱼总数;(2)到第6年这个县的鳗鱼养殖业的规模比第1年扩大还是缩小了?说明理由; (3)哪一年的规模(即总产量)最大?说明理由.解 由题意可知,图甲图象经过(1,1)和(6,2)两点,从而求得其解析式为y甲=0.2x +0.8,图乙图象经过(1,30)和(6,10)两点.从而求得其解析式为y 乙=-4x +34.(1)当x =2时,y 甲=0.2×2+0.8=1.2,y 乙=-4×2+34=26,y 甲×y 乙=1.2×26=31.2. 所以第2年鱼池有26个,全县出产的鳗鱼总数为31.2万条.(2)第1年出产鳗鱼1×30=30(万条),第6年出产鳗鱼2×10=20(万条),可见第6年这个县的鳗鱼养殖业规模比第1年缩小了. (3)设当第m 年时的规模,即总出产量为n , 那么n =y 甲·y 乙=(0.2m +0.8)(-4m +34) =-0.8m 2+3.6m +27.2=-0.8(m 2-4.5m -34)=-0.8(m -2.25)2+31.25,因此,当m =2时,n 最大值为31.2, 即当第2年时,鳗鱼养殖业的规模最大,最大产量为31.2万条. 22.(12分)已知函数f (x )=a ·2x -2+a2x+1(a ∈R ).(1)试判断f (x )的单调性,并证明你的结论; (2)若f (x )为定义域上的奇函数, ①求函数f (x )的值域;②求满足f (ax )<f (2a -x 2)的x 的取值范围.解 (1)函数f (x )的定义域为(-∞,+∞),关于原点对称,且f (x )=a -22x +1.任取x 1,x 2∈(-∞,+∞),且x 1<x 2,则f (x 2)-f (x 1)=a -22x 2+1-a +22x 1+1=2(2x2-2x1)(2x 2+1)(2x1+1). ∵y =2x在R 上单调递增,且x 1<x 2, ∴0<2x1<2x2,2x2-2x1>0,2x1+1>0,2x2+1>0, ∴f (x 2)-f (x 1)>0,即f (x 2)>f (x 1), ∴f (x )是(-∞,+∞)上的单调增函数.(2)∵f (x )是定义域上的奇函数,∴f (-x )=-f (x ),即a -22-x +1+⎝ ⎛⎭⎪⎫a -22x +1=0对任意实数x 恒成立,化简得2a -⎝ ⎛⎭⎪⎫2·2x2x +1+22x +1=0,。
章末质量检测(一) 集合与逻辑考试时间:120分钟 满分:150分一、单项选择题(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知集合A={-1,0,3},B={0,2}, 那么A∪B等于( )A.{-1,0,2,3} B.{-1,0,2} C.{0,2,3} D.{0,2}2.命题:“∃x∈R,x2-1>0”的否定为( )A.∃x∈R,x2-1≤0 B.∀x∈R,x2-1≤0C.∃x∈R,x2-1<0 D.∀x∈R,x2-1<03.已知全集U={1,2,3,4,5,6},A={2,3,5},B={1,3,6},则∁U(A∩B)=( )A. B.∅ C. D.4.“2<x<5”是“3<x<4”的( )A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件5.已知命题p:∀x<2,x3-8<0,那么¬p是( )A.∀x≤2,x3-8>0 B.∃x≥2,x3-8≥0C.∀x>2,x3-8>0 D.∃x<2,x3-8≥06.已知集合U=R,集合A={0,1,2,3,4,5},B={x|x>1},则图中阴影部分所表示的集合为( )A.{0} B.{0,1} C.{1,2} D.{0,1,2}7.已知a,b∈R,则“a>b”是“>1”的( )A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件8.设A,B是两个非空集合,定义A×B=且,已知A=,B=,则A×B=( ) A.∅B.∪C. D.二、多项选择题(本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多个选项是符合题目要求的,全部选对的得5分,部分选对的得2分,有选错的得0分.)9.下面四个说法中错误的是( )A.10以内的质数组成的集合是{2,3,5,7}B.由1,2,3组成的集合可表示为{1,2,3}或{3,1,2}C.方程x2-2x+1=0的所有解组成的集合是{1,1}D.0与{0}表示同一个集合10.满足M⊆,且M∩=的集合M可能是( )A. B. C. D.11.下列说法正确的是( )A.“对任意一个无理数x,x2也是无理数”是真命题B.“xy>0”是“x+y>0”的充要条件C.命题“∃x∈R,x2+1=0”的否定是“∀x∈R,x2+1≠0”D.若“1<x<3”的必要不充分条件是“m-2<x<m+2”,则实数m的取值范围是[1,3]12.给定数集M,若对于任意a,b∈M,有a+b∈M,且a-b∈M,则称集合M为闭集合,则下列说法中不正确的是( )A.集合M=为闭集合B.正整数集是闭集合C.集合M=为闭集合D.若集合A1,A2为闭集合,则A1∪A2为闭集合三、填空题(本题共4小题,每小题5分,共20分.把答案填在题中的横线上.)13.命题“∃x>1,x2>1”的否定为________.14.已知集合A={1,a2},B={a,-1},若A∪B={-1,a,1},则a=________.15.高一某班共有15人参加数学课外活动,其中7人参加了数学建模,9人参加了计算机编程,两种活动都参加了的有3人,问这两种活动都没参加的有________人.16.已知满足“如果x∈S,则6-x∈S”的自然数x构成集合S.(1)若S是一个单元素集合,则S=________.(2)满足条件的S共有________个.四、解答题(本题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤.)17.(本小题满分10分)已知集合A={x|-2<x<4},B={x|-1<x≤5},U=R.(1)求A∩B,A∪B;(2)求(∁R A)∩B.18.(本小题满分12分)设集合A={x|x2-3x+2=0},B={x|ax+1=0}.(1)若A∩B={2},求实数a的值;(2)若A∪B=A,求实数a的值.19.(本小题满分12分)已知集合A={x|-1<x<2},B={x|k<x<2-k}.(1)当k=-1时,求A∪B;(2)若A∩B=B,求实数k的取值范围.20.(本小题满分12分)已知集合A={x|a<x<10-a},∁R B={x|x>6},若A∩B =∅,求a的取值范围.21.(本小题满分12分)已知集合A={x|a-1≤x≤a+1},B={x|-1≤x≤3}.(1)当a=2时,求A∪B;(2)若A∪B=B,求实数a的取值范围.22.(本小题满分12分)已知集合M=,集合N= ,(1)当m=2时,求M∩N;(2)若x∈M是x∈N的必要不充分条件,求实数m的取值范围.章末质量检测(一) 集合与逻辑1.解析:由题意A∪B={-1,0,2,3}.故选A.答案:A2.解析:命题:“∃x∈R,x2-1>0”的否定为“∀x∈R,x2-1≤0”,故选B.答案:B3.解析:因为A=,B=,所以A∩B=,又全集U=,所以∁U=,故选C.答案:C4.解析:若“3<x<4”,则“2<x<5”是真命题,若“2<x<5”,则“3<x<4”是假命题,所以“2<x<5”是“3<x<4”的必要不充分条件.故选B.答案:B5.解析:命题p:∀x<2,x3-8<0,则¬p为:∃x<2,x3-8≥0,故选D.答案:D6.解析:图中阴影部分表示A∩(∁U B),∁U B={x|x≤1},∴A∩(∁U B)={0,1}.故选B.答案:B7.解析:当a=-1,b=-2时,a>b,但=<1;当a=-2,b=-1时,>1,但a<b;综上,“a>b”是“>1”的既不充分也不必要条件.故选D.答案:D8.解析:A={x|0≤x≤2},B={y|y>1},∴A∪B={x|x≥0},A∩B={x|1<x≤2},又A×B=且,∴A×B={x|0≤x≤1或x>2}.故选B.答案:B9.解析:10以内的质数组成的集合是{2,3,5,7},故A正确;由集合中元素的无序性知{1,2,3}和{3,1,2}表示同一集合,故B正确;方程x2-2x+1=0的所有解组成的集合是{1},故C错误;由集合的表示方法知0不是集合,故D错误.故选CD.答案:CD10.解析:∵M∩=,∴集合M一定含有元素a1,a2,一定不含有a3,∴M={a1,a2}或M={a1,a2,a4}.故选AC.答案:AC11.解析:x=是无理数,x2=2是有理数,A错;x=-1,y=-2时,xy>0,但x+y=-3<0,不是充要条件,B错;命题∃x∈R,x2+1=0的否定是:∀x∈R,x2+1≠0,C正确;“1<x<3”的必要不充分条件是“m-2<x<m+2”,则,两个等号不同时取得.解得1≤m≤3,D正确.故选CD.答案:CD12.解析:A.当集合M=时,2,4∈M,而2+4∉M,所以集合M不为闭集合.B.设a,b是任意的两个正整数,当a<b时,a-b<0不是正整数,所以正整数集不为闭集合.C.当M=时,设a=3k1,b=3k2,k1,k2∈Z,则a+b=3∈M,a-b=3∈M,所以集合M是闭集合.D.设A1=,A2=由C可知,集合A1,A2为闭集合,2,3∈A1∪A2,而2+3∉A1∪A2,此时A1∪A2不为闭集合.所以说法中不正确的是ABD,故选ABD.答案:ABD13.解析:因为特称命题的否定为全称命题,则命题“∃x>1,x2>1”的否定为“∀x>1,x2≤1”.