2013年高考真题——文科数学(安徽卷)word版含答案
- 格式:doc
- 大小:771.00 KB
- 文档页数:9
数学试卷 第1页(共15页)数学试卷 第2页(共15页)数学试卷 第3页(共15页)绝密★启用前2013年普通高等学校招生全国统一考试(安徽卷)数学(文科)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷第1至第3页,第Ⅱ卷第4至第6页.全卷满分150分,考试时间120分钟. 考生注意事项:1.答题前,务必在试题卷、答题卡规定的地方填写自己的姓名、座位号,并认真核对答题卡上所粘贴的条形码中姓名、座位号与本人姓名、座位号是否一致.务必在答题卡背面规定的地方填写姓名和座位号后两位.2.答第Ⅰ卷时,每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.3.答第Ⅱ卷时,必须使用0.5毫米的黑色墨水签字笔在答题卡上....书写,要求字体工整、笔迹清晰.作图题可先用铅笔在答题卡...规定的位置绘出,确认后再用0.5毫米的黑色墨水签字笔描清楚.必须在题号所指示的答题区域作答,超出答题区域书写的答案无..........效.,在试题卷....、草稿纸上答题无效.........4.考试结束,务必将试题卷和答题卡一并上交.第Ⅰ卷(选择题 共50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.设i 是虚数单位,若复数103i--a (∈a R )是纯虚数,则a 的值为 ( )A .-3B .-1C .1D .32.已知}1{0|>=+A x x , 2 1 0{} 1,,,=--B ,则()A B =R ð ( )A .{21},--B .{}2-C .{}1,0,1-D .{0,1}3.如图所示,程序框图(算法流程图)的输出结果为( )A .34 B .16 C .1112D .25244.“(21)0-=x x ”是“0=x ”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件5.若某公司从五位大学毕业生甲、乙、丙、丁、戊中录用三人,这五人被录用的机会均等,则甲或乙被录用的概率为( )A .23 B .25 C .35D .9106.直线250x y +-=被圆22240--=+x y x y 截得的弦长为( )A .1B .2C .4D.7.设n S 为等差数列{}n a 的前n 项和,834=S a ,72=-a ,则9a =( )A .-6B .-4C .-2D .28.函数()=y f x 的图象如图所示,在区间[],a b 上可找到n (2n ≥)个不同的数1x ,2x ,…,n x ,使得11()f x x =22()f x x =…=()n n f x x ,则n 的取值范围为 ( )A .{2,3}B .{2,3,4}C .{3,4}D .{3,4,5}9.设△ABC 的内角A ,B ,C 所对边的长分别为a ,b ,c .若2=+b c a ,3sin 5sin =A B ,则角C =( )A .π3 B .2π3 C .3π4D .5π610.已知函数32()++=+f x x ax bx c 有两个极值点1x ,2x .若112()=<f x x x ,则关于x 的方程23(())2()0=++f x af x b 的不同实根个数为( )A .3B .4C .5D .6第Ⅱ卷(非选择题 共100分)--------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效--------姓名________________ 准考证号_____________数学试卷 第4页(共15页)数学试卷 第5页(共15页)数学试卷 第6页(共15页)考生注意事项:请用0.5毫米黑色墨水签字笔在答题卡上.....作答,在试题卷上答题无效.......... 二、填空题:本大题共5小题,每小题5分,共25分.把答案填在答题卡的相应位置. 11.函数1ln(1)=++y x的定义域为__________.12.若非负变量x ,y 满足约束条件124,x y x y --⎧⎨+⎩≥≤则+x y 的最大值为__________.13.若非零向量a ,b 满足||3|||2|+==a b a b ,则a 与b 夹角的余弦值为__________. 14.定义在R 上的函数()f x 满足(1)2()+=f x f x .若当01x ≤≤时,()(1)-=f x x x ,则当10x -≤≤时,()=f x __________.15.如图,正方体1111-ABCD A B C D 的棱长为1,P 为BC 的中点,Q 为线段1CC 上的动点,过点A ,P ,Q 的平面截该正方体所得的截面记为S .则下列命题正确的是__________(写出所有正确命题的编号).①当012<<CQ 时,S 为四边形②当12=CQ 时,S 为等腰梯形③当34=CQ 时,S 与11C D 的交点R 满足113=C R④当341<<CQ 时,S 为六边形⑤当1=CQ 时,S三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.解答写在答题卡上的指定区域内.16.(本小题满分12分)设函数()si n )3n πsi (+=+f x x x .(1)求()f x 的最小值,并求使()f x 取得最小值的x 的集合;(2)不画图,说明函数()=y f x 的图象可由sin =y x 的图象经过怎样的变化得到.17.(本小题满分12分)为调查甲、乙两校高三年级学生某次联考数学成绩情况,用简单随机抽样,从这两校中各抽取30名高三年级学生,以他们的数学成绩(百分制)作为样本,样本数据的茎叶图如下:(1)若甲校高三年级每位学生被抽取的概率为0.05,求甲校高三年级学生总人数,并估计甲校高三年级这次联考数学成绩的及格率(60分及60分以上为及格);(2)设甲、乙两校高三年级学生这次联考数学平均成绩分别为1x ,2x ,估计12-x x 值.18.(本小题满分12分)如图,四棱锥P -ABCD 的底面ABCD 是边长为2的菱形,60∠=BAD .已知2==PB PD,=PA .(1)证明:⊥PC BD ;(2)若E 为P A 的中点,求三棱锥P -BCE 的体积.19.(本小题满分13分)设数列{}n a 满足12=a ,248=+a a ,且对任意*∈n N ,函数12()()++=-+n n n f x a a a x12cos sin ++-+n a a x a x 满足π()02'=f .(1)求数列{}n a 的通项公式; (2)若1)22(=+nn n a b a ,求数列{}n b 的前n 项和n S .20.(本小题满分13分)设函数22()(1)+=-f x ax a x ,其中0>a ,区间(){|}0=>I x f x . (1)求I 的长度(注:区间(),αβ的长度定义为βα-); (2)给定常数(0,1)∈k ,当11k a k +-≤≤时,求I 长度的最小值.21.(本小题满分13分)已知椭圆C :22221+=x y a b (0>>a b )的焦距为4,且过点P).(1)求椭圆C 的方程;(2)设00(),Q x y (000≠x y )为椭圆C 上一点.过点Q 作x 轴的垂线,垂足为E .取点A ,连接AE .过点A 作AE 的垂线交x 轴于点D .点G 是点D 关于y 轴的对称点,作直线QG .问这样作出的直线QG 是否与椭圆C 一定有唯一的公共点?并说明理由.数学试卷 第7页(共15页)数学试卷 第8页(共15页)数学试卷 第9页(共15页)2013年普通高等学校招生全国统一考试(安徽卷)数学(文科)答案解析第Ⅰ卷一、选择题 1.【答案】D 【解析】21010(3i)10(3i)10(3i)(3i)(3)i 3i (3i)(3i)9i 10a a a a a a +++-=-=-=-=-+=----+-,所以3a =,故选D .【提示】先利用复数的运算法则将复数化为i(,)x y x y +∈R 的形式,再由纯虚数的定义求a 【考点】复数的基本概念. 2.【答案】A【解析】1x >-,{|1}A x x =≤-R ð,(){1,2}A B =--R ð,故选A .【提示】解不等式求出集合A ,进而得A R ð,再由集合交集的定义求解. 【考点】集合的交集和补集运算. 3.【答案】C 【解析】1120022n s s ===+=,,;111342244n s s ===+=,,;33111644612n s s ===+=,,;11812n s ==,,输出,故选C .【提示】利用框图的条件结构和循环结构求解. 【考点】条件语句、循环语句的程序框图. 4.【答案】B【解析】1(21)002x x x -==,或,故选B .【提示】先解一元二次方程(21)0x x -=,再利用充分条件、必要条件的定义判断. 【考点】充分条件和必要条件. 5.【答案】D【解析】总的可能性有10种,甲被录用乙没被录用的可能性3种,乙被录用甲没被录用的可能性3种,甲乙都被录用的可能性3种,所以最后的概率333110p ++==,故选D . 【提示】把所求事件转化为求其对立事件,然后求出概率.【考点】随机事件与概率. 6.【答案】C【解析】圆心(1,2),圆心到直线的距离d =,半径r =,所以弦长为4=,故选C .【提示】把圆的一般方程化为标准方程,求出圆心和半径,然后利用勾股定理求弦长.【考点】等差数列的基本性质.8.【答案】B【解析】1111()()00f x f x x x -=-表示11(,())x f x 到原点的斜率;1212()()()n nf x f x f x x x x ===表示 1122(,()),(,())(,())n n x f x x f x x f x ,,与原点连线的斜率,而1122(,()),(,()),(,())n n x f xx f x x f x ,在曲线图像上,故只需考虑经过原点的直线与曲线的交点有几个,很明显有3个,故选B .【提示】利用()f x x的几何意义,将所求转化为直线与曲线的交点个数问题并列用数形结合求解.【考点】斜线公式,直线与曲线相交.9.【答案】B【解析】3sin 5sin A B =由正弦定理,所以5353a b a b ==即;因为2b c a +=,所以73c a =,2221cos 22a b c C ab +-==-,所以2π3C =,故选B . 【提示】利用正弦定理、余弦定理和解三角形的基本知识,将三角形中正弦关系转化为边的关系,进而利用余弦定理求解角的大小. 【考点】正弦定理和余弦定理的基本运算. 10.【答案】A【解析】2()32f x x a x b '=++,12,x x 是方程2320x ax b ++=的两根,由23(())2()0fx a f x b ++=,则又两个()f x 使得等式成立,11()x f x =,211()x x f x >=,其函数图象:如图则有3个交点,故选A .【提示】先求给定函数的导函数,由极值点的定义及题意,得出1()f x x =或2()f x x =,再利用数形结合确定这两个方程实数根的个数. 【考点】函数的单调性、极值.第Ⅱ卷二、填空题11.【答案】(0,1]【解析】2110011011x x x x x ⎧+>⇒><-⎪⎨⎪-≥⇒-≤≤⎩或,求交集之后得x 的取值范围(0,1].【提示】列出函数有意义的限制条件,解不等式组. 【考点】复合函数的定义域. 12.【答案】4【解析】由题意约束条件的图像如下:当直线经过(4,0)时,404z x y =+=+=, 取得最大值.。
开始结束2013年普通高等学校招生全国统一考试(安徽卷)数 学(文科)第Ⅰ卷(选择题 共50分)一、本大题共10小题,每小题5分,共50分.在每小题列出的四个选项中,选出符合题目要求的一项. 1. 设i 是虚数单位,若复数()103ia a -∈-R 是纯虚数,则a 的值为( ). A. 3- B. 1- C. 1 D. 3分析 先利用复数的运算法则将复数化为()i ,x y x y +∈R 的形式,再由纯虚数的定义求a . 解析 因为()()()()()103i 103i 103i 3i 3i 3i 10a a a a ++-=-=-=----+,由纯虚数的定义, 知30a -=,所以3a =.故选D.2. 已知{}1>0A x x =+,{}2101B =--,,,,则()A B =R( ).A. {}21--,B. {}2-C. {}101-,,D. {}01, 分析 解不等式求出集合A ,进而得AR,再由集合交集的定义求解.解析 因为集合{}1A x x =-,所以{}1A x x =-R≤,则(){}1A B x x =-R≤{}{}2,1,02,1--=--.故选A.3. 如图所示,程序据图(算法流程图)的输出结果为( ).A. 34 B. 16 C. 1112D.2524分析 利用框图的条件结构和循环结构求解. 解析0s =,2n =,28<,11022s =+=; 224n =+=,48<,113244s =+=;426n =+=,68<,31114612s =+=;628n =+=,88<,不成立,输出s 的值为1112.故选C. 4. “()210x x -=”是“0x =”的( ).A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件分析 先解一元二次方程()210x x -=,再利用充分条件、必要条件的定义判断. 解析 当0x =时,显然()210x x -=;当()210x x -=时,0x =或12x =, 所以“()210x x -=”是“0x =”的必要不充分条件.故选B.5. 若某公司从五位大学毕业生甲、乙、丙、丁、戊中录用三人,这五人被录用的机会均等,则甲或乙被录用的概率为( ).A.23 B. 25 C. 35 D. 910分析 解决本题的关键是求出甲或乙被录用的可能结果种数,直接求解情况较多,可间接求解,再用古典概型求概率.解析 由题意,从五位大学毕业生中录用三人,所有不同的可能结果有(甲,乙,丙), (甲,乙,丁),(甲,乙,戊),(甲,丙,丁),(甲,丙,戊),(甲,乙,戊),(乙,丙,丁), (丁,丙,戊),(乙,丁,戊),(丙,丁,戊),共10种,其中“甲与乙均未被录用”的所有不 同的可能结果只有(丙,丁,戊)这1种,故其对立事件“甲或乙被录用”的可能结果有9种,所以概率910P =.故选D. 6.直线250x y +-+=被圆22240x y x y +--=截得的弦长为( ).A. 1B. 2C. 4D.分析 先把圆的一般方程化为标准方程,求出圆心和半径,再在圆中构造直角三角形,利用勾股定理求弦长. 解析 圆的方程可化为()()22:125C x y -+-=,其圆心为()1,2C,半径R =如图所示,取弦AB 的中点P ,连接CP ,则CP AB ⊥,圆心C 到直线AB 的距离1d CP ===.在Rt ACP △中,2AP ==,故直线被圆截得的弦长4AB =.故选C.7. 