备考2019年高考物理一轮复习文档:第五章 第2讲 动能定理及其应用 讲义 Word版含解析
- 格式:doc
- 大小:221.50 KB
- 文档页数:15
第二讲动能定理及其应用[小题快练]1.判断题(1)一定质量的物体动能变化时,速度一定变化,但速度变化时,动能不一定变化.( √ )(2)动能不变的物体一定处于平衡状态.( × )(3)如果物体所受的合外力为零,那么合外力对物体做功一定为零.( √ )(4)物体在合外力作用下做变速运动时,动能一定变化.( × )(5)物体的动能不变,所受的合外力必定为零.( × )(6)做自由落体运动的物体,动能与时间的二次方成正比.( √ )2.(多选)关于动能定理的表达式W=E k2-E k1,下列说法正确的是( BC )A.公式中的W为不包含重力的其他力做的总功B.公式中的W为包含重力在内的所有力做的功,也可通过以下两种方式计算:先求每个力的功再求功的代数和或先求合外力再求合外力的功C.公式中的E k2-E k1为动能的增量,当W>0时动能增加,当W<0时,动能减少D.动能定理适用于直线运动,但不适用于曲线运动,适用于恒力做功,但不适用于变力做功3.NBA篮球赛非常精彩,吸引了众多观众.比赛中经常有这样的场面:在临终场0.1 s的时候,运动员把球投出且准确命中,获得比赛的胜利.若运动员投篮过程中对篮球做功为W,出手高度为h1,篮筐的高度为h2,球的质量为m,空气阻力不计,则篮球进筐时的动能为( C ) A.mgh1+mgh2-WB.mgh2-mgh1-WC.W+mgh1-mgh2D.W+mgh2-mgh1考点一 动能定理的理解及应用 (自主学习)1.动能定理公式中体现的“三个关系”(1)数量关系:即合力所做的功与物体动能的变化具有等量代换关系.可以通过计算物体动能的变化,求合力做的功,进而求得某一力做的功. (2)单位关系:等式两侧物理量的国际单位都是焦耳. (3)因果关系:合力做的功是引起物体动能变化的原因. 2.对“外力”的理解动能定理叙述中所说的“外力”,既可以是重力、弹力、摩擦力,也可以是电场力、磁场力或其他力.3.应用动能定理的“四点注意”(1)动能定理中的位移和速度必须是相对于同一个参考系的,一般以地面或相对地面静止的物体为参考系.(2)动能定理的表达式是一个标量式,不能在某方向上应用动能定理.(3)动能定理往往用于单个物体的运动过程,由于不涉及加速度和时间,比动力学研究方法更简便.(4)当物体的运动包含多个不同过程时,可分段应用动能定理求解;当所求解的问题不涉及中间的速度时,也可以全过程应用动能定理求解.1-1.[解决曲线运动问题] (2015·某某卷)在同一位置以相同的速率把三个小球分别沿水平、斜向上、斜向下方向抛出,不计空气阻力,则落在同一水平地面时的速度大小( ) A .一样大 B .水平抛的最大 C .斜向上抛的最大D .斜向下抛的最大解析:根据动能定理可知12mv 2末=mgh +12mv 20,得v 末=2gh +v 20,又因三个小球的初速度大小以及高度相等,则落地时的速度大小相等,A 项正确. 答案:A1-2.[解决直线运动问题] 一物块沿倾角为θ的斜坡向上滑动.当物块的初速度为v 时,上升的最大高度为H ,如图所示.当物块的初速度为v2时,上升的最大高度记为h .重力加速度大小为g .物块与斜坡间的动摩擦因数和h 分别为( )A .tan θ和H2B .(v 22gH -1)tan θ和H 2C .tan θ和H4D .(v 22gH -1)tan θ和H 4解析:由动能定理有-mgH -μmg cos θH sin θ=0-12mv 2-mgh -μmg cos θh sin θ=0-12m (v 2)2解得μ=(v 22gH -1)tan θ,h =H4,故D 正确.答案:D1-3.[解决变力做功问题] (2015·全国卷Ⅰ)如图,一半径为R 、粗糙程度处处相同的半圆形轨道竖直固定放置,直径POQ 水平.一质量为m 的质点自P 点上方高度R 处由静止开始下落,恰好从P 点进入轨道.质点滑到轨道最低点N 时,对轨道的压力为4mg ,g 为重力加速度的大小.用W 表示质点从P 点运动到N 点的过程中克服摩擦力所做的功.则( )A .W =12mgR ,质点恰好可以到达Q 点B .W >12mgR ,质点不能到达Q 点C .W =12mgR ,质点到达Q 点后,继续上升一段距离D .W <12mgR ,质点到达Q 点后,继续上升一段距离解析:根据质点滑到轨道最低点N 时,对轨道压力为4mg ,利用牛顿第三定律可知,轨道对质点的支持力为4mg .