答案:∀x>1,x2≤114.解析:因为A={1,a2},B={a,-1},A∪B={-1,a,1},所以a=a2,解得a=0或a=1(舍去,不满足集合元素的互异性)答案:015.解析:因为7人参加了数学建模且两种活动都参加了的有3人,故只参加了数学建模的人数为7-3=4 人,又9人参加了计算机编程,故只参加了计算机编程的人数为9-3=6 人.故参加了活动的人数有4+3+6=13人.故两种活动都没参加的有15-13=2人.答案:216.解析:(1)S是一个单元素集合,则6-x=x,∴x=3,∴S={3}(2)当集合S元素个数为1个时,S={3},当集合S元素个数为2个时,S={1,5},{2,4},{0,6},当集合S元素个数为3个时,S={1,3,5},{2,3,4},{0,3,6},当集合S元素个数为4个时,S={1,2,4,5},{0,1,5,6},{0,2,4,6},当集合S元素个数为5个时,S={1,2,3,4,5},{0,1,3,5,6},{0,2,3,4,6},当集合S元素个数为6个时,S={0,1,2,4,5,6},当集合S元素个数为7个时,S={0,1,2,3,4,5,6},综上满足条件的S共有15个.答案:{3} 1517.解析:(1)由题意,集合A={x|-2<x<4},B={x|-1<x≤5},所以A∩B={x|-1<x<4},A∪B={x|-2<x≤5}.(2)由题意,可得∁R A={x|x≤-2或x≥4},所以(∁R A)∩B={x|4≤x≤5}.18.解析:(1)因为A∩B={2},所以2∈B,则2a+1=0,解得a=-.(2)由x2-3x+2=0得,x=1或x=2,则A={1,2},因为B⊆A,所以B=∅或{1}或{2},当B=∅时,则a=0,当B={1}时,则a+1=0,得a=-1,当B={2}时,则2a+1=0,得a=-,综上得,实数a的值是0或-1或-.19.解析:(1)当k=-1时,B={x|-1<x<3},则A∪B={x|-1<x<3}.(2)∵A∩B=B,则B⊆A.①当B=∅时,k≥2-k,解得k≥1;②当B≠∅时,由 B⊆A得,即,解得0≤k<1.综上,k≥0.20.解析:若A=∅,则10-a≤a,解得a≥5;设A≠∅,因为∁R B={x|x>6},所以B={x∣x≤6},因为A∩B=∅,所以,解得a∈∅,故a的取值范围是{a|a≥5}.21.解析:(1)当a=2时,集合A={x|1≤x≤3},集合B={x|-1≤x≤3},A∪B ={x|-1≤x≤3},(2)A∪B=B,则A⊆B,因为A={x|a-1≤x≤a+1},所以A≠∅,又B={x|-1≤x≤3},所以,解得:0≤a≤2,所以实数a的取值范围是{a|0≤a≤2}.22.解析:(1)当m=2时,N=所以M∩N=∩=.(2)因为x∈M是x∈N的必要不充分条件,所以N M.所以,且等号不能同时成立,解得m≤,又m>0,所以实数m的取值范围是.。
章末综合测评(一) 预备知识(满分:150分 时间:120分钟)一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.命题“∀x ∈R ,使得x 2≥0”的否定形式是( ) A .∀x ∈R ,x 2<0 B .∀x ∈R ,x 2≤0 C .∃x ∈R ,x 2≥0D .∃x ∈R ,x 2<0D [命题“∀x ∈R ,x 2≥0”的否定形式是∃x ∈R ,x 2<0,故选D.]2.已知全集U =R ,集合A ={1,2,3,4,5},B ={x ∈R |x ≥2},则图中阴影部分所表示的集合为( )A .{1}B .{1,2}C .{3,4,5}D .{2,3,4,5}A [图中阴影部分所表示的集合为A ∩(∁UB ),故选A.]3.已知集合A =⎩⎨⎧⎭⎬⎫x ⎪⎪x -2x ≤0,B ={0,1,2,3},则A ∩B =( )A .{1,2}B .{0,1,2}C .{1}D .{1,2,3}A [∵A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x -2x ≤0={x |0<x ≤2}, ∴A ∩B ={1,2}.]4.设x ∈R ,则“x 3>8”是“|x |>2” 的( ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件D .既不充分也不必要条件A [解不等式x 3>8,得x >2,解不等式|x |>2,得x >2或x <-2, 所以“x 3>8”是“|x |>2” 的充分而不必要条件.故选A.]5.设集合A ={1,2,4},B ={x |x 2-4x +m =0}.若A ∩B ={1},则B =( ) A .{1,-3} B .{1,0} C .{1,3}D .{1,5}C [∵A ∩B ={1},∴1∈B . ∴1-4+m =0,即m =3. ∴B ={x |x 2-4x +3=0}={1,3}. 故选C.]6.满足条件M ∪{1,2}={1,2,3}的集合M 的个数是( ) A .4 B .3 C .2D .1 A [∵M ∪{1,2}={1,2,3},∴3∈M ,且可能含有元素1,2, ∴集合M 的个数为集合{1,2},子集的个数4.故选A.]7.已知实数a ,b ,c 满足b +c =3a 2-4a +6,c -b =a 2-4a +4,则a ,b ,c 的大小关系是( )A .c ≥b >aB .a >c ≥bC .c >b >aD .a >c >bA [∵c -b =a 2-4a +4=(a -2)2≥0,∴c ≥b ; 又b +c =3a 2-4a +6, ∴2b =2a 2+2, ∴b =a 2+1,∴b -a =a 2-a +1=⎝⎛⎭⎫a -12+34>0, ∴b >a , ∴c ≥b >a .]8.已知a >0,b >0,若不等式m3a +b ≤a +3b ab 恒成立,则m 的最大值为 ( )A .4B .16C .9D .3B [m3a +b≤a +3b ab ,即m ≤(a +3b )(3a +b )ab ;又(a +3b )(3a +b )ab =3a b +3ba +10≥23a b ·3ba=6+10=16,当且仅当a =b 时,取等号,∴m ≤16,故选B.]二、多项选择题:本题共4小题,每小题5分,共20分,在每小题给出的选项中,有多项符合题目要求.全部选对得5分,部分选对得3分,有选错的得0分.9.不等式mx 2-ax -1>0(m >0)的解集不可能是( ) A .⎩⎨⎧⎭⎬⎫x ⎪⎪x <-1或x >14 B .R C .⎩⎨⎧⎭⎬⎫x ⎪⎪-13<x <32D .∅BCD [因为Δ=a 2+4m >0,所以函数y =mx 2-ax -1的图象与x 轴有两个交点,又m >0,所以原不等式的解集不可能是B 、C 、D.]10.对于任意实数a ,b ,c ,d ,下列四个命题中其中假命题的是( ) A .若a >b ,c ≠0,则ac >bc B .若a >b ,则ac 2>bc 2 C .若ac 2>bc 2,则a >b D .若a >b >0,c >d ,则ac >bdABD [若a >b ,c <0时,ac <bc ,A 错;B 中,若c =0,则有ac 2=bc 2,B 错;C 正确;D 中,只有c >d >0时,ac >bd ,D 错,故选ABD.]11.已知集合A ={x |x >2},B ={x |x <2m },且A ⊆∁R B ,那么m 的值可以是( ) A .0 B .1 C .2D .3 AB [根据补集的概念,∁R B ={x |x ≥2m }. 又∵A ⊆∁R B ,∴2m ≤2.解得m ≤1,故m 的值可以是0,1.]12.设集合A ={x |x 2-(a +2)x +2a =0},B ={x |x 2-5x +4=0},集合A ∪B 中所有元素之和为7,则实数a 的值为( )A .0B .1C .2D .4ABCD [x 2-(a +2)x +2a =(x -2)(x -a )=0,解得x =2或x =a ,则A ={2,a }.x 2-5x +4=(x -1)(x -4)=0,解得x =1或x =4,则B ={1,4}.当a =0时,A ={0,2},B ={1,4},A ∪B ={0,1,2,4},其元素之和为0+1+2+4=7;当a =1时,A ={1,2},B ={1,4},A ∪B ={1,2,4},其元素之和为1+2+4=7;当a =2时,A ={2},B ={1,4},A ∪B ={1,2,4},其元素之和为1+2+4=7;当a =4时,A ={2,4},B ={1,4},A ∪B ={1,2,4},其元素之和为1+2+4=7.则实数a 的取值集合为{0,1,2,4}.]三、填空题:本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上. 13.若0<a <1,则不等式(a -x )⎝⎛⎭⎫x -1a >0的解集是________. ⎩⎨⎧⎭⎬⎫x ⎪⎪a <x <1a [原不等式可化为(x -a )(x -1a )<0,由0<a <1,得a <1a ,∴a <x <1a.]14.已知集合A ={x |x ≤1},B ={x |x ≥a },且A ∪B =R ,则实数a 的取值X 围________.(-∞,1][用数轴表示集合A ,B ,若A ∪B =R ,则a ≤1,即实数a 的取值X 围是(-∞,1].] 15.“∃x ∈[0,3],x 2-a >0”是假命题,则实数a 的取值X 围是________.