设n S 为等差数列{}n a 的前n 项和,834S a =,72a =-,则9a =( ).A. 6-B. 4-C. 2-D. 2分析 借助等差数列前n 项和公式及通项公式的性质,计算数列的公差,进而得到9a 的值. 解析 由等差数列性质及前n 项和公式,得()18882a aS +=()36344a a a =+=,所以60a =.又72a =-,所以公差2d =-,所以9726a a d =+=-.故选A.CP BA8. 函数()y f x =的图象如图所示,在区间[]a b ,上可找到()2n n ≥个不同的数12n x x x ,,,,使得()()()1212n nf x f x f x x x x ===,则n 的取值范围是( ). A. {}23, B. {}234,, C. {}34, D. {}345,, 分析 利用()f x x的几何意义,将所求转化为直线与曲线的交点个数问题并利用数形结合求解. 解析 由题意,函数()y f x =上的任一点坐标为()(),x f x ,故()f x x表示曲线上任一点与坐标原点连线的斜率,若11()f x x 22()()n nf x f x x x ===,则曲线上存在n 个点与原点连线的斜率相等,即过原点的直线与曲线()y f x =有n 个交点,如图所示,数形结合可得n 的取值可为2,3,4.故选B.9. 设ABC △的内角A B C ,,所对边的长分别为a b c ,,,若2sin 5sin b c a A B +==,3,则角C =( ). A.π3 B. 2π3 C. 3π4 D. 5π6分析 利用正弦定理,余弦定理求解.解析 由3sin 5sin A B =,得35a b =,又因为2b c a +=,所以53a b =,73c b =,所以222cos 2a b c C ab +-=222571335223b b b b b⎛⎫⎛⎫+- ⎪ ⎪⎝⎭⎝⎭==-⨯⨯.因为()0,πC ∈,所以2π3C =.故选B. 10. 已知函数()32f x x ax bx c =+++有两个极值点12x x ,,若()112f x x x =<,则关于x 的方程()()()2320f x af x b ++=的不同实根个数是( ).A. 3B. 4C. 5D. 6分析 先求给定函数的导函数,由极值点的定义及题意,得出()1f x x =或()2f x x =,再利用数形结合确定这两个方程实数根的个数.解析 因为()232f x x ax b '=++,函数()f x 的两个极值点为12,x x ,则()10f x '=,()20f x '=,所以1x ,2x 是方程2320x ax b ++=的两根,所以解关于x 的方程3()()()2320f x af x b ++=,得()1f x x =或()2f x x =.由上述可知函数()f x 在区间()()12,,,x x -∞+∞上单调递增,在区间()12,x x 上单调递减,又()11f x x=2x ,如图所示,由数形结合可知()1f x x =时有两个不同实根,()2f x x =有一个实根,所以不同实根 的个数为3.故选A.第II 卷(共100分)二、填空题:本大题共5小题,每小题5分,共25分.ww 11.函数1ln 1y x ⎛⎫=++ ⎪⎝⎭的定义域为 . 分析 列出函数有意义的限制条件,解出不等式组.解析 要使函数有意义,需2110,10,xx ⎧+⎪⎨⎪-⎩≥即210,1,x x x +⎧⎪⎨⎪⎩≤即10,11,x x x -⎧⎨⎩≤≤或即11,x x x -⎧⎨⎩≤或解得01,x ≤所以定义域为(]0,1.12. 若非负数变量x y ,满足约束条件124x y x y --⎧⎨+⎩≥≤,则x y +的最大值为 .分析 先画出可行域,再画出目标函数线过原点时的直线,向上平移,寻找满足条件的最优解, 代入即可得所求.解析 根据题目中的约束条件画出可行域,注意到x ,y 非负,得可行域为如图所示的阴影部分 (包括边界),作直线,y x =-并向上平移,数形结合可知,当直线过点,()4,0A 时,x y +取得最大值,最大值为4.13. 若非零向量a b ,满足32==+a b a b ,则a 与b 夹角的余弦值为 .解析 由2,=+a a b 两边平方,得()22224,=+=+⋅a a b a a b所以2⋅=-a b b .又3,=a b 所以cos ,a b 22133-⋅===-b a b a b b 14. 定义在R 上的函数()f x 满足()()12f x f x +=.若当01x ≤≤时,()()1f x x x =-,则当10x -≤≤时,()f x = .分析 由于当01x ≤≤时解析式已知,且已知()()12,f x f x +=可设10,x -≤≤Q1D A E(1)ABCDA 1D 1C 1B 1P QQPB 1C 1D 1A 1DCBA(2)则011,x +≤≤整体代入求解.解析 设10,x -≤≤则011,x +≤≤所以()()()()11111f x x x x x +=+-+=-+⎡⎤⎣⎦. 又因为()()12,f x f x +=所以()()()1122f x x x f x ++==-. 15. 如图所示,正方体1111-ABCD A B C D 的棱长为1,P 为BC 的中点,Q 为线段1CC 上的动点,过点A P Q ,,的平面截该正方体所得的截面记为S .则下列命题正确的是 (写出所有正确命题的编号) ①当10<<2CQ 时,S 为四边形 ②当12CQ =时,S 为等腰梯形③当34CQ =时,S 与11C D 的交点R 满足113C R =④当3<<14CQ 时,S 为六边形⑤当1CQ =时,S 的面积为2解析 利用平面的基本性质结合特殊四边形的判定与性质求解. ①当102CQ <<时,如图(1)所示,在平面11AA D D 内,作PQ AE ∥,显然E 在棱1DD 上, 连接EQ ,则S 是四边形APQE . ②当12CQ =时,如图(2)所示,显然11,BC AD PQ ∥∥连接1D Q ,则S 是等腰梯形.③当34CQ =时,如图(3)所示,作PQ BF ∥交1CC 的延长线于点F ,则112C F =, 作AE BF ∥交1DD 的延长线于点E ,则112D E =,PQ AE ∥,连接EQ 交11C D 于点R ,由于11Rt Rt RC Q RD E △∽△,所以1111::1:2C Q D E C R RD ==,所以113C R =.1(3)E(4)1(Q )④当314CQ <<时,如图(3)所示,连接RM (点M 为AE 与11A D 交点),显然S 为五边形APQRM ;⑤当1CQ =时,如图(4)所示,同③可作AE PQ ∥交1DD 的延长线于点E ,交11A D 于点M , 显然点M 为11A D 的中点,所以S 为菱形APQM ,其面积为12MP AQ ⨯=122=. 综上,正确的命题序号是①②③⑤.三、解答题:本大题共6小题,共75分.解答应写出文字说明,演算步骤或证明过程. 16. (本小题共12分) 设函数()sin sin 3f x x x π⎛⎫=++⎪⎝⎭. (1)求()f x 的最小值,并求使()f x 取得最小值x 的集合;(2)不画图,说明函数()y f x =的图象可由sin y x =的图象经过怎样变化得到.分析(1)先逆用两角和正弦公式把()f x 化成关于一个角的三角函数,再利用正弦函数性质计算(2)利用三角函数图像的变换规律求解. 解析 (1)因为()1sin sin 22f x x x x =++3sin 26x x x π⎛⎫==+ ⎪⎝⎭. 所以当()26x k k ππ+=π-∈2Z,即()223x k k π=π-∈Z 时,()f x 取得最小值. 此时x 的取值集合为22,3x x k k ⎧π⎫=π-∈⎨⎬⎩⎭Z . (2)先将sin y x =倍(横坐标不变),得y x =的图像;再将y x =的图像上所有的点向左平移π6个单位,得()y f x =的图像.ADCEEP17. (本小题共12分) 为调查甲、乙两校高三年级学生某次联考数学成绩情况,用简单随机抽样,从这两校中各抽取30 名高三年级学生,以他们的数学成绩(百分制)作为样本,样本数据的茎叶图如下:甲 乙7 4 55 3 3 2 5 3 3 85 5 4 3 3 3 1 0 06 0 6 9 1 1 2 2 3 3 5 8 6 6 2 2 1 1 0 07 0 0 2 2 2 3 3 6 6 9 7 5 4 4 28 1 1 5 5 8 2 09 0(1)若甲校高三年级每位学生被抽取的概率为0.05,求甲校高三年级学生总人数,并估计甲校高三年级这次联考数学成绩的及格率(60分及60分以上为及格); (2)设甲、乙两校高三年级学生这次联考数学平均成绩分别为12x x ,,估计12x x -的值. 分析(1)由样本数除以所占的比例得总体n ,计算样本中的及格率,利用样本估计总体;(2)阅读茎叶图,代入平均数公式计算可解. 解析(1)设甲校高三年级学生总人数为n .由题意知300.05n=,解得600n =. 样本中甲校高三年级学生数学成绩不及格人数为5,据此估计甲校三年级这次联考教学成绩的及格率为551306-=.(2)设甲、乙两校样本平均数分别为1x ',2x '.根据样本茎叶图可知 ()1212303030x x x x ''''-=-()()()7555814241265=-++-+--+()()262479222092--+-+249537729215=+--++=.因此120.5x x ''-=.故12x x ''-的估计值为0.5分. 18. (本小题共12分)如图所示,四棱锥P ABCD -的底面ABCD 是边长为2的菱形,60BAD ∠=. 已知2PB PD ==,PA =(1)证明:PC BD ⊥;(2)若E 为PA 的中点,求三棱锥P BCE -的体积.分析(1)连接AC ,与BD 交于点O ,由PB PD =以及底面为菱形的条件,线面垂直的判定定理可证BD APC ⊥平面,从而可证;(2)利用四面体的等积变换,转化为以B 为顶点的三棱锥,进而判断三棱锥-P BCE 的体积是三棱锥-B APC 的体积的一半,代入公式计算. 解析(1)连接AC ,交BD 于点O ,连接PO .因为底面ABCD 是菱形,所以,AC BD BO DO ⊥=.由PB PD =知,PO BD ⊥.又因为PO AC O =,所以BD APC ⊥平面,因此BD PC ⊥. (2)因为E 是PA 的中点,所以----1122P BCEC PEB C PAB B APCVVV V===锥锥锥锥三棱三棱三棱三棱. 由2PB PD AB AD ====知,ABD PBD △. 因为60BAD ∠=︒,所以PO AO AC ===1BO =.又PA =222PO AO PA +=,所以PO AC ⊥,故132APC S PO AC =⋅=△. 由(1)知,BO APC ⊥平面,因此--12P BCE B APCV V =锥锥三棱三棱111232APCBO S =⋅⋅⋅=△. 19. (本小题共13分)设数列{}n a 满足12428a a a =+=,,且对任意*n ∈N ,函数()()1212cos sin n n n n n f x a a a x a x a x ++++=-++-满足π02'f ⎛⎫= ⎪⎝⎭.(1)求数列{}x a 的通项公式;; (2)若122nn n a b a ⎛⎫=+⎪⎝⎭,求数列{}n b 的前n 项和n S . 分析(1)求导,代入0f π⎛⎫'=⎪2⎝⎭,并对所得式子进行变形,从而证明数列是等差数列,再由题目条件求基本量,得通项公式.(2)将n a 代入化简,利用分组求和法,结合等差、等比数列的前n 项和公式计算.解析(1)由题设可得()1212sin cos n n n n n f x a a a a x a x ++++'=-+--. 对任意*n ∈N ,1210nn n n f a a a a +++π⎛⎫'=-+-=⎪2⎝⎭,即121n nn n a a a a +++-=-,故{}n a 为等差数列.由12a =,248a a +=,可得数列{}n a 的公差1d =,所以()2111n a n n =+⋅-=+. (2)由122n n nb a a ⎛⎫=+= ⎪⎝⎭111212222n nn n +⎛⎫++=++ ⎪⎝⎭知,12nnS b b b =+++OD EABCP()111221221212nn n n ⎡⎤⎛⎫-⎢⎥⎪+⎝⎭⎣⎦=+⋅+-21312nn n =++-. 20. (本小题共13分)设函数()()221f x ax a x =-+,其中>0a ,区间(){}>0I x f x =. (1)求I 的长度(注:区间()αβ,的长度定义为βα-); (2)给定常数()01k ∈,,当11k a k -+≤≤时,求I 长度的最小值.分析 利用一元二次方程和一元二次不等式的关系,先求出解集,构造函数,利用导数求解函数的单调性和最值. 解析 (1)因为方程有两个实根10x =,221ax a =+,故()0f x >的解集为{}12x x x x <<,因此区间20,1a I a ⎛⎫= ⎪+⎝⎭,区间I 的长度为21a a +. (2)设2d()1aa a =+,则()()2221d'()01a a a a -=>+.令 d'()0a =得1a =.由于01k <<,故 当11k a -<时,d'()0a >,d()a 单调递增;当11a k <+时,d'()0a <,d()a 单调递减. 所以当11k a k -+时,d()a 的最小值必定在1a k =-或1a k =+处取得.而d(1)d(1)k k -=+2211(1)11(1)kk k k -+-=+++2323212k k k k --<-+,故d(1)d(1)k k -<+.因此当1a k =-时d()a 在区间[]1,1k k -+上取得最小值2122kk k--+. 21. (本小题共13分)已知椭圆()2222:1>>0x y C a b a b+=的焦距为4,且过点P.(1)求椭圆C 的方程;(2)设()()00000Q x y x y ≠,为椭圆C 上一点,过点Q 作x 轴的垂线,垂足为E .取点(0A ,连接AE ,过点A 作AE 的垂线交x 轴于点D .点G 是点D 关于y 轴的对称点,作直线QG ,问这样作出的直线QG 是否与椭圆C 一定有唯一的公共点?并说明理由.分析 (1)由于焦矩已知,可将原方程中的参数用一个量来表示,并把点P 坐标代入求解. (2)由点Q 坐标得点E 坐标,再确定点D 的坐标,从而可得点G 坐标,于是写出直线QG的方程,与椭圆方程联立,看是否有唯一的解.解析(1)因为焦矩为4,所以224a b -=.又因为椭圆C过点P,所以22231a b+=. 故228,4a b ==,从而椭圆C 的方程为22184x y+=.(2)一定有唯一的公共点. 理由:由题意知,点E 坐标为()0,0x .设(),0D D x,则(0,AE x =-,(,D AD x =-.再由AD AE ⊥知,0AE AD ⋅=,即080D x x +=.由于000x y ≠,故08D x x=-. 因为点G 是点D 关于y 轴的对称点,所以点08,0G x ⎛⎫⎪⎝⎭.故直线QG 的斜率 002088QGyx yk x x x==--.又因为点()00,Q x y 在椭圆C 上,所以2228x y +=. ① 从而002QG x k y=-. 故直线QG 的方程为0082x y x y x⎛⎫=-- ⎪⎝⎭. ② 将②代入椭圆C 的方程,代简,得()222221664160xy x x x y +-+-=. ③再将①代入③,代简得220020x x x x -+=.解得0x x =,则0y y =,即直线QG 与椭圆C 一定有唯一的公共点.。