在最低点,由牛顿第二定律得,4mg -mg =m v 2R,解得质点滑到最低点的速度v =3gR .对质点从开始下落到滑到最低点的过程,由动能定理得,2mgR -W =12mv 2,解得W =12mgR .对质点由最低点继续上滑的过程,到达Q 点时克服摩擦力做功W ′要小于W =12mgR .由此可知,质点到达Q 点后,可继续上升一段距离,C 正确.答案:C考点二 动能定理在多过程问题中的应用 (师生共研)1.应用动能定理解题应抓好“两状态,一过程”“两状态”即明确研究对象的始、末状态的速度或动能情况;“一过程”即明确研究过程,确定这一过程研究对象的受力情况和位置变化或位移信息. 2.应用动能定理解题的基本思路[典例] 如图,一个质量为0.6 kg 的小球以某一初速度从P 点水平抛出,恰好从光滑圆弧ABC 的A 点沿切线方向进入圆弧(不计空气阻力,进入圆弧时无机械能损失).已知圆弧的半径R =0.3 m ,θ=60°,小球到达A 点时的速度v A =4 m/s.g 取10 m/s 2,求:(1)小球做平抛运动的初速度v 0; (2)P 点与A 点的高度差;(3)小球到达圆弧最高点C 时对轨道的压力.解析:(1)由题意知小球到A 点的速度v A 沿曲线上A 点的切线方向,对速度分解如图所示: 小球做平抛运动,由平抛运动规律得v 0=v x =v A cos θ=2 m/s.(2)小球由P 至A 的过程由动能定理得mgh =12mv 2A -12mv 2解得:h =0.6 m.(3)小球从A 点到C 点的过程中,由动能定理得 -mg (R cos θ+R )=12mv 2C -12mv 2A解得:v C =7 m/s小球在C 点由牛顿第二定律得F N C +mg =m v 2CR解得F N C =8 N由牛顿第三定律得F N C ′=F N C =8 N 方向竖直向上.答案:(1)2 m/s(2)0.6 m(3)8 N ,方向竖直向上 [反思总结]动能定理在多过程问题中的应用1.对于多个物理过程要仔细分析,将复杂的过程分割成多个子过程,分别对每个过程分析,得出每个过程遵循的规律.当每个过程都可以运用动能定理时,可以选择分段或全程应用动能定理,题目不涉及中间量时,选择全程应用动能定理更简单方便.2.应用全程法解题求功时,有些力可能不是全过程都作用的,必须根据不同的情况分别对待,弄清楚物体所受的力在哪段位移上做功,哪些力做功,做正功还是负功,正确写出总功.(2018·余姚中学模拟)如图所示装置由AB 、BC 、CD 三段轨道组成,轨道交接处均由很小的圆弧平滑连接,其中轨道AB 、CD 段是光滑的,水平轨道BC 的长度x =5 m ,轨道CD 足够长且倾角θ=37°,A 、D 两点离轨道BC 的高度分别为h 1=4.30 m ,h 2=1.35 m .现让质量为m 的小滑块自A 点由静止释放,小滑块与轨道BC 间的动摩擦因数μ=0.5,重力加速度取g =10 m/s 2,sin 37°=0.6,cos 37°=0.8.求:(1)小滑块第一次到达D 点时的速度大小;(2)小滑块第二次通过C 点时的速度大小; (3)小滑块最终停止的位置距B 点的距离.解析:(1)小物块从A 到D 的过程中,由动能定理得:mg (h 1-h 2)-μmgx =12mv 2D -0,代入数据得:v D =3 m/s.(2)从D 到C 的过程,由动能定理得:mgh 2=12mv 2C -12mv 2D ,代入数据得:v C =6 m/s.(3)滑块最终静止在BC 上,对全过程,运用动能定理得:mgh 1-μmgs =0,代入数据解得:s =8.6 m ,则距离B 点的距离为:L =5 m -(8.6-5) m =1.4 m.答案:(1)3 m/s (2)6 m/s (3)1.4 m考点三 与图象相关的动能问题 (自主学习)图象所围“面积”的意义1.v -t 图:由公式x =vt 可知,v -t 图线与时间轴围成的面积表示物体的位移. 2.a -t 图:由公式Δv =at 可知,a -t 图线与时间轴围成的面积表示物体速度的变化量. 3.F -x 图:由公式W =Fx 可知,F -x 图线与位移轴围成的面积表示力所做的功. 4.P -t 图:由公式W =Pt 可知,P -t 图线与时间轴围成的面积表示力所做的功.3-1.[v -t 图象] A 、B 两物体分别在水平恒力F 1和F 2的作用下沿水平面运动,先后撤去F 1、F 2后,两物体最终停下,它们的v -t 图象如图所示.已知两物体与水平面间的滑动摩擦力大小相等.