[9,+∞)[由题意得“∀x ∈[0,3],x 2-a ≤0”是真命题,即a ≥x 2,所以a ≥(x 2)max =9. ] 16.某商家一月份至五月份累计销售额达3 860万元,六月份的销售额为500万元,七月份的销售额比六月份增加x %,八月份的销售额比七月份增加x %,九、十月份的销售总额与七、八月份的销售总额相等,若一月份至十月份的销售总额至少为7 000万元,则x 的最小值为________.20[由题意得七月份的销售额为500(1+x %),八月份的销售额为500(1+x %)2,所以一月份至十月份的销售总额为3 860+500+2[500(1+x %)+500(1+x %)2]≥7 000,解得1+x %≤-115(舍去)或1+x %≥65,即x %≥20%,所以x 的最小值为20.]四、解答题:本题共6小题,共70分.解答时应写出文字说明、证明过程或演算步骤.17.(本小题满分10分)若集合A={x|-2<x<4},B={x|x-m<0}.(1)若m=3,全集U=A∪B,试求A∩(∁U B).(2)若A∩B=A,某某数m的取值X围.[解](1)当m=3时,由x-m<0,得x<3,∴B={x|x<3},∴U=A∪B={x|x<4},则∁U B={x|3≤x<4},∴A∩(∁U B)={x|3≤x<4}.(2)∵A={x|-2<x<4},B={x|x-m<0}={x|x<m},由A∩B=A得A⊆B,∴m≥4,即实数m的取值X围是[4,+∞).18.(本小题满分12分)解下列不等式:(1)3+2x-x2≥0;(2)x2-(1+a)x+a<0.[解](1)原不等式化为x2-2x-3≤0,即(x-3)(x+1)≤0,故所求不等式的解集为{x|-1≤x≤3}.(2)原不等式可化为(x-a)(x-1)<0,当a>1时,原不等式的解集为(1,a);当a=1时,原不等式的解集为∅;当a<1时,原不等式的解集为(a,1).19.(本小题满分12分)已知集合A={x|x2+4x=0},B={x|x2+2(a+1)x+a2-1=0},当A∪B=B时,某某数a的取值组成的集合P.[解]由A∪B=B知A⊆B.又A={-4,0},故此时必有B={-4,0},即-4,0为方程x2+2(a+1)x+a2-1=0的两根,于是⎩⎪⎨⎪⎧-4+0=-2(a +1),(-4)×0=a 2-1,得a =1.即P ={1}.20.(本小题满分12分)已知a >b >0,求证:a +b +3>ab +2a +b . [证明]a +b +3-ab -2a -b =12(2a +2b -2ab -4a -2b )+3 =12(a -4a +b -2b +a +b -2ab )+3 =12(a -4a +4+b -2b +1+a +b -2ab -5)+3 =12[(a -2)2+(b -1)2+(a -b )2-5]+3 =12(a -2)2+12(b -1)2+12(a -b )2+12, ∵(a -2)2≥0,(b -1)2≥0,(a -b )2>0, ∴a +b +3-ab -2a -b >0, ∴a +b +3>ab +2a +b .21.(本小题满分12分)已知集合A ={x |x 2-2x -3≤0},B ={x |x 2-2mx +m 2-4≤0,x ∈R ,m ∈R }.(1)若A ∩B =[0,3],某某数m 的值; (2)若A ⊆∁U B ,某某数m 的取值X 围.[解] 由已知得A ={x |-1≤x ≤3},B ={x |m -2≤x ≤m +2}. (1)∵A ∩B =[0,3],∴⎩⎪⎨⎪⎧m -2=0,m +2≥3,∴m =2.(2)∁U B ={x |x <m -2或x >m +2}, ∵A ⊆∁U B ,∴m -2>3或m +2<-1, 即m >5或m <-3.22.(本小题满分12分)已知不等式mx 2-2x -m +1<0,是否存在实数m 对所有的实数x 使不等式恒成立?若存在,求出m 的取值X 围;若不存在,请说明理由.[解] 要使不等式mx 2-2x -m +1<0恒成立,即函数y =mx 2-2x -m +1的图象全部在x 轴下方.当m =0时,1-2x <0,则x >12,不满足题意;当m ≠0时,函数y =mx 2-2x -m +1为二次函数,其图象需满足开口向下且与x 轴没有公共点,即⎩⎪⎨⎪⎧m <0,Δ=4-4m (1-m )<0,不等式组的解集为空集,即m 不存在. 综上可知,不存在这样的实数m 使不等式恒成立.。
苏教版高一数学必修一章末检测Modified by JEEP on December 26th, 2020.章末检测一、填空题1.f (x )=2x +13x -1的定义域为________. 2.y =2x 2+1的值域为________.3.已知函数f (x )=ax 2+(a 3-a )x +1在(-∞,-1]上递增,则a 的取值范围是________.4.设f (x )=⎩⎪⎨⎪⎧x +3 (x >10)f (f (x +5)) (x ≤10),则f (5)的值是______. 5.已知函数y =f (x )是R 上的增函数,且f (m +3)≤f (5),则实数m 的取值范围是________.6.函数f (x )=-x 2+2x +3在区间[-2,3]上的最大值与最小值的和为________.7.若函数f (x )=x 2+(a +1)x +a x为奇函数,则实数a =________. 8.若函数f (x )=x 2-mx +m +2是偶函数,则m =______.9.函数f (x )=x 2+2x -3,x ∈[0,2],那么函数f (x )的值域为________.10.用min{a ,b }表示a ,b 两数中的最小值,若函数f (x )=min{|x |,|x +t |}的图象关于直线x =-12对称,则t 的值为________. 11.已知函数f (x )=⎩⎪⎨⎪⎧x +2, x <1,x 2+ax , x ≥1,当f [f (0)]=4a ,则实数a 的值为________. 12.已知函数f (x )是定义在R 上的奇函数,且当x >0时,f (x )=x 2+3,则f (-2)的值为________.13.函数f (x )=4x 2-mx +5在区间[-2,+∞)上是增函数,则f (1)的取值范围是________.14.若函数y =ax 与y =-b x在(0,+∞)上都是减函数,则y =ax 2+bx 在(0,+∞)上是________函数(填“增”或“减”).二、解答题15.已知函数f (x )=ax +b x +c (a ,b ,c 是常数)是奇函数且1满足f (1)=52,f (2)=174,求f (x )的解析式.16.已知函数f (x )=x +4x,x ∈(0,+∞). (1)求证:f (x )在(0,2)上是减函数,在(2,+∞)上是增函数;(2)求f (x )在(0,+∞)上的最小值和值域.17.函数f (x )是R 上的偶函数,且当x >0时,函数的解析式为f (x )=2x-1. (1)用定义证明f (x )在(0,+∞)上是减函数;(2)求当x <0时,函数的解析式.18.已知f (x )=ax 3+bx -3,a 、b ∈R ,若f (3)=5,求f (-3).19.已知函数f (x )=|x +2|+x -3.(1)用分段函数的形式表示f (x );(2)画出y =f (x )的图象,并写出函数的单调区间、值域.20.已知函数f (x )对一切实数x ,y ∈R 都有f (x +y )=f (x )+f (y ),且当x >0时,f (x )<0,又f (3)=-2.(1)试判定该函数的奇偶性;(2)试判断该函数在R 上的单调性;(3)求f (x )在[-12,12]上的最大值和最小值.答案2.[1,+∞)3.[-3,0)4.245.m ≤26.-17.-18.09.[-3,5]10.111.212.-713.[25,+∞)14.减15.解 ∵f (x )=-f (-x ),∴ax +b x+c =-⎝⎛⎭⎫-ax -b x +c , ∴2c =0即c =0.∵f (1)=52,f (2)=174,∴a +b =52,2a +b 2=174,解得⎩⎪⎨⎪⎧ a =2b =12,∴f (x )=2x +12x . 16.(1)证明 任取x 1,x 2∈(0,2)且x 1<x 2,则f (x 2)-f (x 1)=(x 2-x 1)+4(x 1-x 2)x 1x 2=(x 2-x 1)(x 1x 2-4)x 1x 2. ∵0<x 1<x 2<2,∴x 2-x 1>0,x 1x 2-4<0,∴f (x 2)-f (x 1)<0,即f (x 2)<f (x 1),∴f (x )在(0,2)上是减函数,同理f (x )在(2,+∞)上是增函数.(2)解 f (x )在(0,+∞)上的最小值为f (x )min =f (2)=4,且f (x )在(0,+∞)上无最大值,∴f (x )在(0,+∞)上的值域为[4,+∞).17.(1)证明 设0<x 1<x 2,则f (x 1)-f (x 2)=(2x 1-1)-(2x 2-1) =2(x 2-x 1)x 1x 2, ∵0<x 1<x 2,∴x 1x 2>0,x 2-x 1>0,∴f (x 1)-f (x 2)>0,即f (x 1)>f (x 2),∴f (x )在(0,+∞)上是减函数.(2)解 设x <0,则-x >0,∴f (-x )=-2x-1, 又f (x )为偶函数,∴f (-x )=f (x )=-2x-1, 即f (x )=-2x-1(x <0). 