2013·安徽卷(文科数学)1. 设i 是虚数单位,若复数a -103-i (a ∈R )是纯虚数,则a 的值为( )A .-3B .-1C .1D .31.D [解析] a -103-i =a -10(3+i )(3-i )(3+i )=a -(3+i)=(a -3)-i ,其为纯虚数得a=3.2. 已知A ={x |x +1>0},B ={-2,-1,0,1},则(∁R A )∩B =( )A .{-2,-1}B .{-2}C .{-1,0,1}D .{0,1}2.A [解析] 因为A ={x |x >-1},所以∁R A ={x |x ≤-1},所以(∁R A )∩B ={-2,-1}.图1-13. 如图1-1所示,程序框图(算法流程图)的输出结果为( ) A.34 B.16 C.1112 D.25243.C [解析] 依次运算的结果是s =12,n =4;s =12+14,n =6;s =12+14+16,n =8,此时输出s ,故输出结果是12+14+16=1112.4. “(2x -1)x =0”是“x =0”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件4.B [解析] (2x -1)x =0⇒x =12或x =0;x =0⇒(2x -1)x =0.故“(2x -1)x =0”是“x =0”的必要不充分条件.5., 若某公司从五位大学毕业生甲、乙、丙、丁、戊中录用三人,这五人被录用的机会均等,则甲或乙被录用的概率为( )A.23B.25C.35D.9105.D [解析] 五人中选用三人,列举可得基本事件个数是10个,“甲或乙被录用”的对应事件是“甲乙都没有被录用”,即录用的是其余三人,只含有一个基本事件,故所求概率是1-110=910.6. 直线x +2y -5+5=0被圆x 2+y 2-2x -4y =0截得的弦长为( ) A .1 B .2 C .4 D .4 66.C [解析] 圆的标准方程是(x -1)2+(y -2)2=5,圆心(1,2)到直线x +2y -5+5=0的距离d =1,所以直线x +2y -5+5=0被圆x 2+y 2-2x -4y =0所截得的弦长l =2r 2-d 2=4.7. 设S n 为等差数列{a n }的前n 项和,S 8=4a 3,a 7=-2,则a 9=( ) A .-6 B .-4 C .-2 D .27.A [解析] 设公差为d ,则8a 1+28d =4a 1+8d ,即a 1=-5d ,a 7=a 1+6d =-5d +6d =d =-2,所以a 9=a 7+2d =-6.图1-28. 函数y =f (x )的图像如图1-2所示,在区间[a ,b ]上可找到n (n ≥2)个不同的数x 1,x 2,…,x n ,使得f (x 1)x 1=f (x 2)x 2=…=f (x n )x n,则n 的取值范围为( )A .{2,3}B .{2,3,4}C .{3,4}D .{3,4,5}8.B [解析] 问题等价于求直线y =kx 与函数y =f (x )图像的交点个数,从图中可以看出交点个数可以为2,3,4,故n 的取值范围是{2,3,4}.9. 设△ABC 的内角A ,B ,C 所对边的长分别为a ,b ,c ,若b +c =2a ,3sin A =5sin B ,则角C =( )A.π3B.2π3C.3π4D.5π69.B [解析] 根据正弦定理,3sin A =5sin B 可化为3a =5b ,又b +c =2a ,解得b =3a 5,c =7a5.令a =5t (t >0),则b =3t ,c =7t ,在△ABC 中,由余弦定理得cos C =a 2+b 2-c 22ab =25t 2+9t 2-49t 22×5t ×3t=-12,所以C =2π3.10., 已知函数f (x )=x 3+ax 2+bx +c 有两个极值点x 1,x 2.若f (x 1)=x 1<x 2,则关于x 的方程3(f (x ))2+2af (x )+b =0的不同实根个数为( )A .3B .4C .5D .6 10.A [解析] f ′(x )=3x 2+2ax +b ,根据已知,得3x 2+2ax +b =0有两个不同的实根x 1,x 2,且x 1<x 2,根据三次函数的性质可得x 1是函数f (x )的极大值点,方程3(f (x ))2+2af (x )+b =0必然有f (x )=x 1或f (x )=x 2.由于f (x 1)=x 1且x 1<x 2,如图,可知方程f (x )=x 1有两个实根,f (x )=x 2有一个实根,故方程3(f (x ))2+2af (x )+b =0共有3个不同实根.11., 函数y =ln1+1x+1-x 2的定义域为________.11.(0,1] [解析] 实数x 满足1+1x >0且1-x 2≥0.不等式1+1x >0,即x +1x >0,解得x >0或x <-1;不等式1-x 2≥0的解为-1≤x ≤1.故所求函数的定义域是(0,1].12. 若非负变量x ,y 满足约束条件⎩⎪⎨⎪⎧x -y ≥-1,x +2y ≤4,则x +y 的最大值为________.12.4 [解析] 已知不等式组表示的平面区域如图中的阴影部分,设z =x +y ,则z 的几何意义是直线y =-x +z 在y 轴上的截距,结合图形,可知当直线y =-x +z 通过点A (4,0)时z 最大,此时z =4.13. 若非零向量,满足==+,则与夹角的余弦值为________.13.-13 [解析] 设||=1,则||=3,|+|=3,两端平方得+4+4=9,即9+12cos 〈,〉+4=9,解得cos 〈,〉=-13.14., 定义在上的函数f (x )满足f (x +1)=2f (x ),若当0≤x ≤1时,f (x )=x (1-x ),则当-1≤x ≤0时,f (x )=________.14.-x (x +1)2 [解析] 当-1≤x ≤0时,0≤x +1≤1,由f (x +1)=2f (x )可得f (x )=12f (x+1)=-12x (x +1).图1-315. 如图1-3,正方体ABCD -A 1B 1C 1D 1的棱长为1,P 为BC 的中点,Q 为线段CC 1上的动点,过点A ,P ,Q 的平面截该正方体所得的截面记为S ,则下列命题正确的是________(写出所有正确命题的编号).①当0<CQ <12时,S 为四边形;②当CQ =12时,S 为等腰梯形;③当CQ =34时,S 与C 1D 1的交点R 满足C 1R =13;④当34<CQ <1时,S 为六边形;⑤当CQ =1时,S 的面积为62. 15.①②③⑤ [解析] 对于①②,如图(1)所示,因为正方体ABCD -A 1B 1C 1D 1的棱长为1,当CQ =12时,PQ =22,这时过A ,P ,Q 三点的截面与DD 1交于D 1,AP =D 1Q =52,且PQ ∥AD 1,截面S 为等腰梯形. 当CQ <12时,过A ,P ,Q 三点的截面与直线DD 1的交点在棱DD 1上,截面S 为四边形,故①②正确.对于③④⑤,如图(2)所示,联结QR 并延长交DD 1的延长线于N 点,联结AN 交A 1D 1于M ,取AD 中点G ,作GH ∥PQ 交DD 1于H 点,可得GH ∥AN ,且GH =12AN .设CQ =t (0≤t ≤1),则DN =2t ,ND 1=2t -1,ND 1C 1Q =D 1R RC 1=2t -11-t, 当t =34时,D 1R C 1R =21,可得C 1R =13,故③正确;当34<t <1时,S 为五边形,故④错误; 当t =1时,Q 与C 1重合,M 为A 1D 1的中点, S 为菱形PC 1MA ,AM =AP =PC 1=C 1M =52,MP =2,AC 1=3,S 的面积等于12×2×3=62,故⑤正确.16. 设函数f (x )=sin x +sin ⎝⎛⎭⎫x +π3. (1)求f (x )的最小值,并求使f (x )取最小值的x 的集合;(2)不画图,说明函数y =f (x )的图像可由y =sin x 的图像经过怎样的变化得到. 16.解:(1)因为f (x )=sin x +12sin x +32cos x =32sin x +32cos x =3sin x +π6,所以当x +π6=2k π-π2(k ∈),即x =2k π-2π3(k ∈)时,f (x )取得最小值- 3.此时x 的取值集合为(2)先将y =sin x 的图像上所有点的纵坐标伸长到原来的3倍(横坐标不变),得y =3sin x 的图像;再将y =3sin x 的图像上所有的点向左平移π6个单位,得y =f (x )的图像.17., 为调查甲、乙两校高三年级学生某次联考数学成绩情况,用简单随机抽样,从这两校中各抽取30名高三年级学生,以他们的数学成绩(百分制)作为样本,样本数据的茎叶图如下: 甲 乙 7 4 5 5 3 3 2 5 3 3 8 5 5 4 3 3 3 1 0 0 6 0 0 0 1 1 2 2 3 3 5 8 6 6 2 2 1 1 0 0 7 0 0 2 2 2 3 3 6 6 9 7 5 4 4 2 8 1 1 5 5 8 2 09图1-4(1)若甲校高三年级每位学生被抽取的概率为0.05,求甲校高三年级学生总人数,并估计甲校高三年级这次联考数学成绩的及格率(60分及60分以上为及格);(2)设甲、乙两校高三年级学生这次联考数学平均成绩分别为x 1,x 2,估计x 1-x 2的值.17.解:(1)设甲校高三年级学生总人数为n ,由题意知,30n =0.05,即n =600.样本中甲校高三年级学生数学成绩不及格人数为5,据此估计甲校高三年级此次联考数学成绩及格率为1-530=56.(2)设甲、乙两校样本平均数分别为x 1′,x 2′,根据样本茎叶图可知, 30(x 1′-x 2′)=30x 1′-30x 2′=(7-5)+(55+8-14)+(24-12-65)+(26-24-79)+(22-20)+92 =2+49-53-77+2+92 =15.因此x 1′-x 2′=0.5,故x 1-x 2的估计值为0.5分.图1-518. 如图1-5,四棱锥P -ABCD 的底面ABCD 是边长为2的菱形,∠BAD =60°,已知PB =PD =2,P A = 6. (1)证明:PC ⊥BD ;(2)若E 为P A 的中点,求三棱锥P -BCE 的体积. 18.解:(1)证明:联结AC ,交BD 于O 点,联结PO . 因为底面ABCD 是菱形,所以AC ⊥BD ,BO =DO .由PB =PD 知,PO ⊥BD .再由PO ∩AC =O 知,BD ⊥面APC ,又PC ⊂平面APC ,因此BD ⊥PC .(2)因为E 是P A 的中点,所以V P -BCE =V C -PEB =12V C -P AB =12V B -APC . 由PB =PD =AB =AD =2知,△ABD ≌△PBD . 因为∠BAD =60°,所以PO =AO =3,AC =23,BO =1.又P A =6,故PO 2+AO 2=P A 2,即PO ⊥AC . 故S △APC =12PO ·AC =3.由(1)知,BO ⊥面APC ,因此V P -BCE =12V B -APC =13·12·S △APC ·BO =12.19., 设数列{a n }满足a 1=2,a 2+a 4=8,且对任意n ∈*,函数f (x )=(a n -a n +1+a n +2)x +a n +1cos x -a n +2sin x 满足f ′⎝⎛⎭⎫π2=0.(1)求数列{a n }的通项公式;(2)若b n =2⎝⎛⎭⎫a n +12a n,求数列{b n }的前n 项和S n . 19.解:(1)由题设可得,f ′(x )=a n -a n +1+a n +2-a n +1sin x -a n +2cos x .对任意n ∈*,f ′π2=a n -a n +1+a n +2-a n +1=0,即a n +1-a n =a n +2-a n +1,故{a n }为等差数列.由a 1=2,a 2+a 4=8,解得{a n }的公差d =1, 所以a n =2+1·(n -1)=n +1.(2)由b n =2a n +12a n =2⎝⎛⎭⎫n +1+12n +1=2n +12n +2知,S n =b 1+b 2+…+b n =2n +2·n (n +1)2+121-12n1-12=n 2+3n +1-12n .20., 设函数f (x )=ax -(1+a 2)x 2,其中a >0,区间I ={x |f (x )>0}. (1)求I 的长度(注:区间(α,β)的长度定义为β-α);(2)给定常数k ∈(0,1),当1-k ≤a ≤1+k 时,求I 长度的最小值. 20.解:(1)因为方程ax -(1+a 2)x 2=0(a >0)有两个实根x 1=0,x 2=a1+a 2,故f (x )>0的解集为{x |x 1<x <x 2},因此区间I =0,a 1+a 2,区间长度为a1+a 2. (2)设d (a )=a 1+a 2,则d ′(a )=1-a 2(1+a 2)2,令d ′(a )=0,得a =1,由于0<k <1,故当1-k ≤a <1时,d ′(a )>0,d (a )单调递增;当1<a ≤1+k 时,d ′(a )<0,d (a )单调递减;因此当1-k ≤a ≤1+k 时,d (a )的最小值必定在a =1-k 或a =1+k 处取得. 而d (1-k )d (1+k )= 1-k 1+(1-k )2 1+k 1+(1+k )2=2-k 2-k 32-k 2+k 3<1,故d (1-k )<d (1+k ). 因此当a =1-k 时,d (a )在区间[1-k ,1+k ]上取得最小值1-k2-2k +k 2.21., 已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的焦距为4,且过点P (2,3).(1)求椭圆C 的方程;(2)设Q (x 0,y 0)(x 0y 0≠0)为椭圆C 上一点,过点Q 作x 轴的垂线,垂足为E ,取点A (0,22),联结AE ,过点A 作AE 的垂线交x 轴于点D ,点G 是点D 关于y 轴的对称点,作直线QG ,问这样作出的直线QG 是否与椭圆C 一定有唯一的公共点?并说明理由.21.解:(1)因为焦距为4,所以a 2-b 2=4.又因为椭圆C 过点P (2,3),所以2a 2+3b 2=1,故a 2=8,b 2=4,从而椭圆C 的方程为x 28+y 24=1.(2)由题意,E 点坐标为(x 0,0),设D (x D ,0),则AE →=(x 0,-22),AD →=(x D ,-22). 再由AD ⊥AE 知,AE →·AD →=0,即x 0x D +8=0.由于x 0y 0≠0,故x D =-8x 0.因为点G 是点D 关于y 轴的对称点,所以G 8x 0,0,故直线QG 的斜率k QG =y 0x 0-8x 0=x 0y 0x 20-8.又因Q (x 0,y 0)在椭圆C 上,所以x 20+2y 20=8.①从而k QG =-x 02y 0.故直线QG的方程为将②代入椭圆C方程,得(x20+2y20)x2-16x0x+64-16y20=0.③再将①代入③,化简得x2-2x0x+x20=0,解得x=x0,y=y0,即直线QG与椭圆C一定有唯一的公共点.。