则下列说法正确的是( )A .F 1、F 2大小之比为1∶2B .F 1、F 2对A 、B 做功之比为1∶2C .A 、B 质量之比为2∶1D .全过程中A 、B 克服摩擦力做功之比为2∶1 答案:C3-2.[a -t 图象] 用传感器研究质量为2 kg 的物体由静止开始做直线运动的规律时,在计算机上得到0~6 s 内物体的加速度随时间变化的关系如图所示.下列说法正确的是( )A .0~6 s 内物体先向正方向运动,后向负方向运动B .0~6 s 内物体在4 s 时的速度最大C .物体在2~4 s 内速度不变D .0~4 s 内合力对物体做的功等于0~6 s 内合力做的功解析:由a -t 图象可知:图线与时间轴围成的“面积”代表物体在相应时间内速度的变化情况,在时间轴上方为正,在时间轴下方为负.物体6 s 末的速度v 6=12×(2+5)×2 m/s-12×1×2 m/s=6 m/s ,则0~6 s 内物体一直向正方向运动,A 错误;由图象可知物体在5 s 末速度最大,v m =12×(2+5)×2 m/s=7 m/s ,B 错误;由图象可知在2~4 s 内物体加速度不变,物体做匀加速直线运动,速度变大,C 错误;在0~4 s 内合力对物体做的功由动能定理可知:W 合4=12mv 24-0,又v 4=12×(2+4)×2 m/s=6 m/s ,得W 合4=36 J ,0~6 s 内合力对物体做的功由动能定理可知:W 合6=12mv 26-0,又v 6=6 m/s ,得W 合6=36 J ,则W 合4=W 合6,D 正确. 答案:D1.(多选)(2019·第十九中学月考)将质量为m 的小球在距地面高度为h 处抛出,抛出时的速度大小为v 0.小球落到地面的速度大小为2v 0,若小球受到的空气阻力不能忽略,则对于小球下落的整个过程,下面说法中正确的是( BC ) A .小球克服空气阻力做的功大于mgh B .重力对小球做的功等于mgh C .合外力对小球做的功大于mv 20 D .合外力对小球做的功等于mv 20解析:根据动能定理得:12m (2v 0)2-12mv 20=mgh -W f ,解得:W f =mgh -32mv 20<mgh ,故A 错误;重力做的功为W G =mgh ,B 正确;合外力对小球做的功W 合=12m (2v 0)2-12mv 20=32mv 20,C 正确,D 错误.2.(2018·某某、某某联考)如图所示,斜面AB 竖直固定放置,物块(可视为质点)从A 点静止释放沿斜面下滑,最后停在水平面上的C 点,从释放到停止的过程中克服摩擦力做的功为W .因斜面塌陷,斜面变成APD 曲面,D 点与B 在同一水平面上,且在B 点左侧.已知各接触面粗糙程度均相同,不计物块经过B 、D 处时的机械能损失,忽略空气阻力,现仍将物块从A 点静止释放,则(B )A .物块将停在C 点B .物块将停在C 点左侧C .物块从释放到停止的过程中克服摩擦力做的功大于WD .物块从释放到停止的过程中克服摩擦力做的功小于W解析:物块在斜面上滑动时,克服摩擦力做的功为W f =μmg cos θ·L ,物块在曲面上滑动时,做曲线运动,根据牛顿第二定律有:F N -mg cos θ=m v 2R,即F N >mg cos θ,故此时的滑动摩擦力f ′=μF N >μmg cos θ,且物块在曲面上滑过路程等于在斜面上滑过的路程L ,故物块在曲面上克服摩擦力做的功W ′f >W f =μmg cos θ·L ,根据动能定理可知,物块将停在C 点左侧,故A 错误,B 正确;从释放到最终停止,动能的改变量为零,根据动能定理可知,物块克服摩擦力做的功等于重力做的功,而两种情况下,重力做的功相同,物块从释放到停止的过程中克服摩擦力做的功等于W ,故C 、D 错误.3.如图所示,水平平台上有一个质量m =50 kg 的物块,站在水平地面上的人用跨过定滑轮的细绳向右拉动物块,细绳不可伸长.不计滑轮的大小、质量和摩擦.在人以速度v 从平台边缘正下方匀速向右前进x 的过程中,始终保持桌面和手的竖直高度差h 不变.已知物块与平台间的动摩擦因数μ=0.5,v =0.5 m/s ,x =4 m ,h =3 m ,g 取10 m/s 2.求人克服细绳的拉力做的功.解析:设人发生x 的位移时,绳与水平方向的夹角为θ,由运动的分解可得,物块的速度v 1=v cos θ由几何关系得cos θ=xh 2+x 2在此过程中,物块的位移s =h 2+x 2-h =2 m 物块克服摩擦力做的功W f =μmgs 对物块,由动能定理得W T -W f =12mv 21所以人克服细绳的拉力做的功W T =mv 2x 22(h 2+x 2)+μmgs =504 J.