18.解 f (x )=ax 3+bx -3的定义域为R .令g (x )=f (x )+3=ax 3+bx 的定义域为R .g (-x )=f (-x )+3=a (-x )3+b (-x )=-(ax 3+bx )=-g (x ),∴g (x )为R 上的奇函数,∴g (-3)=-g (3)=-[f (3)+3]=-8.19.解 (1)当x +2<0即x <-2时,f (x )=-(x +2)+x -3=-5,当x +2≥0即x ≥-2时,f (x )=x +2+x -3=2x -1,∴f (x )=⎩⎪⎨⎪⎧-5, x <-22x -1, x ≥-2. (2)y =f (x )的图象如图由图象知y =f (x )的单调增区间为[-2,+∞),值域为[-5,+∞).20.解 (1)令x =y =0,得f (0+0)=f (0)=f (0)+f (0)=2f (0),∴f (0)=0.令y =-x ,得f (0)=f (x )+f (-x )=0,∴f (-x )=-f (x ),∴f (x )为奇函数.(2)任取x 1<x 2,则x 2-x 1>0,∴f (x 2-x 1)<0,∴f(x2)-f(x1)=f(x2)+f(-x1)=f(x2-x1)<0,即f(x2)<f(x1)∴f(x)在R上是减函数.(3)∵f(x)在[-12,12]上是减函数,∴f(12)最小,f(-12)最大.又f(12)=f(6+6)=f(6)+f(6)=2f(6)=2[f(3)+f(3)]=4f(3)=-8,∴f(-12)=-f(12)=8.∴f(x)在[-12,12]上的最大值是8,最小值是-8.。
函数的应用章末复习考点一函数的零点与方程的根的综合例1(1)已知y=f(x)是定义域为R的奇函数,且当x>0时,f(x)=3x+x3-5,则函数y=f(x)的零点的个数为________.答案 3解析∵y=f(x)是定义域为R的奇函数,∴f(0)=0,即x=0是f(x)的一个零点.当x∈(0,+∞)时,f(x)=3x+x3-5单调递增.又f(1)=-1<0,f(2)=12>0,∴f(1)·f(2)<0,∴由零点存在性定理知f(x)在(0,+∞)上只有一个零点.故由奇函数的性质知f(x)在(-∞,0)上也只有一个零点.综上,f(x)共有3个零点.(2)函数f(x)=ln x+3x-2的零点的个数是________.答案 1解析由f(x)=ln x+3x-2=0,得ln x=2-3x,设g(x)=ln x,h(x)=2-3x,其图象如图所示,由图可知两个函数的图象有一个交点,故函数f(x)=ln x+3x-2有一个零点.反思感悟 (1)函数的零点与方程的根的关系:方程f (x )=0有实数根⇔函数y =f (x )的图象与x 轴有交点⇔函数y =f (x )有零点.(2)确定函数零点的个数有两个基本方法:利用图象研究与x 轴的交点个数或转化成两个函数图象的交点个数进行判断.跟踪训练1 若函数f (x )=2x -2x -a 的一个零点在区间(1,2)内,则实数a 的取值范围是( )A.(1,3)B.(1,2)C.(0,3)D.(0,2) 考点 函数零点存在性定理 题点 函数零点有关的参数取值范围 答案 C解析 显然f (x )在(0,+∞)上是增函数,由条件可知f (1)·f (2)<0,即(2-2-a )(4-1-a )<0, 即a (a -3)<0,解得0<a <3. 考点二 函数零点的应用例2 已知函数f (x )=⎩⎪⎨⎪⎧|x |,x ≤m ,x 2-2mx +4m ,x >m ,其中m >0.若存在实数b ,使得关于x 的方程f (x )=b 有三个不同的实数根,则m 的取值范围是________. 答案 (3,+∞)解析 画出函数f (x )的图象如图所示,由图可知,当方程f (x )=b 有三个不同的根时,有4m -m 2<m ,解得m >3或m <0(舍),故实数m 的取值范围是(3,+∞).反思感悟 解决此类题目通常用数形结合的方法.有的也可以通过解方程讨论来解决. 跟踪训练2 若函数f (x )=ax 2-x -1仅有一个零点,则实数a 的取值范围是________. 答案 ⎩⎨⎧⎭⎬⎫0,-14解析 当a =0时,f (x )=-x -1是一次函数,有一个零点;当a ≠0时,Δ=1+4a =0,得a =-14.综上知,a =0或a =-14.考点三 函数模型及应用例3 某上市股票在30天内每股的交易价格P (元)与时间t (天,t ∈N *)组成有序数对(t ,P ),点(t ,P )落在图中的两条线段上;该股票在30天内的日交易量Q (万股)与时间t (天)的部分数据如下表所示:第t 天 4 10 16 22 Q /万股36302418(1)根据提供的图象,写出该种股票每股交易价格P (元)与时间t (天)所满足的函数关系式; (2)根据表中数据确定日交易量Q (万股)与时间t (天)的一次函数关系式;(3)用y 表示该股票日交易额(万元),写出y 关于t 的函数关系式,并求在这30天中第几天日交易额最大,最大值是多少. 考点 函数模型的综合应用 题点 函数模型中的最值问题解 (1)P =⎩⎨⎧15t +2,0<t ≤20,-110t +8,20<t ≤30(t ∈N *).(2)设Q =at +b (a ,b 为常数且a ≠0),把(4,36),(10,30)代入得⎩⎪⎨⎪⎧4a +b =36,10a +b =30,所以⎩⎪⎨⎪⎧a =-1,b =40,经检验,符合题意.所以日交易量Q (万股)与时间t (天)的一次函数关系式为Q =-t +40,0<t ≤30,t ∈N *.(3)由(1)(2)可得y =⎩⎨⎧⎝⎛⎭⎫15t +2×(40-t ),0<t ≤20,⎝⎛⎭⎫-110t +8×(40-t ),20<t ≤30.即y =⎩⎨⎧-15(t -15)2+125,0<t ≤20,110(t -60)2-40,20<t ≤30(t ∈N *).当0<t ≤20时,y 有最大值y max =125万元,此时t =15; 当20<t ≤30时,y 随t 的增大而减少, y <110(20-60)2-40=120(万元). 所以,在30天中的第15天,日交易额取得最大值125万元.反思感悟 由于实际问题信息量大,有时还会出现一些陌生词,所以审题时要抓住主被动变量,围绕寻找主被动变量的关系去检索题目信息,搭建模型框架再逐步细化框架.跟踪训练3 如图所示,A ,B 两城相距100 km ,某天然气公司计划在两地之间建一天然气站D 给A ,B 两城供气.已知D 地距A 城x km ,为保证城市安全,天然气站距两城市的距离均不得小于10 km.已知建设费用y (万元)与A ,B 两地的供气距离的平方和成正比,当天然气站D 距A 城的距离为40 km 时,建设费用为1 300万元.(供气距离指天然气站距某城市的距离)(1)把建设费用y (万元)表示成供气距离x (km)的函数,并求其定义域; (2)天然气供气站建在距A 城多远,才能使建设费用最少?最少费用是多少? 解 (1)由题意知,D 地距B 地(100-x )km ,则⎩⎪⎨⎪⎧10≤100-x ,x ≥10,所以10≤x ≤90,即定义域为[10,90]. 设比例系数为k ,则y =k [x 2+(100-x )2](10≤x ≤90), 又当x =40时,y =1 300,所以1 300=k (402+602), 即k =14,所以y =14[x 2+(100-x )2]=12(x 2-100x +5 000)x ∈[10,90].(2)由于y =12(x 2-100x +5 000)=12(x -50)2+1 250,所以当x =50时,y 有最小值1 250,所以当供气站建在距A 城50 km 处时,才能使建设费用最少,最少费用是1 250万元.1.下列函数不存在零点的是( ) A.y =x -1xB.y =2x 2-x -1C.y =⎩⎪⎨⎪⎧x +1,x ≤0,x -1,x >0D.y =⎩⎪⎨⎪⎧x +1,x ≥0,x -1,x <0考点 函数零点的概念 题点 判断函数有无零点 答案 D解析 分别令y =0,A ,B ,C 均有解;对于D ,⎩⎪⎨⎪⎧ x ≥0,x +1=0或⎩⎪⎨⎪⎧x <0,x -1=0,无解.2.已知函数f (x )=6x -log 2x ,在下列区间中,包含f (x )的零点的区间是( )A.(0,1)B.(1,2)C.(2,4)D.(4,+∞)答案 C解析 f (x )在(0,+∞)上连续,且f (2)=2>0, f (4)=64-2=-12<0.3.若a <b <c ,则函数f (x )=(x -a )(x -b )+(x -b )(x -c )+(x -c )(x -a )的两个零点分别位于区间( )A.(a ,b )和(b ,c )内B.(-∞,a )和(a ,b )内C.(b ,c )和(c ,+∞)内D.(-∞,a )和(c ,+∞)内 考点 函数的零点与方程根的关系 题点 函数的零点与方程根的关系 答案 A解析 由题意a <b <c ,可得f (a )=(a -b )(a -c )>0,f (b )=(b -c )·(b -a )<0,f (c )=(c -a )(c -b )>0.显然f (a )·f (b )<0,f (b )·f (c )<0,所以该函数在(a ,b )和(b ,c )上均有零点,故选A. 4.设函数f (x )=log 3x +2x-a 在区间(1,2)内有零点,则实数a 的取值范围是________. 考点 函数零点存在性定理 题点 函数零点有关的参数取值范围 答案 (log 32,1)5.某辆汽车每次加油都把油箱加满,下表记录了该车相邻两次加油时的情况.注:“累计里程”指汽车从出厂开始累计行驶的路程. 在这段时间内,该车每100千米平均耗油量为______升. 考点 建立函数模型解决实际问题 题点 建立函数模型解决实际问题 答案 8解析 由表知:汽车行驶路程为35 600-35 000=600(千米),耗油量为48升,∴每100千米耗油量为8升.。