2013安徽高考文科数学(文字版)
绝密★启用前
2013年普通高等学校招生全国统一考试(安徽卷)
数学(文科)
本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷1至2页,第Ⅱ卷3至4页。
全卷满分150分。
考试用时120分钟。
考生注意事项:
1. 答题前,务必在试题卷、答题卡规定的地方填写自己的姓名、座位号,并认真核对答题卡上所粘帖的条形码中姓名、座位号与本人姓名、座位号是否一致。
务必在答题卡背面规定的地方填写姓名和座位号后两位。
2. 答第Ⅰ卷时,每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。
3. 答第Ⅱ卷时,必须用0.5毫米黑色墨水签字笔在答题卡上书写,要求字体工整、笔迹清晰。
作图题时可先用铅笔在答题卡规定的位置绘出,确认后用0.5毫米的黑色墨水签字笔描清楚。
必须在题号所指示的答题区域作答,超出答题区域书写的答案无效,在试题卷、草稿纸上答题无效。
4. 考试结束,务必将试题卷和答题卡一并上交。
2013年普通高等学校招生全国统一考试文科数学(安徽卷) 第Ⅰ卷一、选择题1.设i 是虚数单位.若复数a -103-i (a ∈R )是纯虚数,则a 的值为( )A .-3B .-1C .1D .3答案 D解析 a -103-i =a -(3+i)=(a -3)-i ,由a ∈R ,且a -103-i 为纯虚数知a =3.2.已知A ={x |x +1>0},B ={-2,-1,0,1},则(∁R A )∩B 等于( ) A .{-2,-1} B .{-2} C .{-1,0,1}D .{0,1}答案 A解析 A ={x |x +1>0}=(-1,+∞),则∁R A =(-∞,-1],(∁R A )∩B ={-2,-1}. 3.如图所示,程序框图(算法流程图)的输出结果为( )A.34B.16C.1112D.2524 答案 C解析 赋值S =0,n =2 进入循环体:检验n =2<8, S =0+12=12,n =2+2=4;检验n <8,S =12+14=34, n =4+2=6;检验n <8,S =34+16=1112,n =6+2=8,检验n =8,脱离循环体, 输出S =1112.4.“(2x -1)x =0”是“x =0”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件答案 B解析 由(2x -1)x =0⇔x =12,或x =0⇐x =0,反之不成立.知“(2x -1)x =0”是“x =0”的必要不充分条件.5.若某公司从五位大学毕业生甲、乙、丙、丁、戊中录用三人,这五人被录用的机会均等,则甲或乙被录用的概率为( ) A.23B.25C.35D.910答案 D解析 从五位大学生中录用三人所有方法的种数为10种,其中甲或乙被录用的方法种数为9,由古典概型公式P =910.6.直线x +2y -5+5=0被圆x 2+y 2-2x -4y =0截得的弦长为( ) A .1 B .2 C .4 D .4 6 答案 C解析 圆的方程可化为(x -1)2+(y -2)2=5,圆心(1,2)到直线x +2y -5+5=0的距离 d =1,解弦长l =2r 2-d 2=4.7.设S n 为等差数列{a n }的前n 项和,S 8=4a 3,a 7=-2,则a 9等于( ) A .-6 B .-4 C .-2 D .2 答案 A解析 由已知⎩⎪⎨⎪⎧ 8a 1+28d =4a 1+8d a 1+6d =-2,即⎩⎪⎨⎪⎧a 1+5d =0,a 1+6d =-2,解得a 1=10,d =-2,a 9=a 1+8d =-6.8.函数y =f (x )的图象如图所示,在区间[a ,b ]上可找到n (n ≥2)个不同的数x 1,x 2,…,x n ,使得f (x 1)x 1=f (x 2)x 2=…=f (x n )x n,则n 的取值范围为( )A .{2,3}B .{2,3,4}C .{3,4}D .{3,4,5}答案 B解析 过原点作直线与函数y =f (x )的图象可以有两个、三个、四个不同的交点,因此n 的取值范围是{2,3,4}.9.设△ABC 的内角A ,B ,C 所对边的长分别为a ,b ,c .若b +c =2a,3sin A =5sin B ,则角C 等于( ) A.π3B.2π3C.3π4D.5π6答案 B解析 由已知条件和正弦定理3a =5b ,且b +c =2a , 则a =5b 3,c =2a -b =7b 3,cos C =a 2+b 2-c 22ab =-12,又0<C <π,因此角C =2π3.10.已知函数f (x )=x 3+ax 2+bx +c 有两个极值点x 1,x 2.若f (x 1)=x 1<x 2,则关于x 的方程3(f (x ))2+2af (x )+b =0的不同实根个数为( ) A .3 B .4 C .5 D .6 答案 A解析 f ′(x )=3x 2+2ax +b ;由已知x 1,x 2是方程3x 2+2ax +b =0的不同两根, 当f (x 1)=x 1<x 2时,作y =x 1,y =x 2与f (x )=x 3+ax 2+bx +c 有三个不同交点. 即方程3(f (x ))2+2af (x )+b =0有三个不同实根. 二、填空题11.函数y =ln ⎝⎛⎭⎫1+1x +1-x 2的定义域为________. 答案 (0,1]解析 解不等式组⎩⎪⎨⎪⎧1+1x >01-x 2≥0得:0<x ≤1.因此函数的定义域为(0,1].12.若非负变量x ,y 满足约束条件⎩⎪⎨⎪⎧x -y ≥-1,x +2y ≤4,则x +y 的最大值为________.答案 4解析 约束条件⎩⎪⎨⎪⎧x ≥0,y ≥0,x -y ≥-1,x +2y ≤4对应的区域,如图所示,作直线l :x +y =0,可观察出在A 点x +y 取到最大值,解方程组⎩⎪⎨⎪⎧x +2y =4,y =0,得⎩⎪⎨⎪⎧x =4y =0,则x +y 的最大值为4. 13.若非零向量a ,b 满足|a |=3|b |=|a +2b |,则a 与b 夹角的余弦值为________. 答案 -13解析 由已知条件a 2=(a +2b )2,即a ·b =-b 2, cos 〈a ,b 〉=a ·b |a ||b |=-13.14.定义在R 上的函数f (x )满足f (x +1)=2f (x ).若当0≤x ≤1时,f (x )=x (1-x ),则当-1≤x ≤0时,f (x )=________. 答案 -12x (x +1)解析 当-1≤x ≤0时,0≤x +1≤1, 由已知f (x )=12f (x +1)=-12x (x +1).15.如图,正方体ABCDA 1B 1C 1D 1的棱长为1,P 为BC 的中点,Q 为线段CC 1上的动点,过点A ,P ,Q 的平面截该正方体所得的截面记为S .则下列命题正确的是________(写出所有正确命题的编号).①当0<CQ <12时,S 为四边形;②当CQ =12时,S 为等腰梯形;③当CQ =34时,S 与C 1D 1的交点R 满足C 1R =13;④当34<CQ <1时,S 为六边形;⑤当CQ =1时,S 的面积为62. 答案 ①②③⑤解析 截面S 与DD 1的交点为M ,由平面与平面平行的性质定理知AM ∥PQ ,若0<CQ <12,则M 在线段DD 1上(不包括端点)如图S 为四边形,命题①正确;当CQ =12时,M 点与D 1重合,四边形APQD 1为等腰梯形,命题②正确;当CQ =34时,由△PCQ ∽△ADM ,DM AD =CQ PC ,则DM =AD ·CQ PC =32.连接MQ 交C 1D 1于R 点C 1R D 1R =C 1QD 1M =12,即D 1R =2C 1R ,又D 1R +C 1R =1,则C 1R =13故命题③正确.当34<CQ <1时,连接AM 交A 1D 1于N ,则截面S 为五边形APQRN ,命题④错误.当CQ =1时,截面S 为菱形,其对角线长分别为2,3,则S 的面积12·2·3=62,故命题⑤正确.三、解答题16.设函数f (x )=sin x +sin ⎝⎛⎭⎫x +π3 (1)求f (x )的最小值,并求使f (x )取得最小值的x 的集合;(2)不画图,说明函数y =f (x )的图象可由y =sin x 的图象经过怎样的变化得到. 解 (1)f (x )=sin x +sin ⎝⎛⎭⎫x +π3=32sin x +32cos x =3⎝⎛⎭⎫32sin x +12cos x = 3 sin ⎝⎛⎭⎫x +π6, 因此f (x )的最小值为-3, 此时x +π6=-π2+2k π,k ∈Z ,x =-2π3+2k π,k ∈Z ,使f (x )取得最小值的x 的集合为 ⎩⎨⎧⎭⎬⎫x |x =-2π3+2k π,k ∈Z .(2)y =sin x ,向左平移π6个单位,y =sin ⎝⎛⎭⎫x +π6 图象上所有点横坐标不变,纵坐标伸长到原来的3倍, y =3sin ⎝⎛⎭⎫x +π6. 17.为调查甲、乙两校高三年级学生某次联考的数学成绩情况,用简单随机抽样,从这两校中各抽取30名高三年级学生,以他们的数学成绩(百分制)作为样本,样本数据的茎叶图如下:(1)若甲校高三年级每位学生被抽取的概率为0.05,求甲校高三年级学生总人数,并估计甲校高三年级这次联考数学成绩的及格率(60分及60分以上为及格);(2)设甲、乙两校高三年级学生这次联考数学平均成绩分别为x 1,x 2,估计x 1-x 2的值.解 (1)设甲校高三年级学生总人数为n ,由已知条件 30n=0.05,则n =600. 在甲校高三年级抽取的30名学生中成绩在60分及60分以上的人数为25,因此甲校高三年级这次联考的及格率大约是2530=56≈83.3%.(2)x 1=[(7+13+24+26+22+2)+40+50×4+60×9+70×9+80×5+90×2]÷30=1 04215; x 2=[(5+14+17+33+20)+40+50×3+60×10+70×10+80×5+90]÷30=2 06930.x 1-x 2=2 08430-2 06930=12.18.如图,四棱锥P -ABCD 的底面ABCD 是边长为2的菱形,∠BAD =60°.已知PB =PD =2,P A = 6.(1)证明:PC ⊥BD ;(2)若E 为P A 的中点,求三棱锥PBCE 的体积.(1)证明 连接AC 交BD 于O 点,则O 为BD 中点,且AC ⊥BD ,连接PO ,又PB =PD ,则PO ⊥BD ,因此BD ⊥平面POC ,则BD ⊥PC . (2)解 在△ABD 中,AO =3, 在△BOP 中PO = 3.在△POA 中,AO 2+PO 2=P A 2,则PO ⊥AO ,又PO ⊥BD ,则PO ⊥底面ABCD . V PBCE =V P ABC -V EABC =16PO ·S △ABC =12.19.设数列{a n }满足a 1=2,a 2+a 4=8,且对任意n ∈N *,函数f (x )=(a n -a n +1+a n +2)x + a n +1cos x -a n +2sin x 满足f ′⎝⎛⎭⎫π2=0. (1)求数列{a n }的通项公式;(2)若b n =2⎝⎛⎭⎫a n +12a n,求数列{b n }的前n 项和S n . 解 (1)f ′(x )=(a n -a n +1+a n +2)-a n +1sin x -a n +2cos x , 又f ′⎝⎛⎭⎫π2=0,则a n +a n +2-2a n +1=0, 即2a n +1=a n +a n +2,因此数列{a n }为等差数列,设等差数列{a n }的公差为d ,由已知条件⎩⎪⎨⎪⎧ a 1=22a 1+4d =8,解得⎩⎪⎨⎪⎧a 1=2,d =1,a n =a 1+(n -1)d =n +1.(2)b n =2⎝⎛⎭⎫n +1+12n +1=2(n +1)+12n ,S n =b 1+b 2+…+b n =(n +3)n +1-12n=n 2+3n +1-12n .20.设函数f (x )=ax -(1+a 2)x 2,其中a >0,区间I ={x |f (x )>0}. (1)求I 的长度(注:区间(α,β)的长度定义为β-α);(2)给定常数k ∈(0,1),当1-k ≤a ≤1+k 时,求I 长度的最小值. 解 (1)由f (x )>0,即ax -(1+a 2)x 2>0,整理得x [(1+a 2)x -a ]<0, 又a >0,则0<x <a1+a 2, I ={x |f (x )>0}=⎝⎛⎭⎫0,a1+a 2I 的长度为a1+a 2.(2)由k ∈(0,1),1-k ≤a ≤1+k ,设g (a )=a1+a 2,则g ′(a )=(1+a 2)-2a 2(1+a 2)2=1-a 2(1+a 2)2,g (a )g ′(a )随a 变化的情况如下:g (1-k )=1-k1+(1-k )2,g (1+k )=1+k1+(1+k )2,g (1-k )-g (1+k )=1-k k 2-2k +2-1+kk 2+2k +2=-2k 3(k 2+2)2-4k 2=-2k 3k 4+4<0. 则g (a )即I 长度的最小值为g (1-k )=1-k1+(1-k )221.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的焦距为4,且过点P (2,3).(1)求椭圆C 的方程;(2)设Q (x 0,y 0)(x 0y 0≠0)为椭圆C 上一点,过点Q 作x 轴的垂线,垂足为E .取点A (0,22),连接AE ,过点A 作AE 的垂线交x 轴于点D .点G 是点D 关于y 轴的对称点,作直线QG ,问这样作出的直线QG 是否与椭圆C 一定有唯一的公共点?并说明理由. 解 (1)由已知条件椭圆C 的焦点为 F 1(-2,0),F 2(2,0),|PF 1|=(2+2)2+3=9+42=22+1,|PF 2|=(2-2)2+3=9-42=22-1, 2a =|PF 1|+|PF 2|=42,则a =2 2.b 2=a 2-c 2=4,因此椭圆C 的方程为x 28+y 24=1.(2)设D (x 1,0),DA →=(-x 1,22),EA →=(-x 0,22); 由DA →⊥EA →,DA →·EA →=0,则G (-x 1,0) x 1x 0+8=0,则x 1=-8x 0,k QG =y 0x 0+x 1=y 0x 0-8x 0=x 0y 0x 20-8,直线QG 的方程为y =x 0y 0x 20-8⎝⎛⎭⎫x -8x 0=y0x 20-8(x 0x -8), 又x 208+y 204=1,y 20=4⎝⎛⎭⎫1-x 208=12(8-x 20), 可得y =±28-x 202(x 20-8)(x 0x -8),①将①代入x 28+y 24=1整理得8x 2-16x 0x +8x 20=0, Δ=(16x 0)2-4×64x 20=0,∴直线QG 与椭圆C 一定有唯一的公共点.。