答案:504 J[A 组·基础题]1.(2016·某某卷)韩晓鹏是我国首位在冬奥会雪上项目夺冠的运动员.他在一次自由式滑雪空中技巧比赛中沿“助滑区”保持同一姿态下滑了一段距离,重力对他做功1 900 J ,他克服阻力做功100 J .韩晓鹏在此过程中( C ) A .动能增加了1 900 J B .动能增加了2 000 J C .重力势能减小了1 900 J D .重力势能减小了2 000 J2. 质量为10 kg 的物体,在变力F 作用下沿x 轴做直线运动,力随坐标x 的变化情况如图所示.物体在x =0处,速度为1 m/s ,一切摩擦不计,则物体运动到x =16 m 处时,速度大小为( B )A .2 2 m/sB .3 m/sC .4 m/sD .17 m/s3. 如图所示,斜面的倾角为θ,质量为m 的滑块距挡板P 的距离为x 0,滑块以初速度v 0沿斜面上滑,滑块与斜面间的动摩擦因数为μ,滑块所受摩擦力小于重力沿斜面向下的分力.若滑块每次与挡板相碰均无机械能损失,滑块经过的总路程是( A )A.1μ(v 202g cos θ+x 0tan θ) B .1μ(v 202g sin θ+x 0tan θ) C.2μ(v 202g cos θ+x 0tan θ)D .1μ(v 202g cos θ+x 0cot θ)4. 如图所示,质量为M =3 kg 的小滑块,从斜面顶点A 由静止沿ABC 下滑,最后停在水平面上的D 点,不计滑块从AB 面滑上BC 面以及从BC 面滑上CD 面时的机械能损失.已知AB =BC =5 m ,CD =9 m ,θ=53°,β=37°(sin 37°=0.6,cos 37°=0.8,重力加速度g 取10 m/s 2),在运动过程中,小滑块与所有接触面间的动摩擦因数相同.则( D )A .小滑块与接触面间的动摩擦因数μ=0.5B .小滑块在AB 面上运动的加速度a 1与小滑块在BC 面上运动的加速度a 2之比a 1a 2=53C .小滑块在AB 面上的运动时间小于小滑块在BC 面上运动时间D .小滑块在AB 面上运动时克服摩擦力做功小于小滑块在BC 面上运动时克服摩擦力做功 5.(多选) 某人通过光滑滑轮将质量为m 的物体,沿光滑斜面由静止开始匀加速地由底端拉上斜面,物体上升的高度为h ,到达斜面顶端的速度为v ,如图所示.则在此过程中( BD )A .物体所受的合力做功为mgh +12mv 2B .物体所受的合力做功为12mv 2C .人对物体做的功为mghD .人对物体做的功大于mgh6.(多选) 如图所示,竖直平面内固定着一个螺旋形光滑轨道,一个小球从足够高处落下,刚好从A 点进入轨道,则关于小球经过轨道上的B 点和C 点时,下列说法正确的是( ABC )A .轨道对小球不做功B .小球在B 点的速度小于在C 点的速度C .小球在B 点对轨道的压力小于在C 点对轨道的压力D .改变小球下落的高度,小球在B 、C 两点对轨道的压力差保持不变7.(多选) (2016·某某卷)如图所示为一滑草场.某条滑道由上下两段高均为h ,与水平面倾角分别为45°和37°的滑道组成,滑草车与草地之间的动摩擦因数为μ.质量为m 的载人滑草车从坡顶由静止开始自由下滑,经过上、下两段滑道后,最后恰好静止于滑道的底端(不计滑草车在两段滑道交接处的能量损失,sin 37°=0.6,cos 37°=0.8).则( AB )A .动摩擦因数μ=67B .载人滑草车最大速度为2gh 7C .载人滑草车克服摩擦力做功为mghD .载人滑草车在下段滑道上的加速度大小为35g8.(多选) 如图所示,x 轴在水平地面上,y 轴竖直向上,在y 轴上的P 点分别沿x 轴正方向和y 轴正方向以相同大小的初速度抛出两个小球a 和b ,不计空气阻力,若b 上升的最大高度等于P 点离地的高度,则从抛出到落地有( BD )A .a 的运动时间是b 的运动时间的2倍B .a 的位移大小是b 的位移大小的5倍C .a 、b 落地时的速度相同,因此动能一定相同D .a 、b 落地时的速度不同,但动能相同[B 组·能力题]9.(多选)(2019·某某实验中学期中)如图,用跨过光滑定滑轮的缆绳将海面上一艘失去动力的小船沿直线拖向岸边.已知拖动缆绳的电动机功率恒为P ,小船的质量为m ,小船受到的阻力大小恒为f ,经过A 点时的速度大小为v 0,小船从A 点沿直线加速运动到B 点经历时间为t 1,A 、B 两点间距离为d ,缆绳质量忽略不计.下列说法正确的是( ABD )A .小船从A 点运动到B 点的全过程克服阻力做的功W f =fd B .