【关键字】高中2016-2017学年高中数学第三章指数函数和对数函数章末检测北师大版必修1班级__________ 姓名__________ 考号__________ 分数__________ 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷60分,第Ⅱ卷90分,共150分,考试时间120分钟.第Ⅰ卷(选择题共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一个选项是符合题目要求的.1.函数y=的值域是( )A.(0,1] B.[1,+∞)C.(0,1) D.(1,+∞)答案:A解析:由题意得0<≤0=1.2.已知函数f(x)=ln |x-1|,则f(x)( )A.在区间(-∞,1)和(1,+∞)上都是增函数B.在区间(-∞,1)上是增函数,在区间(1,+∞)上是减函数C.在区间(-∞,1)和(1,+∞)上都是减函数D.在区间(-∞,1)上是减函数,在区间(1,+∞)上是增函数答案:D解析:∵|x-1|在区间(-∞,1)上是减函数,在区间(1,+∞)上是增函数,y=ln x 在区间(0,+∞)上是增函数,所以f(x)在区间(-∞,1)上是减函数,在区间(1,+∞)上是增函数.3.若函数f(x)=,则f[f(-3)]=( )A.2 B.3C.4 D.5答案:B解析:f(-3)=(-3)2-1=8,所以f[f(-3)]=f(8)=log28=3.4.不等式x>x-1的解集是( )A.(-1,+∞) B.C.(-∞,-1) D.(-∞,-2)答案:C解析:2x<x-1,x<-1.5.已知a=log20.6,b=20.2,c=log2,则( )A.a<b<c B.b<a<cC.c<b<a D.a<c<b答案:D解析:∵a=log20.6<0,b=20.2>1,c=log2=,∴a<c<b.6.函数f(x)=的定义域是( )A. B.C. D.答案:A解析:log0.5(3-4x)≥0,0<3-4x≤1,≤x<.7.函数y=是奇函数,则实数a=( )A.1 B.0C.-1 D.任意实数答案:A解析:f(0)=(1-a)=0,∴a=1.16.如右图,开始时,桶1中有a L 水,t min 后剩余的水符合指数衰减曲线y 1=a e -nt,那么桶2中水就是y 2=a -a e -nt,假设过5 min 时,桶1和桶2的水相等,则再过________ min 桶1中的水只有a8L.答案:10解析:由题意,5 min 后,y 1=a e -5n,y 2=a -a e-5n,y 1=y 2,∴n =15ln2.设再过t min桶1中的水只有a8L ,则y 1=a e-n (5+t )=a8,解得t =10. 三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(10分)(1)计算:3-63+41-34+80.25×42+125÷425.(2)lg 14-2lg 73+lg 7-lg 18.解:(1)原式=-6+(3-1)+(23)14×214+53224-=-6+3-1+2+5= 3.(2)解法一:lg 14-2lg 73+lg 7-lg 18=lg (2×7)-2(lg 7-lg 3)+lg 7-lg (32×2)=lg 2+lg 7-2lg 7+2lg 3+lg 7-2lg 3-lg 2=0.解法二:lg 14-2lg 73+lg 7-lg 18=lg 14-lg ⎝ ⎛⎭⎪⎫732+lg 7-lg 18=lg 14×7⎝ ⎛⎭⎪⎫732×18=lg 1=0.18.(12分)现有命题P 和Q 如下. P :函数y =c x 在R 上单调递减.Q :函数f (x )=ln(2x 2+4x +1c)的值域为R .如果P 和Q 中有且只有一个命题是真命题,求非负实数c 的取值范围.解:函数y =c x在R 上单调递减⇔0<c <1.函数f (x )=ln(2x 2+4x +1c )的值域为R ⇔Δ=42-4×2·1c ≥0,所以1c≤2,又c >0,所以c ≥12.根据题设可知,命题P 和Q 有且仅有一个正确.(1)如果P 正确,Q 不正确,则0<c <12;(2)如果Q 正确,P 不正确,则c ≥1.所以,正数c 的取值范围为(0,12)∪[1,+∞).19.(12分)已知函数f (x )=⎝ ⎛⎭⎪⎫12x -1+a x ,a ∈R . (1)求函数的定义域;(2)是否存在实数a ,使得f (x )为偶函数.解:(1)由2x-1≠0,得x ≠0,即函数定义域为(-∞,0)∪(0,+∞).(2)在定义域内任取x ,由f (x )-f (-x )=0得⎝ ⎛⎭⎪⎫12x -1+a x -⎝ ⎛⎭⎪⎫12-x -1+a (-x )=0. 所以2a =-12-x -1-12x -1=1,解得a =12.存在实数a =12,使得f (x )-f (-x )=0成立,即使得f (x )为偶函数.20.(12分)已知函数f (x )=log 2(1-x ),g (x )=log 2(x +1),设F (x )=f (x )-g (x ). (1)判断函数F (x )的奇偶性; (2)证明函数F (x )是减函数.解:(1)F (x )=f (x )-g (x )=log 2(1-x )-log 2(x +1)=log 21-x1+x.由⎩⎪⎨⎪⎧1-x >0,x +1>0,得-1<x <1.∴函数F (x )的定义域为(-1,1).∴函数F (x )的定义域关于原点对称,又∵F (-x )=log 21+x 1-x =-log 21-x1+x=-F (x ).∴函数F (x )为奇函数.(2)由(1)知函数F (x )的定义域为(-1,1),任取-1<x 1<x 2<1,则log 2⎝ ⎛⎭⎪⎫1-x 11+x 1-log 2⎝ ⎛⎭⎪⎫1-x 21+x 2=log 21-x 11+x 21+x 11-x 2=log 2⎝ ⎛⎭⎪⎫1-x 1+x 2-x 1x 21+x 1-x 2-x 1x 2. 又(1-x 1+x 2-x 1x 2)-(1+x 1-x 2-x 1x 2)=2(x 2-x 1)>0,所以1-x 1+x 2-x 1x 21+x 1-x 2-x 1x 2>1,所以log 2⎝ ⎛⎭⎪⎫1-x 11+x 1-log 2⎝ ⎛⎭⎪⎫1-x 21+x 2>0,即log 2⎝ ⎛⎭⎪⎫1-x 11+x 1>log 2⎝ ⎛⎭⎪⎫1-x 21+x 2,所以函数F (x )是减函数.21.(12分)求函数y =(12)212x x +-的值域和单调区间.解:令t =1+2x -x 2,则y =⎝ ⎛⎭⎪⎫12t,而t =-(x -1)2+2≤2,所以y =⎝ ⎛⎭⎪⎫12t ≥⎝ ⎛⎭⎪⎫122=14.即所求的函数的值域是[14,+∞).函数y =⎝ ⎛⎭⎪⎫12212x x +-在(-∞,1]上是减函数,在(1,+∞)上是增函数.22.(12分)已知函数f (x )=log a 1-m x -2x -3(a >0,a ≠1),对定义域内的任意x 都有f (2-x )+f (2+x )=0成立.(1)求实数m 的值;(2)若当x ∈(b ,a )时,f (x )的取值范围恰为(1,+∞),求实数a ,b 的值.解:(1)由f (x )=log a 1-m x -2x -3及f (2-x )+f (2+x )=0对定义域内任意x 都成立,可得:log a 1-m [2-x -2]2-x -3+log a 1-m [2+x -2]2+x -3=0.解得m =±1.当m =1时,函数f (x )无意义,所以,只有m =-1.(2)m =-1时,f (x )=log a 1-m x -2x -3=log a x -1x -3(a >0,a ≠1),其定义域为(-∞,1)∪(3,+∞).所以,(b ,a )⊆(-∞,1)或(b ,a )⊆(3,+∞). ①若(b ,a )⊆(3,+∞),则3≤b <a . 为研究x ∈(b ,a )时f (x )的值域,可考虑f (x )=log a x -1x -3在(3,+∞)上的单调性.下证f (x )在(3,+∞)上单调递减. 任取x 1,x 2∈(3,+∞),且x 1<x 2,则 x 1-1x 1-3-x 2-1x 2-3=2x 2-x 1x 1-3x 2-3>0. 又a >1,所以log a x 1-1x 1-3>log a x 2-1x 2-3,即f (x 1)>f (x 2).所以当(b ,a )⊆(3,+∞)时,f (x )在(3,+∞)上单调递减.由题:当x ∈(b ,a )时,f (x )的取值范围恰为(1,+∞),所以,必有b =3且f (a )=1,解得a =2+3(因为a >3,所以舍去a =2-3).②若(b ,a )⊆(-∞,1),则b <a ≤1.又由于a >0,a ≠1,所以0<a <1. 此时,同上可证f (x )在(-∞,1)上单调递增(证明过程略).所以,f (x )在(b ,a )上的取值范围为(f (b ),f (a )),而f (a )为常数,故f (x )的取值范围不可能恰为(1,+∞).所以,在这种情况下,a ,b 无解.综上,符合题意的实数a ,b 的值为a =2+3,b =3.此文档是由网络收集并进行重新排版整理.word 可编辑版本!。