2013年普通高等学校招生全国统一考试(安徽卷文科)一.选择题选择题:本大题共10小题.每小题5分,共50分.在每个小题给出的四个选项中,只有一项是符合题目要求的.1.设i 是虚数单位,若复数10()3i a a -∈-R 是纯虚数,则a 的值为 ( ) A.-3 B. -1 C.1 D.3【测量目标】复数的基本概念.【考查方式】根据纯虚数的定义求a .【参考答案】D【试题解析】先利用复数的运算法则将复数化为i ,x y x y +∈R ()的形式,再由纯虚数的定义求a 由纯虚数的定义,知30a -=,所以3a =.2.已知{}{}|10,2,1,0,1,A x x B =+>=--则()A B =R ð ( )A.{}2,1--B.{}2-C.{}1,0,1-D.{}0,1【测量目标】集合的基本运算(补集、交集).【考查方式】集合的表示法(描述法,列举法),求集合的补集、交集.【参考答案】A【试题解析】解不等式求出集合A ,进而得A R ð,再由集合交集的定义求解.因为集合{}|1A x x =>,所以{}|1A x x =-R ≤ð,则()A B =R ð{}{}{}|12,,012,1x x ---=-- ≤.3.如图所示,程序据图(算法流程图)的输出结果为 ( ) A.34 B.16 C.1112 D.2524第3题图【测量目标】条件语句、循环语句的程序框图.【考查方式】根据程序框图的逻辑结构求出s .【参考答案】C【试题解析】利用框图的条件结构和循环结构求解.110,2,28,0;22s n s ==<=+= 113224,48,;244n s =+=<=+=3111426,68,;4612n s =+=<=+= 628n =+=,88<不成立,输出s 的值为11.12 4.“(21)0x x -=”是“0x =”的 ( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【测量目标】充分必要条件.【考查方式】考查命题的基本关系,充分条件、必要条件的判断方法.【参考答案】B【试题解析】先解一元二次方程(21)0x x -=,再利用充分条件、必要条件的定义判断.当0x =时,显然(21)0x x -=;当(21)0x x -=时,0x =或12x =,所以“(21)0x x -=” 是“0x =”的必要不充分条件.5.若某公司从五位大学毕业生甲、乙、丙、丁、戌中录用三人,这五人被录用的机会均等,则甲或乙被 录用的概率为 ( ) A.23 B. 25 C. 35 D.910【测量目标】随机事件与概率.【考查方式】把所求事件转化为求其对立事件,然后求出概率.【参考答案】D【试题解析】解决本题的关键是求出甲或乙被录用的可能结果种数,直接求解情况较多,可间接求解,再用古典概型求概率.由题意,从五位大学毕业生录用三人,所有不同的可能结果有(甲,乙,丙),(甲,乙,丁),(甲,乙,戊),(甲,丙,丁),(甲,丙,戊),(甲,丁,戊),(乙,丙,丁),(乙,丙,戊),(乙,丁,戊),(丙,丁,戊),共10种,其中“甲与乙均未被录取”的所有不同的可能结果只有(丙,丁,戊)这1种,故其对立事件“甲与乙被录用”的可能结果有9种,所求概率910P =.A.1B.2C.4D.【测量目标】直线与圆的相交方程、点到直线距离公式.【考查方式】把圆的一般方程化为标准方程,求出圆心和半径,然后利用勾股定理求弦长.【参考答案】C【试题解析】圆的方程可化为22:(1)(2)5C x y -+-=,其圆心为(1,2)C ,半径R =.(步骤1) 如图所示,取弦AB 的中电P ,连接CP ,则CP AB ⊥.第6题图圆心C 到直线AB的距离 1.d CP === (步骤2)Rt ACP AP 在△中,,故直线被圆截得的弦长=4AB . (步骤3)7.设nS 为等差数列{}n a 的前n 项和,83,742,S a a ==-则9a = ( ) A.-6 B. -4 C. -2 D.2【测量目标】等差数列的基本性质.【考查方式】借助等差数列前n 项的性质,计算数列的公差,进而得到9a 的值.【参考答案】A【试题解析】由等差数列的通项公式与前n 项和公式 得1883638()4()42a a S a a a +==+=. 67970.2,226a a d a a d ==-=-=+=-所以又所以公差,.8.函数()y f x =的图象如图所示,在区间[],a b 上可找到()2n n ≥个不同的数12,,,n x x x ,使得1212()()()n nf x f x f x x x x === ,则n 的取值范围为 ( ) A. {}2,3 B. {}2,3,4 C. {}3,4 D. {}3,4,5第8题图【测量目标】斜率公式、直线与曲线相交.【考查方式】考查斜率公式、直线与曲线的交点个数以及数形结合思想的应用,把1212()()()n nf x f x f x x x x === 的条件转化为曲线上点与原点的斜率相等,再转化为过原点的直线与曲线有n 个交点,考查了抽象概括能力.【参考答案】B 【试题解析】利用()f x x的几何意义,将所求转化为直线与曲线的交点个数问题并列用数形结合求解. 由题意,函数()y f x =上的任一点坐标为(,())x f x ,故()f x x 表示曲线上任一点与坐标原点连线的斜率.若()11()n nf x f x x x == ,则曲线上存在n 个点与原点连线的斜率相等,即过原点的直线与曲线()y f x =有n 个交点.如图,数形结合可得n 的取值可为2,3,4.9.设ABC △的内角A ,B ,C 所对边的长分别为,,a b c ,若2,3s i n 5s i nb c a A B +==,则角C = ( ) A. π3 B. 2π3 C. 3π4 D. 5π6【测量目标】正弦定理、余弦定理的基本运算.【考查方式】利用正弦定理、余弦定理和解三角形的基本知识,将三角形中正弦关系转化为边的关系,进而利用余弦定理求解角的大小.【参考答案】B【试题解析】利用正弦定理、余弦定理求解.3sin 5sin A B =,得35a b =,又因为2b c a += 所以57,33a b c b == (步骤1) 所以22222257()()133cos .52223b b b a bc C ab b b +-+-===-⨯⨯ (步骤2) 因为(0,π)C ∈,所以2π3C = . (步骤3) 10.已知函数32()f x x ax bx c =+++有两个极值点12,x x ,若112()f x x x =<,则关于x 的方程23(())2()0f x a f x b ++=的不同实根个数为 ( ) A. 3 B. 4 C. 5 D. 6【测量目标】函数的单调性、极值.【考查方式】利用定函数的导函数和函数图象的变化趋势,数形结合判断函数图象的交点个数进而求出实根个数.【参考答案】A【试题解析】先求给定函数的导函数,由极值点的定义及题意,得出1()f x x =或2()f x x =,再利用数形结合确定这两个方程实数根的个数.因为2()32f x x ax b '=++,函数()f x 的两个极值点为1x ,2x则1()0f x '=,2()0f x '=,所以1x ,2x 是方程2320x ax b ++=的两根 (步骤1)所以解关于x 的方程23(())2()0f x af x b ++=,得1()f x x =或2()f x x =. (步骤2)由上述可知函数()f x 在区间12(,),(,)x x -∞+∞上单调递增,在区间12(,)x x 上单调递减 (步骤3) 又112()f x x x =<,由数形结合可知1()f x x =时有两个不同实根,2()f x x =有一个实根,所以不同实根的个数为3. (步骤4)二.填空题11.函数1In(1y x =+的定义域为_____________.【测量目标】复合函数的定义域.【考查方式】根据复合函数解析式列出限制条件,根据不等式组求出定义域.【参考答案】(]0,1【试题解析】列出函数有意义的限制条件,解不等式组. 要使函数有意义,需211010x x ⎧+>⎪⎨⎪-⎩≥即2101x x x +⎧>⎪⎨⎪⎩≤即1,011x x x <->⎧⎨-⎩≤≤解得01x <≤,所以定义域为(0,1] 12.若非负数变量,x y 满足约束条件124x y x y --⎧⎨+⎩≥≤,则x y +的最大值为__________.【测量目标】二元线性规划求目标函数最值.【考查方式】结合约束条件,应用数形结合思想画出不等式组所表示的平面区域,求出线性规划目标函数的最大值.【参考答案】4【试题解析】先画出可行线,再画目标函数线过原点时的直线,向上平移,寻找满足条件的最优解,代入即可得所求.第12题图根据题目中的约束条件画出可行域,注意到,x y 非负,得可行域为如图所示的阴影部分(包括边界).作直线y x =-,并向上平移,数形结合可知,当直线过点(4,0)A 时,x y +取得最大值,最大值为4.15.如图,正方体1111ABCD A BC D -的棱长为1,P 批为BC 的中点,Q 为线段1CC 上的动点,过点,,A P Q 的平面截该正方体所得的截面记为S ,则下列命题正确的是 (写出所有正确命题的编号).第15题图①当102CQ <<时,S 为四边形;②当12CQ =时,S 为等腰梯形;③当34CQ =时,S 与11C D 的交点R满足11=3C R ;④当314CQ <<时,S 为六边形;⑤当1CQ =时,S 的面积为2【测量目标】空间立体图形截面的基本性质.【考查方式】考查了平面的基本性质、截面的画法以及各种平面图形的特征,以正方体为载体,通过几何体的截面考查了空间想象能力.【参考答案】①②③⑤【试题解析】利用平面的基本性质结合特殊四边形的判定与性质求解.① 当102CQ <<时,如图.第15题图在平面11AA D D 内,作AE PQ ,显然E 在棱1DD 上,连接EQ则S 是四边形APQE . (步骤1)② 当12CQ =时,如图.第15题图显然11PQ BC AD ,连接1D Q ,则S 是等腰梯形. (步骤2)③ 当34CQ =时,如图. 第15题图作AE PQ 交1DD 的延长线于点E ,11,,2D E AE PQ = 连接EQ 交11C D 于点R ,由于11Rt Rt RC Q RD E △△,1111::1:2C Q D E C R RD ∴==,113C R ∴=. (步骤3) ④ 当314CQ <<时,如图(3),连接RM (点M 为AE 与11A D 交点),显然S 为五边形APQRM . (步骤4)⑤ 当1CQ =时,如图. 第15题图同③可作AE PQ 交1DD 的延长线于点E ,交11A D 于点M ,显然点M 为11A D 的中点,所以S 为菱形APQM ,其面积为1122MP AQ ⨯== (步骤5)三.解答题16.(本小题满分12分)设函数π()sin sin()3f x x x =++. (Ⅰ)求()f x 的最小值,并求使()f x 取得最小值的x 的集合;(Ⅱ)不画图,说明函数()y f x =的图象可由sin y x =的图象经过怎样的变化得到.【测量目标】三角函数的图象及性质、三角恒等变换.【考查方式】把目标函数通过恒等变换转换为三角函数标准式得到结果,结合三角函数解析式,考查三角函数图象的平移伸缩变换等基础知识和基本技能.【试题解析】解:(1)ππ()sin sin cos cos sin 33f x x x x =++13sin sin sin 22x x x x x =++=ππ))66x x =+=+ . (步骤1)当πsin()16x +=-时,min ()f x =此时π3π4π2π,2π()623x k x k k +=+∴=+∈Z (步骤2)所以,()f x 的最小值为x 的集合4π|2π,3x x k k ⎧⎫=+∈⎨⎬⎩⎭Z . (步骤3)(2)sin y x =y x =; (步骤4)然后y x =向左平移π6个单位,得π())6f x x =+. (步骤5)17.(本小题满分12分)为调查甲、乙两校高三年级学生某次联考数学成绩情况,用简单随机抽样,从这两校中各抽取30名高三年级学生,以他们的数学成绩(百分制)作为样本,样本数据的茎叶图如下:第17题图(Ⅰ)若甲校高三年级每位学生被抽取的概率为0.05,求甲校高三年级学生总人数,并估计甲校高三年级这次联考数学成绩的及格率(60分及60分以上为及格); (Ⅱ)设甲、乙两校高三年级学生这次联考数学平均成绩分别为12,x x ,估计12x x -的值.【测量目标】随机抽样、茎叶图.【考查方式】利用样本估计总体的思想,从茎叶图中得出数据进行平均数计算.【试题解析】解:(1)由样本数据除以所占比例得总体n ,计算样本中的及格率,利用样本估计总体设甲校高三年级学生成绩不及格人数为n .30300.056000.05n n =⇒== 255306P == (步骤1) (2)甲、乙两校平均数分别为12,x x1740504246092670922805290220843030x ++⨯++⨯++⨯++⨯++⨯== 254014503176010337010208059020693030x +++⨯++⨯++⨯++⨯+== (步骤2) 1220842069150.5303030x x ∴-=-== (步骤3)18.(本小题满分12分)如图,四棱锥P ABCD -的底面ABCD 是边长为2的菱形,60oBAD ∠=.已知,PB PD PA ==. (Ⅰ)证明:PC BD ⊥(Ⅱ)若E 为PA 的中点,求四棱锥P BCE -的体积.第18题图【测量目标】点、直线、平面之间的位置关系 四棱锥体积公式.【考查方式】根据线面垂直得到线线垂直;根据四棱锥体积求出体积.【试题解析】(1)证明:连接,BD AC 交于O 点第18题图PB PD = P O B D ∴⊥ (步骤1)又ABCD 是菱形 B D A C ∴⊥ (步骤2) 而AC PO O =BD ∴⊥面PACBD PC ∴⊥ (步骤3)(2) 由(1)BD PAC ⊥面011sin 453222PEC PAC S S ====△△ (步骤4) 111132322P BEC B PEC V V S PEC BO --===⨯⨯= △ (步骤5)19.(本小题满分13分)设数列{}n a 满足12a =,248a a +=,且对任意*n ∈N ,函数 1212()()cos sin n n n n n f x a a a x a x a x ++++=-++- 满足π()02f '= (Ⅰ)求数列{}n a 的通项公式; (Ⅱ)若12()2nn n a b a =+,求数列{}n b 的前n 项和n S .【测量目标】等差数列、等比数列的基本性质.【考查方式】根据()f x 的导函数证明n a 为等差数列,然后根据首项、公差得到通项公式; 把{}n a 通项公式代入{}n b ,求出结果.