小船经过B 点时的速度大小v 1=v 20+2m (Pt 1-fd )C .小船经过B 点时的速度大小v 1=2v 20+2m (Pt 1-fd )D .小船经过B 点时的加速度大小a =P m 2v 20+2m (Pt 1-fd )-fm 解析:小船从A 点运动到B 点过程中克服阻力做功:W f =fd ,故A 正确;小船从A 点运动到B 点,电动机牵引缆绳对小船做功:W =Pt 1 ,由动能定理有:W -W f =12mv 21-12mv 20,联立解得:v 1=v 20+2(Pt 1-fd )m,故B 正确,C 错误;设小船经过B 点时绳的拉力大小为F ,绳与水平方向夹角为θ,绳的速度大小为v ′,则P =Fv ′, v ′=v 1cos θ,F cos θ-f =ma ,联立解得:a =P m 2v 20+2m (Pt 1-fd )-fm ,故D 正确.A .在运动过程中滑块A 的最大加速度是2.5 m/s 2B .在运动过程中滑块B 的最大加速度是3 m/s 2C .滑块在水平面上运动的最大位移是3 mD .物体运动的最大速度为 5 m/s解析:假设开始时A 、B 相对静止,对整体根据牛顿第二定律,有F =2Ma ,解得a =F 2M =102×2=2.5 m/s 2;隔离B ,B 受到重力、支持力和A 对B 的静摩擦力,根据牛顿第二定律,f =Ma =2×2.5=5 N <μMg =6 N ,所以A 、B 不会发生相对滑动,保持相对静止,最大加速度均为2.5 m/s 2,故A 正确,B 错误;当F =0时,加速度为0,之后A 、B 做匀速运动,位移继续增加,故C 错误;F -x 图象包围的面积等于力F 做的功,W =12×2×10=10 J ;当F =0,即a =0时达到最大速度,对A 、B 整体,根据动能定理,有W =12×2Mv 2m -0;代入数据得:v m = 5 m/s ,故D 正确.11. 为了研究过山车的原理,某物理小组提出了下列设想:取一个与水平方向夹角θ=60°,长L 1=2 3 m 的倾斜轨道AB ,通过微小圆弧与长为L 2=32m 的水平轨道BC 相连,然后在C 处设计一个竖直完整的光滑圆轨道,出口为水平轨道D ,如图所示.现将一个小球从距A点高h =0.9 m 的水平台面上以一定的初速度v 0水平弹出,到A 点时速度方向恰沿AB 方向,并沿倾斜轨道滑下.已知小球与AB 和BC 间的动摩擦因数均为μ=33.g 取10 m/s 2,求:(1)小球初速度的大小; (2)小球滑过C 点时的速率;(3)要使小球不离开轨道,则竖直圆轨道的半径应该满足什么条件. 解析:(1)小球开始时做平抛运动,有v 2y =2gh 代入数据解得v y =2gh =2×10×0.9 m/s =3 2 m/s 在A 点有tan θ=v yv x得v x =v 0=v ytan θ=323m/s = 6 m/s. (2)从水平抛出到C 点的过程中,由动能定理得mg (h +L 1sin θ)-μmgL 1cos θ-μmgL 2=12mv 2C -12mv 2代入数据解得v C =3 6 m/s.(3)小球刚刚过最高点时,重力提供向心力,有mg =m v 2R 112mv 2C =2mgR 1+12mv 2 代入数据解得R 1=1.08 m.当小球刚能到达与圆心等高处时,有 12mv 2C =mgR 2 代入数据解得R 2=2.7 m.当圆轨道与AB 相切时R 3=L 2·tan 60°=1.5 m综上所述,要使小球不离开轨道,R 应该满足的条件是0<R ≤1.08 m. 答案:(1) 6 m/s (2)3 6 m/s (3)0<R ≤1.08 m。
第2讲 动能定理及其应用板块一 主干梳理·夯实基础【知识点1】 动能 Ⅱ1.定义:物体由于运动而具有的能。
2.公式:E k =12mv 2。
3.物理意义:动能是状态量,是标量(选填“矢量”或“标量”),只有正值,动能与速度方向无关。
4.单位:焦耳,1 J =1 N·m=1 kg·m 2/s 2。
5.动能的相对性:由于速度具有相对性,所以动能也具有相对性。
6.动能的变化:物体末动能与初动能之差,即ΔE k =12mv 22-12mv 21。
【知识点2】 动能定理 Ⅱ1.内容:合外力对物体所做的功,等于物体在这个过程中动能的变化。
2.表达式 (1)W =ΔE k 。
(2)W =E k2-E k1。
(3)W =12mv 22-12mv 21。
3.物理意义:合外力的功是物体动能变化的量度。
4.适用范围广泛(1)动能定理既适用于直线运动,也适用于曲线运动。