章末知识整合一 指数、对数的基本运算[例1] 计算:(1)⎝ ⎛⎭⎪⎫-780+⎝ ⎛⎭⎪⎫18-13+ 4(3-π)4=________.(2)已知函数f (x )=lg x ,若f (ab )=1,则f (a 2)+f (b 2)=________.解析:(1)原式=1+813+|3-π|=1+2+π-3=π. (2)因为f (a 2)+f (b 2)=lg a 2+lg b 2=lg a 2b 2, 又f (ab )=lg ab =1,所以lg a 2b 2=2lg ab =2. 答案:(1)π (2)2 规律方法1.指数与指数运算、对数与对数运算是两个重要的知识点,不仅是考查的重要问题类型,也是高考的常考内容.主要考查指数和对数的运算性质,以客观题为主.2.(1)指数式的运算首先注意化简顺序,一般负指数先转化成正指数,根式化为指数运算.(2)对数运算首先注意公式应用过程中范围的变化,前后要等价,熟练地运用对数的三个运算性质并结合对数恒等式,换底公式进行对数计算、化简.[即时演练] 1.计算:(1)(2014·安徽卷)⎝ ⎛⎭⎪⎫1681-34+log 354+log 345=________.(2)(2015·浙江卷)2log 23+log 43=________. 解析:(1)原式=⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫234-34+log 3⎝ ⎛⎭⎪⎫54×45=⎝ ⎛⎭⎪⎫23-3+log 31=⎝ ⎛⎭⎪⎫323+0=278.(2)原式=2log 23+log 23=2log 2(33)=3 3. 答案:(1)278 (2)3 3二 幂函数的图象与性质[例2] 已知幂函数f (x )=xm 2-2m -3(m ∈N *)的图象关于y 轴对称,且在(0,+∞)上函数值随着x 的增大而减小,求满足(a +1)-m2<(3-2a )-m2的a 的取值范围.解:因为函数f (x )在(0,+∞)上的函数值随着x 的增大而减小, 所以m 2-2m -3<0.利用二次函数的图象可得-1<m <3. 又m ∈N *,所以m =1,2. 又函数图象关于y 轴对称, 所以m 2-2m -3为偶数,故m =1. 所以所以有(a +1)-12<(3-2a )-12.又因为y =x -12的定义域为(0,+∞),且在(0,+∞)上是减函数, 所以有⎩⎪⎨⎪⎧a +1>0,3-2a >0,a +1>3-2a ,解得23<a <32.故实数a 的取值范围是⎩⎨⎧⎭⎬⎫a ⎪⎪⎪23<a <32. 规律方法1.幂函数y =x n 的图象,关键是根据n 的取值,确定第一象限的情况,然后再由定义域及奇偶性进一步确定幂函数在其他象限的图象.2.幂函数中的参数问题,要依据题设条件列出指数中参数所含的方程或不等式,求出参数,然后再利用幂函数的图象和相关的性质进行计算检验.[即时演练] 2.已知幂函数f (x )=x (m 2+m )-1(m ∈N *). (1)试确定函数的定义域,并指明该函数的单调性; (2)若该函数的图象经过点(2,2),求函数的解析式. 解:(1)m 2+m =m (m +1),m ∈N *, 而m 与m +1中必有一个为偶数, 所以m (m +1)为偶数.所以函数f (x )=x (m 2+m )-1(m ∈N *)的定义域为[0,+∞),并且在定义域上为增函数.(2)因为函数f (x )经过点(2,2),所以2=2(m 2+m )-1,即212=2(m 2+m )-1. 所以m 2+m =2.解得m =1或m =-2. 又因为m ∈N *,所以m =1.因此函数f (x )=x 12.三 指数函数与对数函数的图象与性质 [例3] 已知函数f (x )=log 12ax -2x -1(a 为常数). (1)若常数a <2且a ≠0,求f (x )的定义域;(2)若f (x )在区间(2,4)上是减函数,求实数a 的取值范围. 解:(1)由题意,ax -2x -1>0,即(x -1)(ax -2)>0.当0<a <2时,2a >1.解不等式得x <1或x >2a .当a <0时,解得2a<x <1.故当a <0时,定义域为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪2a <x <1;当0<a <2时,定义域为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x <1或x >2a .(2)令u =ax -2x -1,因为f (x )=log 12u 为减函数,故要使f (x )在(2,4)上是减函数,只需函数u (x )=ax -2x -1=a +a -2x -1, 在(2,4)上单调递增且为正.故由⎩⎨⎧a-2<0,u(2)=2a-22-1≥0,解得1≤a<2.所以实数a的取值范围为[1,2).规律方法1.求解f(x)的定义域,注意a的取值影响,要进行分类讨论.2.第(2)问中,逆用“对数型”复合函数的性质,在脱去对数符号时,其真数一定要大于0,从而u(2)≥0得到关于a的不等式组.[即时演练] 3.已知函数f(x)是定义在R上的偶函数,当x≥0时,f(x)=⎝⎛⎭⎪⎫12x.(1)画出函数f(x)的图象;(2)根据图象写出f(x)的单调区间,并写出函数的值域.解:(1)先作出当x≥0时,f(x)=⎝⎛⎭⎪⎫12x的图象,利用偶函数的图象关于y轴对称,再作出f(x)在x∈(-∞,0)时的图象.(2)函数f(x)的单调递增区间为(-∞,0),单调递减区间为[0,+∞),值域为(0,1].四 函数模型的实际应用[例4] 甲、乙两人连续6年对某县农村甲鱼养殖业的规模(产量)进行调查,提供了两个方面的信息如图甲和图乙所示.甲调查表明:每个甲鱼池平均出产量从第一年1万只甲鱼上升到第六年2万只.乙调查表明:甲鱼池个数由第一年30个减少到第六年10个,请你根据提供的信息说明.图甲 图乙(1)第二年甲鱼池的个数及全县出产甲鱼总数;(2)到第六年这个县的甲鱼养殖业的规模比第一年是扩大了还是缩小了?说明理由;(3)哪一年的规模最大?说明理由.解:(1)由题图可知,直线y 甲=kx +b ,经过(1,1)和(6,2).可求得k =0.2,b =0.8.所以y 甲=0.2(x +4).故第二年甲鱼池的产量为1.2万只.同理可得y 乙=4⎝ ⎛⎭⎪⎫-x +172.故第二年甲鱼池的个数为26个,全县出产甲鱼的总数为26×1.2=31.2(万只).(2)规模缩小,原因是:第一年出产甲鱼总数30万只,而第6年出产甲鱼总数为20万只.(3)设第x 年规模最大,即求y 甲·y 乙=0.2(x +4)·4⎝⎛⎭⎪⎫-x +172=-0.8x 2+3.6x +27.2的最大值.当x =- 3.62×(-0.8)=214≈2时,y 甲·y 乙=-0.8×4+3.6×2+27.2=31.2(万只)最大. 即第二年规模最大,甲鱼产量为31.2万只.[即时演练] 4.某汽车公司曾在2014年初公告:2014年销量目标为39.3万辆;且该公司董事长极力表示有信心完成这个销量目标.已知2011年,某汽车年销量8万辆;2012年,某汽车年销量18万辆;2013年,某汽车年销量30万辆.如果我们分别将2011,2012,2013,2014年定义为第一、第二、第三、第四年,现在有两个函数模型:二次函数型f (x )=ax 2+bx +c (a ≠0),指数函数型g (x )=a ·b x +c (a ≠0,b ≠1,b >0),哪个模型能更好地反映该公司年销量y 与第x 年的关系?解:建立年销量y (万辆)与第x 年的函数,可知函数图象必过点(1,8),(2,18),(3,30).(1)构造二次函数型f (x )=ax 2+bx +c (a ≠0),将点的坐标代入,可得⎩⎪⎨⎪⎧a +b +c =8,4a +2b +c =18,9a +3b +c =30,解得⎩⎪⎨⎪⎧a =1,b =7,c =0.则f (x )=x 2+7x ,故f (4)=44,与计划误差为4.7. (2)构造指数函数型g (x )=a ·b x +c ,将点的坐标代入,可得⎩⎪⎨⎪⎧ab +c =8,ab 2+c =18,ab 3+c =30,解得⎩⎪⎨⎪⎧a =1253,b =65,c =-42.则g (x )=1253×⎝ ⎛⎭⎪⎫65x-42,故g (4)=1253×⎝ ⎛⎭⎪⎫654-42=44.4,与计划误差为5.1.由上可得,f (x )=x 2+7x 模型能更好地反映该公司年销量y (万辆)与第x 年的关系.五 转化与数形结合思想[例5] 当a 为何值时,函数y =7x 2-(a +13)x +a 2-a -2的一个零点在区间(0,1)上,另一个零点在区间(1,2)上?解:已知函数对应的方程为7x 2-(a +13)x +a 2-a -2=0, 函数的大致图象如图所示.根据方程的根与函数的零点的关系,方程的根一个在(0,1)上,另一个在(1,2)上,则:⎩⎪⎨⎪⎧f (0)>0,f (1)<0,f (2)>0,即⎩⎪⎨⎪⎧a 2-a -2>0,a 2-2a -8<0,a 2-3a >0,解得⎩⎪⎨⎪⎧a <-1或a >2,-2<a <4,a <0或a >3,所以-2<a <-1或3<a <4. 规律方法1.转化是将数学命题由一种形式转向另一种形式的转换过程;化归是将待解决的问题通过某种转化的过程,归结为一类已解决或比较容易解决的问题.2.在解决函数问题时,常进行数与形或数与数的转化,从而达到解决问题的目的.[即时演练] 5.(2015·湖南卷)若函数f (x )=|2x -2|-b 有两个零点,则实数b 的取值范围是________.解析:函数f (x )=|2x -2|-b 有两个零点,等价于函数y =|2x -2|与y =b 的图象有两个不同的交点.在同一坐标系中作出y =|2x -2|与y =b 的图象(如图所示). 由图象知,两图象有2个交点,则0<b <2.答案:{b|0<b<2}。