【试题解析】解:(1)由12a = 248a a +=1212()()cos sin n n n n n f x a a a x a x a x ++++=-++-1212()sin cos n n n n n f x a a a a x a x ++++'=-+-- (步骤1) 121π()02n n n n f a a a a +++'=-+-=所以,122n n n a a a ++=+{}n a ∴是等差数列. (步骤2)而12a =,34a =,1d =. 2(1)11n a n n ∴=+-=+ (步骤3)(2)11112()2(1)2(1)222n n n a n nb a n n +=+=++=++ (步骤4) 11(1)2(21)221212n n n n S -++=+- 1(3)12n n n =++- 21312n n n =++- (步骤5)20.(本小题满分13分)设函数22()(1)f x ax a x =-+,其中0a >,区间{}|()0I x f x =>.(Ⅰ)求I 的长度(注:区间(),αβ的长度定义为βα-;(Ⅱ)给定常数(0,1)k ∈,当11k a k -+≤≤时,求I 长度的最小值. 【测量目标】一元二次方程、导函数.【考查方式】利用导数求函数单调区间、最值.【试题解析】解:(1)令22()(1)0f x ax a x =-+=解得10x = 221a x a =+ (步骤1) 2|01a I x x a ⎧⎫∴=<<⎨⎬+⎩⎭I ∴的长度2121a x x a -=+ (步骤2)(2)(0,1)k ∈ 则0112k a k <-+<≤≤由(1)21a I a =+ ()222101a I a -'=>+,则01a << (步骤3)故I 关于a 在()1,1k -上单挑递增,在(1,1)k +上单调递减122111(1)22k k I k k k--==+--+ (当1a k =-时) 222111(1)22k k I k k k ++==++++ (当1a k =+时) 12I I < ∴min 2122k I k k-=-+ (步骤4) 21.(本小题满分13分)【考查方式】根据焦距和点P 求出椭圆的标准方程;联立直线与椭圆方程求证公共点个数.【试题解析】解:(1)因为椭圆过点P 22231a b∴+= 且222a b c =+,2c =4. 28a ∴= 24b = 24c = ∴椭圆C 的方程是22184x y +=. (步骤1)(2)第21题图由题意,各点的坐标如上图所示 则QG 的直线方程:0000808x x y y x x --=- 化简得20000(8)80x y x x y y ---= (步骤2) 又220028x y +=所以00280x x y y +-=代入22184x y += (步骤3) 求得最后0∆=所以直线QG 与椭圆只有一个公共点. (步骤4)。
开始结束2013年普通高等学校招生全国统一考试(安徽卷)数 学(文科)第Ⅰ卷(选择题 共50分)一、本大题共10小题,每小题5分,共50分.在每小题列出的四个选项中,选出符合题目要求的一项. 1. 设i 是虚数单位,若复数()103ia a -∈-R 是纯虚数,则a 的值为( ). A. 3- B. 1- C. 1 D. 3分析 先利用复数的运算法则将复数化为()i ,x y x y +∈R 的形式,再由纯虚数的定义求a . 解析 因为()()()()()103i 103i 103i 3i 3i 3i 10a a a a ++-=-=-=----+,由纯虚数的定义, 知30a -=,所以3a =.故选D.2. 已知{}1>0A x x =+,{}2101B =--,,,,则()A B =R( ).A. {}21--,B. {}2-C. {}101-,,D. {}01, 分析 解不等式求出集合A ,进而得AR,再由集合交集的定义求解.解析 因为集合{}1A x x =-,所以{}1A x x =-R≤,则(){}1A B x x =-R≤{}{}2,1,02,1--=--.故选A.3. 如图所示,程序据图(算法流程图)的输出结果为( ).A. 34 B. 16 C. 1112D.2524分析 利用框图的条件结构和循环结构求解. 解析0s =,2n =,28<,11022s =+=; 224n =+=,48<,113244s =+=;426n =+=,68<,31114612s =+=;628n =+=,88<,不成立,输出s 的值为1112.故选C. 4. “()210x x -=”是“0x =”的( ).A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件分析 先解一元二次方程()210x x -=,再利用充分条件、必要条件的定义判断. 解析 当0x =时,显然()210x x -=;当()210x x -=时,0x =或12x =, 所以“()210x x -=”是“0x =”的必要不充分条件.故选B.5. 若某公司从五位大学毕业生甲、乙、丙、丁、戊中录用三人,这五人被录用的机会均等,则甲或乙被录用的概率为( ).A.23 B. 25 C. 35 D. 910分析 解决本题的关键是求出甲或乙被录用的可能结果种数,直接求解情况较多,可间接求解,再用古典概型求概率.解析 由题意,从五位大学毕业生中录用三人,所有不同的可能结果有(甲,乙,丙), (甲,乙,丁),(甲,乙,戊),(甲,丙,丁),(甲,丙,戊),(甲,乙,戊),(乙,丙,丁), (丁,丙,戊),(乙,丁,戊),(丙,丁,戊),共10种,其中“甲与乙均未被录用”的所有不 同的可能结果只有(丙,丁,戊)这1种,故其对立事件“甲或乙被录用”的可能结果有9种,所以概率910P =.故选D. 6.直线250x y +-+=被圆22240x y x y +--=截得的弦长为( ).A. 1B. 2C. 4D.分析 先把圆的一般方程化为标准方程,求出圆心和半径,再在圆中构造直角三角形,利用勾股定理求弦长. 解析 圆的方程可化为()()22:125C x y -+-=,其圆心为()1,2C,半径R =如图所示,取弦AB 的中点P ,连接CP ,则CP AB ⊥,圆心C 到直线AB 的距离1d CP ===.在Rt ACP △中,2AP ==,故直线被圆截得的弦长4AB =.故选C.7. 设n S 为等差数列{}n a 的前n 项和,834S a =,72a =-,则9a =( ).A. 6-B. 4-C. 2-D. 2分析 借助等差数列前n 项和公式及通项公式的性质,计算数列的公差,进而得到9a 的值. 解析 由等差数列性质及前n 项和公式,得()18882a aS +=()36344a a a =+=,所以60a =.又72a =-,所以公差2d =-,所以9726a a d =+=-.故选A.CP BA8. 函数()y f x =的图象如图所示,在区间[]a b ,上可找到()2n n ≥个不同的数12n x x x ,,,,使得()()()1212n nf x f x f x x x x ===,则n 的取值范围是( ). A. {}23, B. {}234,, C. {}34, D. {}345,, 分析 利用()f x x的几何意义,将所求转化为直线与曲线的交点个数问题并利用数形结合求解. 解析 由题意,函数()y f x =上的任一点坐标为()(),x f x ,故()f x x表示曲线上任一点与坐标原点连线的斜率,若11()f x x 22()()n nf x f x x x ===,则曲线上存在n 个点与原点连线的斜率相等,即过原点的直线与曲线()y f x =有n 个交点,如图所示,数形结合可得n 的取值可为2,3,4.故选B.9. 设ABC △的内角A B C ,,所对边的长分别为a b c ,,,若2sin 5sin b c a A B +==,3,则角C =( ). A.π3 B. 2π3 C. 3π4 D. 5π6分析 利用正弦定理,余弦定理求解.解析 由3sin 5sin A B =,得35a b =,又因为2b c a +=,所以53a b =,73c b =,所以222cos 2a b c C ab +-=222571335223b b b b b⎛⎫⎛⎫+- ⎪ ⎪⎝⎭⎝⎭==-⨯⨯.因为()0,πC ∈,所以2π3C =.故选B. 10. 已知函数()32f x x ax bx c =+++有两个极值点12x x ,,若()112f x x x =<,则关于x 的方程()()()2320f x af x b ++=的不同实根个数是( ).A. 3B. 4C. 5D. 6分析 先求给定函数的导函数,由极值点的定义及题意,得出()1f x x =或()2f x x =,再利用数形结合确定这两个方程实数根的个数.解析 因为()232f x x ax b '=++,函数()f x 的两个极值点为12,x x ,则()10f x '=,()20f x '=,所以1x ,2x 是方程2320x ax b ++=的两根,所以解关于x 的方程3()()()2320f x af x b ++=,得()1f x x =或()2f x x =.由上述可知函数()f x 在区间()()12,,,x x -∞+∞上单调递增,在区间()12,x x 上单调递减,又()11f x x=2x ,如图所示,由数形结合可知()1f x x =时有两个不同实根,()2f x x =有一个实根,所以不同实根 的个数为3.故选A.第II 卷(共100分)二、填空题:本大题共5小题,每小题5分,共25分.ww 11.函数1ln 1y x ⎛⎫=++ ⎪⎝⎭的定义域为 . 分析 列出函数有意义的限制条件,解出不等式组.解析 要使函数有意义,需2110,10,xx ⎧+⎪⎨⎪-⎩≥即210,1,x x x +⎧⎪⎨⎪⎩≤即10,11,x x x -⎧⎨⎩≤≤或即11,x x x -⎧⎨⎩≤或解得01,x ≤所以定义域为(]0,1.12. 若非负数变量x y ,满足约束条件124x y x y --⎧⎨+⎩≥≤,则x y +的最大值为 .分析 先画出可行域,再画出目标函数线过原点时的直线,向上平移,寻找满足条件的最优解, 代入即可得所求.解析 根据题目中的约束条件画出可行域,注意到x ,y 非负,得可行域为如图所示的阴影部分 (包括边界),作直线,y x =-并向上平移,数形结合可知,当直线过点,()4,0A 时,x y +取得最大值,最大值为4.13. 若非零向量a b ,满足32==+a b a b ,则a 与b 夹角的余弦值为 .解析 由2,=+a a b 两边平方,得()22224,=+=+⋅a a b a a b所以2⋅=-a b b .又3,=a b 所以cos ,a b 22133-⋅===-b a b a b b 14. 定义在R 上的函数()f x 满足()()12f x f x +=.若当01x ≤≤时,()()1f x x x =-,则当10x -≤≤时,()f x = .分析 由于当01x ≤≤时解析式已知,且已知()()12,f x f x +=可设10,x -≤≤Q1D A E(1)ABCDA 1D 1C 1B 1P QQPB 1C 1D 1A 1DCBA(2)则011,x +≤≤整体代入求解.解析 设10,x -≤≤则011,x +≤≤所以()()()()11111f x x x x x +=+-+=-+⎡⎤⎣⎦. 又因为()()12,f x f x +=所以()()()1122f x x x f x ++==-. 15. 如图所示,正方体1111-ABCD A B C D 的棱长为1,P 为BC 的中点,Q 为线段1CC 上的动点,过点A P Q ,,的平面截该正方体所得的截面记为S .则下列命题正确的是 (写出所有正确命题的编号) ①当10<<2CQ 时,S 为四边形 ②当12CQ =时,S 为等腰梯形③当34CQ =时,S 与11C D 的交点R 满足113C R =④当3<<14CQ 时,S 为六边形⑤当1CQ =时,S 的面积为2解析 利用平面的基本性质结合特殊四边形的判定与性质求解. ①当102CQ <<时,如图(1)所示,在平面11AA D D 内,作PQ AE ∥,显然E 在棱1DD 上, 连接EQ ,则S 是四边形APQE . ②当12CQ =时,如图(2)所示,显然11,BC AD PQ ∥∥连接1D Q ,则S 是等腰梯形.③当34CQ =时,如图(3)所示,作PQ BF ∥交1CC 的延长线于点F ,则112C F =, 作AE BF ∥交1DD 的延长线于点E ,则112D E =,PQ AE ∥,连接EQ 交11C D 于点R ,由于11Rt Rt RC Q RD E △∽△,所以1111::1:2C Q D E C R RD ==,所以113C R =.1(3)E(4)1(Q )④当314CQ <<时,如图(3)所示,连接RM (点M 为AE 与11A D 交点),显然S 为五边形APQRM ;⑤当1CQ =时,如图(4)所示,同③可作AE PQ ∥交1DD 的延长线于点E ,交11A D 于点M , 显然点M 为11A D 的中点,所以S 为菱形APQM ,其面积为12MP AQ ⨯=122=. 综上,正确的命题序号是①②③⑤.三、解答题:本大题共6小题,共75分.解答应写出文字说明,演算步骤或证明过程. 16. (本小题共12分) 设函数()sin sin 3f x x x π⎛⎫=++⎪⎝⎭. (1)求()f x 的最小值,并求使()f x 取得最小值x 的集合;(2)不画图,说明函数()y f x =的图象可由sin y x =的图象经过怎样变化得到.分析(1)先逆用两角和正弦公式把()f x 化成关于一个角的三角函数,再利用正弦函数性质计算(2)利用三角函数图像的变换规律求解. 解析 (1)因为()1sin sin 22f x x x x =++3sin 26x x x π⎛⎫==+ ⎪⎝⎭. 所以当()26x k k ππ+=π-∈2Z,即()223x k k π=π-∈Z 时,()f x 取得最小值. 此时x 的取值集合为22,3x x k k ⎧π⎫=π-∈⎨⎬⎩⎭Z . (2)先将sin y x =倍(横坐标不变),得y x =的图像;再将y x =的图像上所有的点向左平移π6个单位,得()y f x =的图像.ADCEEP17. (本小题共12分) 为调查甲、乙两校高三年级学生某次联考数学成绩情况,用简单随机抽样,从这两校中各抽取30 名高三年级学生,以他们的数学成绩(百分制)作为样本,样本数据的茎叶图如下:甲 乙7 4 55 3 3 2 5 3 3 85 5 4 3 3 3 1 0 06 0 6 9 1 1 2 2 3 3 5 8 6 6 2 2 1 1 0 07 0 0 2 2 2 3 3 6 6 9 7 5 4 4 28 1 1 5 5 8 2 09 0(1)若甲校高三年级每位学生被抽取的概率为0.05,求甲校高三年级学生总人数,并估计甲校高三年级这次联考数学成绩的及格率(60分及60分以上为及格); (2)设甲、乙两校高三年级学生这次联考数学平均成绩分别为12x x ,,估计12x x -的值. 