(2)既适用于恒力做功,也适用于变力做功。
(3)力可以是各种性质的力,既可以同时作用,也可以不同时作用。
板块二 考点细研·悟法培优考点1动能定理的理解和应用[拓展延伸]1.做功的过程就是能量转化的过程,动能定理表达式中的“=”的意义是一种因果关系在数值上相等的符号。
2.动能定理叙述中所说的“外力”,既可以是重力、弹力、摩擦力,也可以是电场力、磁场力或其他力。
3.动能定理中涉及的物理量有F 、l 、m 、v 、W 、E k 等,在处理含有上述物理量的问题时,优先考虑使用动能定理。
4.若过程包含了几个运动性质不同的分过程,既可以分段考虑,也可以整个过程考虑。
例1 如图所示,质量为m 的滑块从h 高处的a 点沿倾斜轨道ab 滑入水平轨道bc(两轨道平滑连接),滑块与倾斜轨道及水平轨道间的动摩擦因数相同。
滑块在a 、c 两点时的速度大小均为v 、ab 长度与bc 长度相等。
空气阻力不计,则滑块从a 到c 的运动过程中( )A .滑块的动能始终保持不变B.滑块在bc 过程克服阻力做的功一定等于mgh2C.滑块经b 点时的速度大于gh +v 2D.滑块经b 点时的速度等于2gh +v 2滑块从b 到c 的过程中摩擦力做功吗?做正功还是负功?提示:做功。
第2讲动能定理及其应用板块一主干梳理·夯实基础【知识点1】动能Ⅱ1.定义:物体由于运动而具有的能。
2.公式:E k=12m v2。
3.物理意义:动能是状态量,是标量(选填“矢量”或“标量”),只有正值,动能与速度方向无关。
4.单位:焦耳,1 J=1 N·m=1 kg·m2/s2。
5.动能的相对性:由于速度具有相对性,所以动能也具有相对性。
6.动能的变化:物体末动能与初动能之差,即ΔE k=12m v22-12m v21。
【知识点2】动能定理Ⅱ1.内容:合外力对物体所做的功,等于物体在这个过程中动能的变化。
2.表达式(1)W=ΔE k。
(2)W=E k2-E k1。
(3)W=12m v22-12m v21。
3.物理意义:合外力的功是物体动能变化的量度。
4.适用范围广泛(1)动能定理既适用于直线运动,也适用于曲线运动。
(2)既适用于恒力做功,也适用于变力做功。
(3)力可以是各种性质的力,既可以同时作用,也可以不同时作用。
板块二考点细研·悟法培优考点1动能定理的理解和应用[拓展延伸]1.做功的过程就是能量转化的过程,动能定理表达式中的“=”的意义是一种因果关系在数值上相等的符号。
2.动能定理叙述中所说的“外力”,既可以是重力、弹力、摩擦力,也可以是电场力、磁场力或其他力。
3.动能定理中涉及的物理量有F、l、m、v、W、E k等,在处理含有上述物理量的问题时,优先考虑使用动能定理。
4.若过程包含了几个运动性质不同的分过程,既可以分段考虑,也可以整个过程考虑。
例1如图所示,质量为m的滑块从h高处的a点沿倾斜轨道ab滑入水平轨道bc(两轨道平滑连接),滑块与倾斜轨道及水平轨道间的动摩擦因数相同。
滑块在a、c两点时的速度大小均为v、ab长度与bc长度相等。
空气阻力不计,则滑块从a到c的运动过程中()A .滑块的动能始终保持不变B.滑块在bc 过程克服阻力做的功一定等于mgh2C.滑块经b 点时的速度大于gh +v 2D.滑块经b 点时的速度等于2gh +v 2滑块从b 到c 的过程中摩擦力做功吗?做正功还是负功?提示:做功。
第2讲 动能定理及其应用 板块一 主干梳理·夯实基础【知识点1】 动能 Ⅱ1、定义:物体由于运动而具有的能。
2、公式:E k =12mv 2。
3、物理意义:动能是状态量,是标量(选填“矢量”或“标量”),只有正值,动能与速度方向无关。
4、单位:焦耳,1J =1N·m=1kg·m 2/s 2。
5、动能的相对性:由于速度具有相对性,所以动能也具有相对性。
6、动能的变化:物体末动能与初动能之差,即ΔE k =12mv 22-12mv 21。
【知识点2】 动能定理 Ⅱ1、内容:合外力对物体所做的功,等于物体在这个过程中动能的变化。
2、表达式 (1)W =ΔE k 。
(2)W =E k2-E k1。
(3)W =12mv 22-12mv 21。
3、物理意义:合外力的功是物体动能变化的量度。
4、适用范围广泛(1)动能定理既适用于直线运动,也适用于曲线运动。
(2)既适用于恒力做功,也适用于变力做功。
(3)力可以是各种性质的力,既可以同时作用,也可以不同时作用。
板块二 考点细研·悟法培优考点1动能定理的理解和应用[拓展延伸]1、做功的过程就是能量转化的过程,动能定理表达式中的“=”的意义是一种因果关系在数值上相等的符号。