(本栏目内容,在学生用书中以活页形式分册装订)一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列函数中不能用二分法求零点的是( ) A .f (x )=2x -1 B .f (x )=ln x +2x -6C .f (x )=x 2-4x +4 D .f (x )=3x -1解析: 选项A 、B 、D 中函数都是单调函数,故能用二分法求零点,选项C 中函数具有二重零根,故不能用二分法求零点,故选C.答案: C2.函数f (x )=e x -1x的零点所在的区间是( )A.⎝⎛⎭⎫0,12B.⎝⎛⎭⎫12,1C.⎝⎛⎭⎫1,32D.⎝⎛⎭⎫32,2 解析: f ⎝⎛⎭⎫12=e -2<0,f (1)=e -1>0,∵f ⎝⎛⎭⎫12·f (1)<0, ∴f (x )的零点在区间⎝⎛⎭⎫12,1内,故选B. 答案: B3.如果二次函数y =x 2+mx +(m +3)有两个不同的零点,则m 的取值范围是( ) A .(-2,6) B .[-2,6] C .{-2,6} D .(-∞-2)∪(6,+∞)解析: 若函数y =x 2+mx +(m +3)有两个不同的零点,则方程x 2+mx +(m +3)=0有两个不相等的实数根,从而应有Δ=m 2-4(m +3)>0. 故m <-2或m >6.故选D. 答案: D4.下列函数增长速度最快的是( )A .y =1100e x B .y =100ln xC .y =x 100D .y =100·2x解析: 通过三类函数增长的情况比较知:指数函数当底数大于1时,增长速度最快,∵e>2,∴y =1100e x 的增长速度最快,故选A.答案: A5.下列给出的四个函数f (x )的图象中能使函数y =f (x )-1没有零点的是( )解析: 把y =f (x )的图象向下平移1个单位后,只有C 图中图象与x 轴无交点.故选C. 答案: C6.方程2x -x 2=0的解的个数是( ) A .1 B .2 C .3 D .4解析:y=2x与y=x2的交点个数即为方程2x-x2=0的解的个数.如图所示x=2时,22=4x=4时,24=42x<0时,y=2x与y=x2有一个交点,共3个交点.答案: C7.某林区的森林面积每年比上一年平均增长10.4%,要增长到原来的x倍,需经过y年,则函数y=f(x)的图象大致为()解析:由题意得(1+10.4%)y=x,∴y=log1.104x(y≥0).答案: D8.当x∈(4,+∞)时,f(x)=x2,g(x)=2x,h(x)=log2x的大小关系是()A.f(x)>g(x)>h(x) B.g(x)>f(x)>h(x)C.g(x)>h(x)>f(x) D.f(x)>h(x)>g(x)解析:在同一坐标系中,画出三个函数的图象,如下图所示.当x=2时,f(x)=g(x)=4,当x=4时,f(x)=g(x)=16,当x>4时,g(x)图象在最上方,h(x)图象在最下方,故g(x)>f(x)>h(x).故选B.答案: B9.某商店迎来店庆,为了吸引顾客,采取“满一百送二十,连环送”的酬宾促销方式,即顾客在店内花钱满100元(可以是现金,也可以是奖励券或二者合计),就送20元奖励券;满200元,就送40元奖励券;满300元,就送60元奖励券;…;当日花钱最多的一位顾客共花出现金70 040元,如果按照酬宾促销方式,他最多能得到优惠()A.17 000元B.17 540元C.17 500元D.17 580元解析:这位顾客花的70 000元可得奖励券700×20=14 000(元),只有这位顾客继续把奖励券消费掉,才能得到最多优惠,但当他把14 000元奖励券消费掉可得140×20=2 800元奖励券再消费又可得到28×20=560(元)奖励券,560元消费再加上先前70 040中的40元共消费600元应得奖励券6×20=120元,120元奖励券消费时又得20元奖励券.∴他总共会得到14 000+2 800+560+120+20=17 500(元)优惠.答案: C10.一个体户有一批货,如果月初售出可获利1 000元,再将本利都存入银行,已知银行月息为2.4%;如果月末售出可获利1 200元,但要付50元保管费,这个个体户若要获得最大收益,则这批货( )A .月初售出好B .月末售出好C .月初或月末一样D .由成本费的大小确定解析: 设这批货成本为a 元,月初售出可收益(a +1 000)×(1+2.4%)(元), 月末售出可收益a +1 200-50=a +1 150(元). 令(a +1 000)×1.024-a -1 150 =0.024a -126.当a >1260.024=5 250时,月初售出好;当a <5 250时,月末售出好;当a =5 250时,月初、月末收益相等,但月末售出还要保管一个月,应选择月初售出. 答案: D二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中横线上) 11.若关于x 的方程x 2-x -(m +1)=0在[-1,1]上有解,则m 的取值范围是________. 解析: 方程可化为m =x 2-x -1,x ∈[-1,1], 即要求f (x )=x 2-x -1,x ∈[-1,1]的值域.∵f (x )∈⎣⎡⎦⎤-54,1, ∴m ∈⎣⎡⎦⎤-54,1时方程必有解. 答案: ⎣⎡⎦⎤-54,1 12.函数f (x )=(x 2-2)(x 2-3x +2)的零点为________. 解析: 由f (x )=(x 2-2)(x 2-3x +2)=0得 x =±2或x =1或x =2.∴函数f (x )的零点为-2,1,2,2. 答案: -2,1,2,213.某商家一月份至五月份累计销售额达3 860万元,预测六月份销售额为500万元,七月份销售额比六月份递增x %,八月份销售额比七月份递增x %,九、十月份销售总额与七、八月份销售总额相等,若一月份至十月份销售总额至少达7000万元,则x 的最小值是________.解析: 由题意知:3 860+500+1 000[(1+x %)+(1+x %)2]≥7 000 ∴x 2+300x -6 400≥0 ∴x ≥20 答案: 2014.对于任意定义在R 上的函数f (x ),若实数x 0满足f (x 0)=x 0,则称x 0是函数f (x )的一个不动点.已知实数a ∈(4,5),则函数f (x )=x 2+ax +1的不动点共有________个.解析: 由定义,令x 2+ax +1=x ,则x 2+(a -1)x +1=0.当a ∈(4,5)时,Δ=(a -1)2-4>0,所以方程有两根,相应地,f (x )=x 2+ax +1(a ∈(4,5))有2个不动点.答案: 2三、解答题(本大题共4个小题,共50分,解答时应写出必要的文字说明、证明过程或演算步骤)15.(本小题满分12分)用二分法求函数f (x )=x 3-x -1在区间(1,1.5)内的一个零点(精确到0.1).解析: 由于f (1)=1-1-1=-1<0,f (1.5)=1.53-1.5-1=0.875>0,∴f (x )在区间(1,1.5)∵区间0.1的零点近似值为1.3.16.(本小题满分12分)有时可用函数f (x )=⎩⎪⎨⎪⎧0.1+15ln aa -x,x ≤6,x -4.4x -4,x >6.描述学习某学科知识的掌握程度.其中x 表示某学科知识的学习次数(x ∈N +),f (x )表示对该学科知识的掌握程度,正实数a 与学科知识有关.(1)证明:当x ≥7时,掌握程度的增长量f (x +1)-f (x )总是下降; (2)根据经验,学科甲、乙、丙对应的a 的取值区间分别为(115,121],(121,127],(127,133].当学习某学科知识6次时,掌握程度是85%,请确定相应的学科.(参考数据e 0.05≈1.051)解析: (1)当x ≥7时,f (x +1)-f (x )=0.4(x -3)(x -4).而当x ≥7时,函数y =(x -3)(x -4)单调递增, 且(x -3)·(x -4)>0.故函数f (x +1)-f (x )单调递减.所以当x ≥7时,掌握程度的增长量f (x +1)-f (x )总是下降.(2)由题意可知0.1+15ln aa -6=0.85,整理得aa -6=e 0.05,解得a =e 0.05e 0.05-1·6≈20.50×6=123.0,且123.0∈(121,127].由此可知,该学科是乙学科.17.(本小题满分12分)某地区2000年底沙漠面积为95万公顷,为了解该地区沙漠面积的变化情况,进行了连续5年的观测,并将每年年底的观测结果记录如下表,根据此表所给的信息进行预测:(1)如果不采取任何措施,那么到2015年底,该地区的沙漠面积将大约变为多少万公顷; (2)如果从2005年底后采取植树造林措施,每年改造0.6万公顷的沙漠,那么到哪一年年y =kx +b 的图象.