分析(1)由样本数除以所占的比例得总体n ,计算样本中的及格率,利用样本估计总体;(2)阅读茎叶图,代入平均数公式计算可解. 解析(1)设甲校高三年级学生总人数为n .由题意知300.05n=,解得600n =. 样本中甲校高三年级学生数学成绩不及格人数为5,据此估计甲校三年级这次联考教学成绩的及格率为551306-=.(2)设甲、乙两校样本平均数分别为1x ',2x '.根据样本茎叶图可知 ()1212303030x x x x ''''-=-()()()7555814241265=-++-+--+()()262479222092--+-+249537729215=+--++=.因此120.5x x ''-=.故12x x ''-的估计值为0.5分. 18. (本小题共12分)如图所示,四棱锥P ABCD -的底面ABCD 是边长为2的菱形,60BAD ∠=. 已知2PB PD ==,PA =(1)证明:PC BD ⊥;(2)若E 为PA 的中点,求三棱锥P BCE -的体积.分析(1)连接AC ,与BD 交于点O ,由PB PD =以及底面为菱形的条件,线面垂直的判定定理可证BD APC ⊥平面,从而可证;(2)利用四面体的等积变换,转化为以B 为顶点的三棱锥,进而判断三棱锥-P BCE 的体积是三棱锥-B APC 的体积的一半,代入公式计算. 解析(1)连接AC ,交BD 于点O ,连接PO .因为底面ABCD 是菱形,所以,AC BD BO DO ⊥=.由PB PD =知,PO BD ⊥.又因为PO AC O =,所以BD APC ⊥平面,因此BD PC ⊥. (2)因为E 是PA 的中点,所以----1122P BCEC PEB C PAB B APCVVV V===锥锥锥锥三棱三棱三棱三棱. 由2PB PD AB AD ====知,ABD PBD △. 因为60BAD ∠=︒,所以PO AO AC ===1BO =.又PA =222PO AO PA +=,所以PO AC ⊥,故132APC S PO AC =⋅=△. 由(1)知,BO APC ⊥平面,因此--12P BCE B APCV V =锥锥三棱三棱111232APCBO S =⋅⋅⋅=△. 19. (本小题共13分)设数列{}n a 满足12428a a a =+=,,且对任意*n ∈N ,函数()()1212cos sin n n n n n f x a a a x a x a x ++++=-++-满足π02'f ⎛⎫= ⎪⎝⎭.(1)求数列{}x a 的通项公式;; (2)若122nn n a b a ⎛⎫=+⎪⎝⎭,求数列{}n b 的前n 项和n S . 分析(1)求导,代入0f π⎛⎫'=⎪2⎝⎭,并对所得式子进行变形,从而证明数列是等差数列,再由题目条件求基本量,得通项公式.(2)将n a 代入化简,利用分组求和法,结合等差、等比数列的前n 项和公式计算.解析(1)由题设可得()1212sin cos n n n n n f x a a a a x a x ++++'=-+--. 对任意*n ∈N ,1210nn n n f a a a a +++π⎛⎫'=-+-=⎪2⎝⎭,即121n nn n a a a a +++-=-,故{}n a 为等差数列.由12a =,248a a +=,可得数列{}n a 的公差1d =,所以()2111n a n n =+⋅-=+. (2)由122n n nb a a ⎛⎫=+= ⎪⎝⎭111212222n nn n +⎛⎫++=++ ⎪⎝⎭知,12nnS b b b =+++OD EABCP()111221221212nn n n ⎡⎤⎛⎫-⎢⎥⎪+⎝⎭⎣⎦=+⋅+-21312nn n =++-. 20. (本小题共13分)设函数()()221f x ax a x =-+,其中>0a ,区间(){}>0I x f x =. (1)求I 的长度(注:区间()αβ,的长度定义为βα-); (2)给定常数()01k ∈,,当11k a k -+≤≤时,求I 长度的最小值.分析 利用一元二次方程和一元二次不等式的关系,先求出解集,构造函数,利用导数求解函数的单调性和最值. 解析 (1)因为方程有两个实根10x =,221ax a =+,故()0f x >的解集为{}12x x x x <<,因此区间20,1a I a ⎛⎫= ⎪+⎝⎭,区间I 的长度为21a a +. (2)设2d()1aa a =+,则()()2221d'()01a a a a -=>+.令 d'()0a =得1a =.由于01k <<,故 当11k a -<时,d'()0a >,d()a 单调递增;当11a k <+时,d'()0a <,d()a 单调递减. 所以当11k a k -+时,d()a 的最小值必定在1a k =-或1a k =+处取得.而d(1)d(1)k k -=+2211(1)11(1)kk k k -+-=+++2323212k k k k --<-+,故d(1)d(1)k k -<+.因此当1a k =-时d()a 在区间[]1,1k k -+上取得最小值2122kk k--+. 21. (本小题共13分)已知椭圆()2222:1>>0x y C a b a b+=的焦距为4,且过点P.(1)求椭圆C 的方程;(2)设()()00000Q x y x y ≠,为椭圆C 上一点,过点Q 作x 轴的垂线,垂足为E .取点(0A ,连接AE ,过点A 作AE 的垂线交x 轴于点D .点G 是点D 关于y 轴的对称点,作直线QG ,问这样作出的直线QG 是否与椭圆C 一定有唯一的公共点?并说明理由.分析 (1)由于焦矩已知,可将原方程中的参数用一个量来表示,并把点P 坐标代入求解. (2)由点Q 坐标得点E 坐标,再确定点D 的坐标,从而可得点G 坐标,于是写出直线QG的方程,与椭圆方程联立,看是否有唯一的解.解析(1)因为焦矩为4,所以224a b -=.又因为椭圆C过点P,所以22231a b+=. 故228,4a b ==,从而椭圆C 的方程为22184x y+=.(2)一定有唯一的公共点. 理由:由题意知,点E 坐标为()0,0x .设(),0D D x,则(0,AE x =-,(,D AD x =-.再由AD AE ⊥知,0AE AD ⋅=,即080D x x +=.由于000x y ≠,故08D x x=-. 因为点G 是点D 关于y 轴的对称点,所以点08,0G x ⎛⎫⎪⎝⎭.故直线QG 的斜率 002088QGyx yk x x x==--.又因为点()00,Q x y 在椭圆C 上,所以2228x y +=. ① 从而002QG x k y=-. 故直线QG 的方程为0082x y x y x⎛⎫=-- ⎪⎝⎭. ② 将②代入椭圆C 的方程,代简,得()222221664160xy x x x y +-+-=. ③再将①代入③,代简得220020x x x x -+=.解得0x x =,则0y y =,即直线QG 与椭圆C 一定有唯一的公共点.。
2013年安徽省高考数学试卷(文科)参考答案与试题解析一、选择题:本大题共10小题.每小题5分,共50分.在每个小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)(2013•安徽)设i是虚数单位,若复数a﹣(a∈R)是纯虚数,则a的值为()A.﹣3 B.﹣1 C.1D.3考点:复数的基本概念.专题:计算题.分析:利用复数的运算法则把a﹣(a∈R)可以化为(a﹣3)﹣i,再利用纯虚数的定义即可得到a.解答:解:∵=(a﹣3)﹣i是纯虚数,∴a﹣3=0,解得a=3.故选D.点评:熟练掌握复数的运算法则和纯虚数的定义是解题的关键.2.(5分)(2013•安徽)已知A={x|x+1>0},B={﹣2,﹣1,0,1},则(∁R A)∩B=()A.{﹣2,﹣1} B.{﹣2} C.{﹣2,0,1} D.{0,1}考点:交、并、补集的混合运算.专题:计算题;不等式的解法及应用.分析:先利用一元一次不等式的解法化简集合A,再求其在实数集中的补集,最后求集合B 与A的补集的交集即可.解答:解:∵A={x|x+1>0}={x|x>﹣1},∴C U A={x|x≤﹣1},∴(∁R A)∩B={x|x≤﹣1}∩{﹣2,﹣1,0,1}={﹣2,﹣1}故选A.点评:本题主要考查了集合的补集与交集运算,属于集合运算的常规题.3.(5分)(2013•安徽)如图所示,程序据图(算法流程图)的输出结果为()A.B.C.D.考点:程序框图.专题:图表型.分析:根据所给数值执行循环语句,然后判定是否满足判断框中的条件,一旦不满足条件就退出循环,从而到结论.解答:解:由程序框图知,循环体被执行后S的值依次为:第1次S=0+,第2次S=+,第3次S=++,此时n=8不满足选择条件n<8,退出循环,故输出的结果是S=++=.故选C.点评:本题主要考查了循环结构,是当型循环,当满足条件,执行循环,属于基础题.4.(5分)(2013•安徽)“(2x﹣1)x=0”是“x=0”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件考点:必要条件、充分条件与充要条件的判断.专题:计算题.分析:本题考查的判断充要条件的方法,我们可以根据充要条件的定义进行判断.解答:解:若(2x﹣1)x=0 则x=0或x=.即(2x﹣1)x=0推不出x=0.反之,若x=0,则(2x﹣1)x=0,即x=0推出(2x﹣1)x=0所以“(2x﹣1)x=0”是“x=0”的必要不充分条件.故选B点评:判定条件种类,根据定义转化成相关命题的真假来判定.一般的,①若p⇒q为真命题且q⇒p为假命题,则命题p是命题q的充分不必要条件;②若p⇒q为假命题且q⇒p为真命题,则命题p是命题q的必要不充分条件;③若p⇒q为真命题且q⇒p为真命题,则命题p是命题q的充要条件;④若p⇒q为假命题且q⇒p为假命题,则命题p是命题q的即不充分也不必要条件.5.(5分)(2013•安徽)若某公司从五位大学毕业生甲、乙、丙、丁、戌中录用三人,这五人被录用的机会均等,则甲或乙被录用的概率为()A.B.C.D.考点:互斥事件的概率加法公式.专题:概率与统计.分析:设“甲或乙被录用”为事件A,则其对立事件表示“甲乙两人都没有被录取”,先求出,再利用P(A)=1﹣P()即可得出.解答:解:设“甲或乙被录用”为事件A,则其对立事件表示“甲乙两人都没有被录取”,则==.因此P(A)=1﹣P()=1﹣=.故选D.点评:熟练掌握互为对立事件的概率之间的关系是解题的关键.6.(5分)(2013•安徽)直线x+2y﹣5+=0被圆x2+y2﹣2x﹣4y=0截得的弦长为()A.1B.2C.4D.4考点:直线与圆的位置关系.专题:直线与圆.分析:化圆的方程为标准方程,求出圆的圆心坐标和半径,由点到直线距离公式求出圆心到直线的距离,利用勾股定理求出半弦长,则弦长可求.解答:解:由x2+y2﹣2x﹣4y=0,得(x﹣1)2+(y﹣2)2=5,所以圆的圆心坐标是C(1,2),半径r=.圆心C到直线x+2y﹣5+=0的距离为d=.所以直线直线x+2y﹣5+=0被圆x2+y2﹣2x﹣4y=0截得的弦长为.故选C.点评:本题考查了直线与圆的位置关系,考查了弦心距、圆的半径及半弦长之间的关系,是基础题.7.(5分)(2013•安徽)设s n为等差数列{a n}的前n项和,S8=4a3,a7=﹣2,则a9=()A.﹣6 B.﹣4 C.﹣2 D.2考点:等差数列的通项公式.专题:等差数列与等比数列.分析:由题意可得,解此方程组,求得首项和公差d的值,即可求得a9的值.解答:解:∵s n为等差数列{a n}的前n项和,s8=4a3,a7=﹣2,即.解得a1=10,且d=﹣2,∴a9=a1+8d=﹣6,故选A.点评:本题主要考查等差数列的通项公式、前n项和公式的应用,属于基础题.8.(5分)(2013•安徽)函数y=f(x)的图象如图所示,在区间[a,b]上可找到n(n≥2)个不同的数x1,x2,…x n,使得==…=,则n的取值范围为()A.{2,3} B.{2,3,4} C.{3,4} D.{3,4,5}考点:直线的斜率.专题:直线与圆.分析:由表示(x,f(x))点与原点连线的斜率,结合函数y=f(x)的图象,数形结合分析可得答案.解答:解:令y=f(x),y=kx,作直线y=kx,可以得出2,3,4个交点,故k=(x>0)可分别有2,3,4个解.故n的取值范围为2,3,4.故选B.点评:正确理解斜率的意义、函数交点的意义及数形结合的思想方法是解题的关键.9.(5分)(2013•安徽)设△ABC的内角A,B,C所对边的长分别为a,b,c,若b+c=2a,3sinA=5sinB,则角C=()A.B.C.D.考点:余弦定理;正弦定理.专题:解三角形.分析:由正弦定理将3sinA=5sinB转化为5b=3a,从而将b、c用a表示,代入余弦定理即可求出cosC,即可得出∠C.解答:解:∵b+c=2a,由正弦定理知,5sinB=3sinA可化为:5b=3a,解得c=b,由余弦定理得,cosC==,∴C=,故选:B.点评:本题考查等差数列的性质,正弦定理和余弦定理的应用,属于中档题.10.(5分)(2013•安徽)已知函数f(x)=x3+ax2+bx+c有两个极值点x1,x2,若f(x1)=x1<x2,则关于x的方程3(f(x))2+2af(x)+b=0的不同实根个数为()A.3B.4C.5D.6考点:利用导数研究函数的极值;根的存在性及根的个数判断.专题:压轴题;导数的综合应用.分析:由函数f(x)=x3+ax2+bx+c有两个极值点x1,x2,可得f′(x)=3x2+2ax+b=0有两个不相等的实数根,必有△=4a2﹣12b>0.而方程3(f(x))2+2af(x)+b=0的△1=△>0,可知此方程有两解且f(x)=x1或x2.再分别讨论利用平移变换即可解出方程f (x)=x1或f(x)=x2解得个数.解答:解:∵函数f(x)=x3+ax2+bx+c有两个极值点x1,x2,∴f′(x)=3x2+2ax+b=0有两个不相等的实数根,∴△=4a2﹣12b>0.解得=.∵x1<x2,∴,.而方程3(f(x))2+2af(x)+b=0的△1=△>0,∴此方程有两解且f(x)=x1或x2.不妨取0<x1<x2,f(x1)>0.①把y=f(x)向下平移x1个单位即可得到y=f(x)﹣x1的图象,∵f(x1)=x1,可知方程f(x)=x1有两解.②把y=f(x)向下平移x2个单位即可得到y=f(x)﹣x2的图象,∵f(x1)=x1,∴f(x1)﹣x2<0,可知方程f(x)=x2只有一解.综上①②可知:方程f(x)=x1或f(x)=x2.只有3个实数解.即关于x的方程3(f(x))2+2af(x)+b=0的只有3不同实根.故选:A.点评:本题综合考查了利用导数研究函数得单调性、极值及方程解得个数、平移变换等基础知识,考查了数形结合的思想方法、推理能力、分类讨论的思想方法、计算能力、分析问题和解决问题的能力.二.填空题:本大题共5小题,每小题5分,共25分.把答案填在答题卡的相应位置.11.(5分)(2013•安徽)函数y=ln(1+)+的定义域为(0,1].考点:函数的定义域及其求法.专题:函数的性质及应用.分析:根据偶次根式下大于等于0,对数的真数大于0,建立不等式组解之即可求出所求.