2、动能定理叙述中所说的“外力”,既可以是重力、弹力、摩擦力,也可以是电场力、磁场力或其他力。
3、动能定理中涉及的物理量有F、l、m、v、W、E k等,在处理含有上述物理量的问题时,优先考虑使用动能定理。
4、若过程包含了几个运动性质不同的分过程,既可以分段考虑,也可以整个过程考虑。
例1 如图所示,质量为m的滑块从h高处的a点沿倾斜轨道ab滑入水平轨道bc(两轨道平滑连接),滑块与倾斜轨道及水平轨道间的动摩擦因数相同。
滑块在a、c两点时的速度大小均为v、ab长度与bc长度相等。
空气阻力不计,则滑块从a到c的运动过程中( )A.滑块的动能始终保持不变B、滑块在bc过程克服阻力做的功一定等于mgh 2C、滑块经b点时的速度大于gh+v2D、滑块经b点时的速度等于2gh+v2滑块从b到c的过程中摩擦力做功吗?做正功还是负功?提示:做功。
做负功。
(2)滑块在ab 段和bc 段摩擦力做功相同吗? 提示:不同,位移相同但摩擦力不同。
尝试解答 选C 。
由题意知,在滑块从b 运动到c 的过程中,由于摩擦力做负功,动能在减少,所以A 错误;从a 到c 的运动过程中,根据动能定理:mgh -W f =0,可得全程克服阻力做功W f =mgh ,滑块对ab 段轨道的正压力小于对bc 段的正压力,故在ab 段滑块克服摩擦力做的功小于在bc 段克服摩擦力做的功,即从a 到b 克服摩擦力做的功0<W f ′<12mgh ,B 错误。
设在b 点的速度为v ′,根据动能定理:mgh -W f ′=12mv ′2-12mv 2,可得gh +v 2<v ′<2gh +v 2,故C 正确,D 错误。
总结升华1、应用动能定理解题应抓好“两状态,一过程”“两状态”即明确研究对象的始、末状态的速度或动能情况,“一过程”即明确研究过程,确定这一过程研究对象的受力情况和位置变化或位移信息。
2、应用动能定理解题的基本思路[跟踪训练] [2017·江西新余一模]我国将于2022年举办冬奥会,跳台滑雪是其中最具观赏性的项目之一。
如图所示,质量m =60kg 的运动员从长直轨道AB 的A 处由静止开始以加速度a =3、6m/s 2匀加速下滑,到达助滑道末端B 时速度v B =24m/s ,A 与B 的竖直高度差H =48m 。
为了改变运动员的运动方向,在助滑道与起跳台之间用一段弯曲滑道衔接,其中最低点C 处附近是一段以O 为圆心的圆弧,助滑道末端B 与滑道最低点C 的高度差h =5m ,运动员在B 、C 间运动时阻力做功W =-1530J ,g 取10m/s 2。
(1)求运动员在AB 段下滑时受到阻力F f 的大小;(2)若运动员能承受的最大压力为其所受重力的6倍,则C 点所在圆弧的半径R 至少应为多大? 答案 (1)144N (2)12、5m解析 (1)运动员在AB 段上做初速度为零的匀加速运动,设AB 段的长度为x ,斜面的倾角为α,则有v 2B =2ax ,根据牛顿第二定律得mg sin α-F f =ma ,又sin α=H x,由以上三式联立解得F f =144N 。
(2)在由B 到达C 的过程中,根据动能定理有mgh +W =12mv 2C -12mv 2B设运动员在C点所受的支持力为F N,由牛顿第二定律得F N-mg=m v2C R由运动员能承受的最大压力为其所受重力的6倍,即有F N=6mg,联立解得R=12、5m,所以圆弧的半径R至少为12、5m。
考点2动能定理与图象结合问题[拓展延伸]解决物理图象问题的基本步骤1、观察题目给出的图象,弄清纵坐标、横坐标所对应的物理量及图线所表示的物理意义。
2、根据物理规律推导出纵坐标与横坐标所对应的物理量间的函数关系式。
3、将推导出的物理规律与数学上与之相对应的标准函数关系式相对比,找出图线的斜率、截距、图线的交点,弄清图线与坐标轴围成的面积所对应的物理意义,分析解答问题。
或者利用函数图线上的特定值代入函数关系式求物理量。
例2 [2018·河南陕州中学月考](多选)一质量为2kg的物体,在水平恒定拉力的作用下以一定的初速度在粗糙的水平面上做匀速直线运动,当运动一段时间后,拉力逐渐减小,且当拉力减小到零时,物体刚好停止运动,图中给出了拉力随位移变化的关系图象。
已知重力加速度g=10m/s2,由此可知( )A .物体与水平面间的动摩擦因数约为0、35B 、减速过程中拉力对物体所做的功约为13JC 、匀速运动时的速度约为6m/sD 、减速运动的时间约为1、7sF x 图象的面积表示什么?提示:F 做的功。
(2)开始物体在粗糙水平面上做匀速直线运动,F 和摩擦力大小关系如何?提示:大小相等,是平衡力。