将x =1,y =0.2与x =2,y =0.4代入y =kx +b ,求得k =0.2,b =0,所以y =0.2x (x ∈N ).因为原有沙漠面积为95万公顷,则到2015年底沙漠面积大约为95+0.2×15=98(万公顷).(2)设从2001年算起,第x 年年底该地区沙漠面积能减少到90万公顷,由题意,得95+0.2x -0.6(x -5)=90,解得x =20(年).故到2020年底,该地区沙漠面积将减少到90万公顷.18.(本小题满分14分)设函数f (x )=ax 2+(b -8)x -a -ab 的两个零点分别是-3和2; (1)求f (x );(2)当函数f (x )的定义域是[0,1]时,求函数f (x )的值域. 解析: (1)∵f (x )的两个零点是-3和2,∴函数图象过点(-3,0)、(2,0), ∴有9a -3(b -8)-a -ab =0,① 4a +2(b -8)-a -ab =0.② ①-②得b =a +8.③③代入②得4a +2a -a -a (a +8)=0,即a 2+3a =0. ∵a ≠0,a =-3,∴b =a +8=5. ∴f (x )=-3x 2-3x +18.(2)由(1)得f (x )=-3x 2-3x +18=-3⎝⎛⎭⎫x +122+34+18,图象的对称轴方程是x =-12,又0≤x ≤1,∴f min (x )=f (1)=12,f max (x )=f (0)=18, ∴函数f (x )的值域是[12,18].。
章末检测
一、选择题
1.下列函数中,在区间(0,+∞)上为增函数的是
( )
A .y =ln(x +2)
B .y =-x +1
C .y =⎝⎛⎭⎫12x
D .y =x +1
x
2.若a<1
2,则化简
4-2的结果是
( ) A.2a -1
B .-2a -1 C.1-2a D .-1-2a 3.函数y =lg x +lg(5-3x)的定义域是
( )
A .[0,53)
B .[0,53]
C .[1,5
3
)
D .[1,5
3
]
4.已知集合A ={x|y =lg(2x -x 2)},B ={y|y =2x ,x>0},R 是实数集,则∁R B∩A 等于( ) A .[0,1]
B .(0,1]
C .(-∞,0]
D .以上都不对 5.幂函数的图象过点⎝⎛⎭⎫2,1
4,则它的单调递增区间是
( )
A .(0,+∞)
B .[0,+∞)
C .(-∞,0)
D .(-∞,+∞) 6.函数y =2+log 2(x 2+3)(x≥1)的值域为
( )
A .(2,+∞)
B .(-∞,2)
C .[4,+∞)
D .[3,+∞)
7.比较1.513.1、23.1、21
3.1的大小关系是
( )
A .23.1<213.1<1.513.1
B .1.513.1<23.1<213.1
C .1.513.1<21
3.1
<23.1
D .213.1<1.51
3.1<23.1
8.函数y =a x -1
a
(a>0,且a≠1)的图象可能是
( )
9.若0<x<y<1,则
( )
A .3y <3x
B .log x 3<log y 3
C .log 4x<log 4y
D .(14)x <(14
)y
10.若偶函数f(x)在(-∞,0)内单调递减,则不等式f(-1)<f(lg x)的解集是
( )
A .(0,10)
B .(110,10)
C .(110,+∞)
D .(0,1
10
)∪(10,+∞)
11.若函数f(x)=⎩⎪⎨⎪⎧
log 2
x , x>0,log 12
-, x<0,若f(a)>f(-a),则实数a 的取值范围是 ( )
A .(-1,0)∪(0,1)
B .(-∞,-1)∪(1,+∞)
C .(-1,0)∪(1,+∞)
D .(-∞,-1)∪(0,1)
12.已知函数f(x)=log 12
(4x -2x +
1+1)的值域为[0,+∞),则它的定义域可以是 ( )
A .(0,1]
B .(0,1)
C .(-∞,1]
D .(-∞,0]
二、填空题
13.函数f(x)=a x -
1+3的图象一定过定点P ,则P 点的坐标是________.
14.函数f(x)=log 5(2x +1)的单调增区间是________.
15.设函数f(x)是定义在R 上的奇函数,若当x ∈(0,+∞)时,f(x)=lg x ,则满足f(x)>0的x 的取值范围是
______________.
16.定义:区间[x 1,x 2](x 1<x 2)的长度为x 2-x 1.已知函数y =|log 0.5x|的定义域为[a ,b],值域为[0,2],则区间[a ,b]
的长度的最大值为________. 三、解答题
17.已知幂函数y =xm 2-2m(m ∈Z )的图象与x 轴、y 轴都无交点,且关于原点对称,求m 的值.
18.已知f(x)为定义在[-1,1]上的奇函数,当x ∈[-1,0]时,函数解析式为f(x)=14x -a
2
x (a ∈R ).
(1)写出f(x)在[0,1]上的解析式;
(2)求f(x)在[0,1]上的最大值.
19.已知x>1且x≠4
3
,f(x)=1+log x 3,g(x)=2log x 2,试比较f(x)与g(x)的大小.
20.2011年我国国内生产总值(GDP)为471 564亿元,如果我国的GDP 年均增长7.8%左右,按照这个增长速度,
在2011年的基础上,经过多少年后,我国GDP 才能实现比2000年翻两番的目标?(lg 2≈0.301 0,lg 1.078≈0.032 6结果保留整数). 21.已知函数f(x)=2x -12
|x|.
(1)若f(x)=2,求x 的值;
(2)若2t f(2t)+mf(t)≥0对于t ∈[1,2]恒成立,求实数m 的取值范围. 22.已知常数a 、b 满足a>1>b>0,若f(x)=lg(a x -b x ).
(1)求y =f(x)的定义域;
(2)证明:y =f(x)在定义域内是增函数;
(3)若f(x)恰在(1,+∞)内取正值,且f(2)=lg 2,求a 、b 的值.
答案
1.A 2.C 3.C 4.B 5.C 6.C 7.D 8.D 9.C 10.D 11.C 12.A
13.(1,4) 14.⎝⎛⎭⎫-1
2,+∞ 15.(-1,0)∪(1,+∞) 17.解: ∵幂函数y =xm 2-2m(m ∈Z )的图象与x 轴、y 轴都无交点,∴m 2-2m≤0,∴0≤m≤2; ∵m ∈Z ,∴m 2-2m ∈Z , 又函数图象关于原点对称, ∴m 2-2m 是奇数,∴m =1. 18.解: (1)∵f(x)为定义在[-1,1]上的奇函数,且f(x)在x =0处有意义, ∴f(0)=0,
即f(0)=140-a
2
0=1-a =0.∴a =1.
设x ∈[0,1],则-x ∈[-1,0]. ∴f(-x)=14-x -1
2-x =4x -2x .
又∵f(-x)=-f(x), ∴-f(x)=4x -2x . ∴f(x)=2x -4x .
(2)当x ∈[0,1]时,f(x)=2x -4x =2x -(2x )2, ∴设t =2x (t>0),则f(t)=t -t 2.
∵x ∈[0,1],∴t ∈[1,2].当t =1时,取最大值,最大值为1-1=0.
19.解:f(x)-g(x)=1+log x 3-2log x 2=1+log x 34=log x 34x ,当1<x<43时,34x<1,∴log x 34x<0;当x>43时,34x>1,∴log x
3
4
x>0. 即当1<x<43时,f(x)<g(x);当x>4
3时,f(x)>g(x).
20.解: 假设经过x 年实现GDP 比2000年翻两番的目标,根据题意,得471 564×(1+7.8%)x =471 564×4,
即1.078x =4,故x =log 1.078 4=lg 4
lg 1.078
≈18.5.答:约经过19年以后,我国GDP 才能实现比2000年翻两番的目标.
21.解: (1)当x<0时,f(x)=0;当x≥0时,f(x)=2x -12x . 由条件可知2x -1
2x =2,即22x -2·2x -1=0,
解得2x =1±2. ∵2x >0,∴x =log 2(1+2).
(2)当t ∈[1,2]时,2t (22t -122t )+m(2t -1
2
t )≥0, 即m(22t -1)≥-(24t -1).
∵22t -1>0,∴m≥-(22t +1).∵t ∈[1,2],∴-(1+22t )∈[-17,-5],故m 的取值范围是[-5,+∞).
22.(1)解: ∵a x -b x >0,∴a x >b x , ∴(a b )x >1.∵a>1>b>0,∴a b >1. ∴y =(a
b
)x 在R 上递增.
∵(a b )x >(a
b )0,∴x>0.∴f(x)的定义域为(0,+∞). (2)证明 设x 1>x 2>0,∵a>1>b>0,∴ax 1>ax 2>1,0<bx 1<bx 2<1. ∴-bx 1>-bx 2>-1.∴ax 1-bx 1>ax 2-bx 2>0. 又∵y =lg x 在(0,+∞)上是增函数, ∴lg(ax 1-bx 1)>lg(ax 2-bx 2), 即f(x 1)>f(x 2). ∴f(x)在定义域内是增函数. (3)解 由(2)得,f(x)在定义域内为增函数,又恰在(1,+∞)内取正值,∴f(1)=0.又f(2)=lg 2,
∴⎩⎪⎨⎪⎧ -=0,2-b 2=lg 2.∴⎩
⎪⎨⎪⎧
a -
b =1,
a 2-
b 2
=2.解得⎩
⎨⎧
a =32,
b =12
.。