尝试解答 选ABC 。
F x 图象围成的面积代表拉力F 所做的功,由图知减速阶段F x 围成面积约13个小格,每个小格表示1J 则约为13J ,故B 正确。
刚开始匀速运动,则F =μmg ,由图象知F =7N ,则μ=Fmg=0、35,故A正确。
全程应用动能定理:W F -μmgs =0-12mv 20,其中W F =(7×4+13)J=41J ,得v 0=6m/s ,故C 正确。
由于不是匀减速直线运动,没办法求减速运动的时间。
总结升华与动能定理结合紧密的几种图象(1)vt图:由公式x=vt可知,vt图线与坐标轴围成的面积表示物体的位移。
(2)Fx图:由公式W=Fx可知,Fx图线与坐标轴围成的面积表示力所做的功。
(3)Pt图:由公式W=Pt可知,Pt图线与坐标轴围成的面积表示力所做的功。
[跟踪训练][2017·安徽合肥质检]A、B两物体分别在水平恒力F1和F2的作用下沿水平面运动,先后撤去F1、F2后,两物体最终停下,它们的vt图象如图所示。
已知两物体与水平面间的滑动摩擦力大小相等,则下列说法正确的是( )A.F1、F2大小之比为1∶2B、F1、F2对A、B做功之比为1∶2C、A、B质量之比为2∶1D、全过程中A、B克服摩擦力做功之比为2∶1答案 C解析由图象与坐标轴围成的面积表示位移,可知两物体的位移相同,已知两物体与水平面间的滑动摩擦力大小相等,故全过程中两物体克服摩擦力做功相等,D项错;由动能定理可知,两物体所受外力做的功与克服摩擦力做的功相等,故外力做的功相同,B项错;由图象可知,A、B在外力作用下的位移之比为1∶2,由功的定义可知,F1∶F2=2∶1,A项错;由速度图象可知,两物体匀减速直线运动过程中的加速度大小之比为1∶2,由牛顿第二定律有:F f=ma可知两物体质量之比为2∶1,C项正确。
考点3应用动能定理解决曲线运动问题[规律总结]在曲线运动中,若只涉及到位移、速度,而不涉及时间时,优先考虑动能定理。
主要注意:(1)弄清物体的运动过程,物体都做了哪些运动。
(2)分析每个运动过程中,物体的受力情况和运动情况,判断有没有临界的情况出现。
(3)抓住运动过程中起关联作用的物理量,如速度、位移等,同时关注动能定理中的初、末态在什么位置。
(4)最后根据分析的情况,确定是分段还是整体运用动能定理列式计算。
例3 如图所示,质量为m的小球用长为L的轻质细线悬于O点,与O点处于同一水平线上的P点处有一个光滑的细钉,已知OP=L2,在A点给小球一个水平向左的初速度v0,发现小球恰能到达跟P点在同一竖直线上的最高点B 。
(1)求小球到达B 点时的速率;(2)若不计空气阻力,则初速度v 0为多少?(3)若初速度v 0′=3gL ,小球仍能恰好到达B 点,则小球在从A 到B 的过程中克服空气阻力做了多少功?小球恰好到达最高点B 时,细线给小球有力的作用吗?提示:没有,只受重力。
(2)细线碰到钉子瞬间,小球的速度发生改变吗? 提示:不变,因为力与速度垂直。
尝试解答 (1)gL2(2)7gL 2 (3)114mgL 。
(1)小球恰好到达最高点B ,所以mg =mv 2BL2,得v B =gL2。
(2)从A 到B 的过程由动能定理得-mg ⎝⎛⎭⎪⎫L +L 2=12mv 2B -12mv 20,可得v 0=7gL2。
(3)从A 到B 过程由动能定理得-mg ⎝⎛⎭⎪⎫L +L 2-W =12mv 2B -12mv 0′2可得W =114mgL 。
总结升华动能定理在圆周运动中的应用竖直面内圆周运动经常考查物体在最高点和最低点的状态,最高点的速度和最低点的速度可以通过动能定理联系起来,所以竖直面内的圆周运动,经常和动能定理联系起来应用。
[跟踪训练] 如图所示,位于竖直平面内的光滑轨道,由一段倾斜直轨道和与之相切的圆形轨道连接而成,圆形轨道的半径为R 。
一质量为m 的小物块从斜轨道上的某处由静止开始下滑,然后沿圆形轨道运动。
要求物块能通过圆形轨道最高点,且在该最高点与轨道间的压力不能超过5mg (g 为重力加速度)。
求物块初始位置相对于圆形轨道底部的高度h 的取值范围。
答案52R ≤h ≤5R 解析 设物块在圆形轨道最高点的速度为v ,由动能定理得mg (h -2R )=12mv 2① 物块在圆形轨道最高点受到的力为重力mg 和轨道的压力F N 重力与压力的合力提供向心力,则有mg +F N =m v 2R②物块能够通过最高点的条件是F N ≥0③ 由②③式得v ≥gR ④由①④式得h ≥52R 按题目的要求,有F N ≤5mg ⑤由②⑤式得v ≤6Rg ⑥由①⑥式得h ≤5R 。