解答:解:由题意得:,即解得:x∈(0,1].故答案为:(0,1].点评:本题主要考查了对数函数的定义域,以及偶次根式函数的定义域,属于基础题.12.(5分)(2013•安徽)若非负数变量x、y满足约束条件,则x+y的最大值为4.考点:简单线性规划.专题:不等式的解法及应用.分析:先画出线性约束条件表示的可行域,再将目标函数赋予几何意义,最后利用数形结合即可得目标函数的最值.解答:解:画出可行域如图阴影部分,其中,可得A(4,0)目标函数z=x+y可以变形为y=﹣x+z,可看做斜率为﹣1的动直线,其纵截距越大z越大,由图数形结合可得当动直线过点A时,z最大=4+0=4故答案为:4点评:本题主要考查了线性规划,以及二元一次不等式组表示平面区域的知识,数形结合的思想方法,属于基础题13.(5分)(2013•安徽)若非零向量,满足||=3||=|+2|,则与夹角的余弦值为﹣.考点:数量积表示两个向量的夹角.专题:平面向量及应用.分析:利用条件化简可得4=﹣4,由此可得||•||=||•||cos<,>,从而求得与夹角的余弦值.解答:解:由题意可得=9,且=+4+4,化简可得4=﹣4,∴||•||=﹣||•||cos<,>,∴cos<,>=﹣=﹣,故答案为:﹣.点评:本题主要考查两个向量的数量积的定义,两个向量夹角公式的应用,属于中档题.14.(5分)(2013•安徽)定义在R上的函数f(x)满足f(x+1)=2f(x).若当0≤x≤1时.f (x)=x(1﹣x),则当﹣1≤x≤0时,f(x)=﹣x(x+1).考点:函数解析式的求解及常用方法.专题:压轴题;函数的性质及应用.分析:当﹣1≤x≤0时,0≤x+1≤1,由已知表达式可求得f(x+1),根据f(x+1)=2f(x)即可求得f(x).解答:解:当﹣1≤x≤0时,0≤x+1≤1,由题意f(x)=f(x+1)=(x+1)[1﹣(x+1)]=﹣x(x+1),故答案为:﹣x(x+1).点评:本题考查函数解析式的求解,属基础题,正确理解函数定义是解决问题的关键.15.(5分)(2013•安徽)如图,正方体ABCD﹣A1B1C1D1的棱长为1,P为BC的中点,Q 为线段CC1上的动点,过点A,P,Q的平面截该正方体所得的截面记为S,则下列命题正确的是①②③⑤(写出所有正确命题的编号).①当0<CQ<时,S为四边形②当CQ=时,S为等腰梯形③当CQ=时,S与C1D1的交点R满足C1R=④当<CQ<1时,S为六边形⑤当CQ=1时,S的面积为.考点:命题的真假判断与应用.专题:空间位置关系与距离;简易逻辑.分析:由题意作出满足条件的图形,由线面位置关系找出截面可判断选项的正误.解答:解:如图当CQ=时,即Q为CC1中点,此时可得PQ∥AD1,AP=QD1==,故可得截面APQD1为等腰梯形,故②正确;由上图当点Q向C移动时,满足0<CQ<,只需在DD1上取点M满足AM∥PQ,即可得截面为四边形APQM,故①正确;③当CQ=时,如图,延长DD1至N,使D1N=,连接AN交A1D1于S,连接NQ交C1D1于R,连接SR,可证AN∥PQ,由△NRD1∽△QRC1,可得C1R:D1R=C1Q:D1N=1:2,故可得C1R=,故正确;④由③可知当<CQ<1时,只需点Q上移即可,此时的截面形状仍然上图所示的APQRS,显然为五边形,故错误;⑤当CQ=1时,Q与C1重合,取A1D1的中点F,连接AF,可证PC1∥AF,且PC1=AF,可知截面为APC1F为菱形,故其面积为AC1•PF==,故正确.故答案为:①②③⑤.点评:本题考查命题真假的判断与应用,涉及正方体的截面问题,属中档题.三、解答题16.(12分)(2013•安徽)设函数f(x)=sinx+sin(x+).(Ⅰ)求f(x)的最小值,并求使f(x)取得最小值的x的集合;(Ⅱ)不画图,说明函数y=f(x)的图象可由y=sinx的图象经过怎样的变化得到.考点:两角和与差的正弦函数;正弦函数的定义域和值域;函数y=Asin(ωx+φ)的图象变换.专题:三角函数的图像与性质.分析:(Ⅰ)f(x)解析式第二项利用两角和与差的正弦函数公式及特殊角的三角函数值化为一个角的正弦函数,根据正弦函数的图象与性质即可求出满足题意x的集合;(Ⅱ)根据变换及平移规律即可得到结果.解答:解:(Ⅰ)f(x)=sinx+sinx+cosx=sinx+cosx=sin(x+),∴当x+=2kπ﹣(k∈Z),即x=2kπ﹣(x∈Z)时,f(x)取得最小值﹣,此时x的取值集合为{x|x=2kπ﹣(k∈Z)};(Ⅱ)先由y=sinx的图象上的所有点的纵坐标变为原来的倍,横坐标不变,即为y=sinx的图象;再由y=sinx的图象上的所有点向左平移个单位,得到y=f(x)的图象.点评:此题考查了两角和与差的正弦函数公式,正弦函数的定义域与值域,以及函数y=Asin (ωx+φ)的图象变换,熟练掌握公式是解本题的关键.17.(12分)(2013•安徽)为调查甲、乙两校高三年级学生某次联考数学成绩情况,用简单随机抽样,现从这两个学校中各抽取30名高三年级学生,以他们的数学成绩(百分制)作为样本,样本数据的茎叶图如下:(Ⅰ)若甲校高三年级每位学生被抽取的概率为0.05,求甲校高三年级学生总人数,并估计甲校高三年级这次联考数学成绩的及格率(60分及60分以上为及格);(Ⅱ)设甲、乙两校高三年级学生这次联考数学平均成绩分别为、,估计﹣的值.考点:茎叶图;众数、中位数、平均数.专题:概率与统计.分析:(I)先设甲校高三年级总人数为n,利用甲校高三年级每位学生被抽取的概率为0.05得=0.05求出n,又样本中甲校高三年级这次联考数学成绩的不及格人数为5,利用对立事件的概率可估计甲校高三年级这次联考数学成绩的及格率;(II)设样本中甲、乙两校高三年级学生这次联考数学平均成绩分别为a1,a2,利用茎叶图中同一行的数据之差可得30(a1﹣a2)=(7﹣5)+55+(2﹣8)+(5﹣0)+(5﹣6)+…+92=15,从而求出a1﹣a2的值,最后利用样本估计总体的思想得出结论即可.解答:解:(I)设甲校高三年级总人数为n,则=0.05,∴n=600,又样本中甲校高三年级这次联考数学成绩的不及格人数为5,∴估计甲校高三年级这次联考数学成绩的及格率1﹣=;(II)设样本中甲、乙两校高三年级学生这次联考数学平均成绩分别为a1,a2,由茎叶图可知,30(a1﹣a2)=(7﹣5)+55+(2﹣8)+(5﹣0)+(5﹣6)+…+92=15,∴a1﹣a2==0.5.∴利用样本估计总体,故估计x1﹣x2的值为0.5.点评:此题考查了学生的识图及计算能力,茎叶图,及格率的定义及平均数的定义.18.(12分)(2013•安徽)如图,四棱锥P﹣ABCD的底面ABCD是边长为2的菱形,∠BAD=60°,已知PB=PD=2,PA=.(Ⅰ)证明:PC⊥BD(Ⅱ)若E为PA的中点,求三棱锥P﹣BCE的体积.考点:直线与平面垂直的性质;棱柱、棱锥、棱台的体积.专题:计算题;证明题;空间位置关系与距离.分析:(I)连接AC交BD于O,连接PO.菱形ABCD中,证出AC⊥BD且O是BD的中点,从而得到PO是等腰△PBD中,PO是底边BD的中线,可得PO⊥BD,结合PO、AC是平面PAC内的相交直线,证出BD⊥平面PAC,从而得到PC⊥BD;(II)根据ABCD是边长为2的菱形且∠BAD=60°,算出△ABC的面积为,△PAO 中证出AO2+PO2=6=PA2可得PO⊥AC,结合PO⊥BD证出PO⊥平面ABCD,所以PO=是三棱锥P﹣ABC的高,从而三棱锥P﹣ABC的体积V P﹣ABC=1,再由E为PA中点算出三棱锥E﹣ABC的体积V E﹣ABC=,进而可得三棱锥P﹣BCE的体积等于V P﹣ABC﹣V E﹣ABC=,得到本题答案.解答:解:(I)连接AC交BD于O,连接PO∵四边形ABCD是菱形,∴AC⊥BD,且O是BD的中点∵△PBD中,PD=PB,O为BD中点,∴PO⊥BD∵PO、AC⊂平面PAC,PO∩AC=O,∴BD⊥平面PAC,∵PC⊂平面PAC,∴PC⊥BD;(II)∵ABCD是边长为2的菱形,∠BAD=60°,∴BO=AB=1,AC==2,可得△ABC的面积为S=AC×BO=∵△PBD中,PB=PD=BD=2,∴中线PO=BD=因此,△PAO中AO2+PO2=6=PA2∴PO⊥AC,结合PO⊥BD得到PO⊥平面ABCD,得到三棱锥P﹣ABC的体积V P﹣ABC=×S△ABC×PO==1∵E为PA中点,∴E到平面ABC的距离d=PO=由此可得三棱锥E﹣ABC的体积V E﹣ABC=×S△ABC×d=×=因此,三棱锥P﹣BCE的体积V P﹣EBC=V P﹣ABC﹣V E﹣ABC=.点评:本题给出底面为菱形的四棱锥,求证线线垂直并求锥体的体积,着重考查了线面垂直的判定与性质、菱形的性质及面积计算和锥体体积公式等知识,属于中档题.19.(13分)(2013•安徽)设数列{a n}满足a1=2,a2+a4=8,且对任意n∈N*,函数f(x)=(a n﹣a n+1+a n+2)x+a n+1cosx﹣a n+2sinx满足f′()=0(Ⅰ)求数列{a n}的通项公式;(Ⅱ)若b n=2(a n+)求数列{b n}的前n项和S n.考点:数列的求和;导数的运算;等差关系的确定;等比关系的确定.专题:等差数列与等比数列.分析:(I)利用导数的运算法则先求出f′(x),再利用,即可得到数列{a n}是等差数列,再利用已知及等差数列的通项公式即可得出a n;(II)利用(I)得出b n,利用等差数列和等比数列的前n项和公式即可得出S n.解答:解:(I)∵f′(x)=a n﹣a n+1+a n+2﹣a n+1sinx﹣a n+2cosx,.∴2a n+1=a n+a n+2对任意n∈N*,都成立.∴数列{a n}是等差数列,设公差为d,∵a1=2,a2+a4=8,∴2+d+2+3d=8,解得d=1.∴a n=a1+(n﹣1)d=2+n﹣1=n+1.(II)由(I)可得,=2(n+1)+,∴S n=2[2+3+…+(n+1)]+==.点评:数列掌握导数的运算法则、等差数列的通项公式、等差数列和等比数列的前n项和公式是解题的关键.20.(13分)(2013•安徽)设函数f(x)=ax﹣(1+a2)x2,其中a>0,区间I={x|f(x)>0}(Ⅰ)求I的长度(注:区间(a,β)的长度定义为β﹣α);(Ⅱ)给定常数k∈(0,1),当1﹣k≤a≤1+k时,求I长度的最小值.考点:导数的运算;一元二次不等式的解法.专题:压轴题;函数的性质及应用.分析:(Ⅰ)解不等式f(x)>0可得区间I,由区间长度定义可得I的长度;(Ⅱ)由(Ⅰ)构造函数d(a)=,利用导数可判断d(a)的单调性,由单调性可判断d(a)的最小值必定在a=1﹣k或a=1+k处取得,通过作商比较可得答案.解答:解:(Ⅰ)因为方程ax﹣(1+a2)x2=0(a>0)有两个实根x1=0,>0,故f(x)>0的解集为{x|x1<x<x2},因此区间I=(0,),区间长度为;(Ⅱ)设d(a)=,则d′(a)=,令d′(a)=0,得a=1,由于0<k<1,故当1﹣k≤a<1时,d′(a)>0,d(a)单调递增;当1<a≤1+k时,d′(a)<0,d (a)单调递减,因此当1﹣k≤a≤1+k时,d(a)的最小值必定在a=1﹣k或a=1+k处取得,而=<1,故d(1﹣k)<d(1+k),因此当a=1﹣k时,d(a)在区间[1﹣k,1+k]上取得最小值,即I长度的最小值为.点评:本题考查二次不等式的求解,以及导数的计算和应用等基础知识和基本技能,考查分类讨论思想和综合运用数学知识解决问题的能力.21.(13分)(2013•安徽)已知椭圆C:+=1(a>b>0)的焦距为4,且过点P(,).(Ⅰ)求椭圆C的方程;(Ⅱ)设Q(x0,y0)(x0y0≠0)为椭圆C上一点,过点Q作x轴的垂线,垂足为E.取点A(0,2),连接AE,过点A作AE的垂线交x轴于点D.点G是点D关于y轴的对称点,作直线QG,问这样作出的直线QG是否与椭圆C一定有唯一的公共点?并说明理由.考点:直线与圆锥曲线的关系;椭圆的标准方程;椭圆的简单性质.专题:计算题;压轴题;圆锥曲线的定义、性质与方程.分析:(I)根据椭圆的焦距为4,得到c==2,再由点P()在椭圆C上得到,两式联解即可得到a2=8且b2=4,从而得到椭圆C的方程;(II)由题意得E(x0,0),设D的坐标为(x D,0),可得向量、的坐标,根据AD⊥AE得,从而算出x D=﹣,因为点G是点D关于y轴的对称点,得到G(,0).直线QG的斜率为k QG=,结合点Q是椭圆C上的点化简得k QG=﹣,从而得到直线QG的方程为:y=﹣(x﹣),将此方程与椭圆C的方程联解可得△=0,从而得到方程组有唯一解,即点Q是直线QG与椭圆C的唯一公共点,由此即得直线QG与椭圆C一定有唯一的公共点.解答:解:(I)∵椭圆C:+(a>b>0)的焦距为4,∴c=2,可得=2…①又∵点P()在椭圆C上∴…②联解①②,可得a2=8且b2=4,椭圆C的方程为;(II)由题意,得E点坐标为(x0,0),设D(x D,0),可得=(x0,﹣),=(x D,﹣),∵AD⊥AE,可得∴x0x D+(﹣)•(﹣)=0,即x0x D+8=0,得x D=﹣∵点G是点D关于y轴的对称点,∴点G的坐标为(,0)因此,直线QG的斜率为k QG==又∵点Q(x0,y0)在椭圆C上,可得∴k QG==﹣由此可得直线QG的方程为:y=﹣(x﹣),代入椭圆C方程,化简得()x2﹣16x0x+64﹣16=0将代入上式,得8x2﹣16x0x+8=0,化简得x2﹣2x0x+=0,所以△=,从而可得x=x0,y=y0是方程组的唯一解,即点Q是直线QG与椭圆C的唯一公共点.综上所述,可得直线QG与椭圆C一定有唯一的公共点.点评:本题给出椭圆的焦距和椭圆上的点P的坐标,求椭圆的方程并由此讨论直线QG与椭圆公共点的个数问题.着重考查了椭圆的标准方程、简单几何性质和直线与圆锥曲线位置关系等知识,属于中档题.。
2013年普通高等学校招生全国统一考试(安徽卷)数学(文科)答案解析第Ⅰ卷一、选择题 1.【答案】D【解析】21010(3i)10(3i)10(3i)(3i)(3)i 3i (3i)(3i)9i 10a a a a a a +++-=-=-=-=-+=----+-,所以3a =,故选D . 【提示】先利用复数的运算法则将复数化为i(,)x y x y +∈R 的形式,再由纯虚数的定义求a 【考点】复数的基本概念. 2.【答案】A【解析】1x >-,{|1}A x x =≤-R ð,(){1,2}A B =--R I ð,故选A . 【提示】解不等式求出集合A ,进而得A R ð,再由集合交集的定义求解. 【考点】集合的交集和补集运算. 3.【答案】C【解析】1120022n s s ===+=,,;111342244n s s ===+=,,;33111644612n s s ===+=,,; 11812n s ==,,输出,故选C . 【提示】利用框图的条件结构和循环结构求解. 【考点】条件语句、循环语句的程序框图. 4.【答案】B【解析】1(21)002x x x -==,或,故选B .【提示】先解一元二次方程(21)0x x -=,再利用充分条件、必要条件的定义判断. 【考点】充分条件和必要条件. 5.【答案】D【解析】总的可能性有10种,甲被录用乙没被录用的可能性3种,乙被录用甲没被录用的可能性3种,甲乙都被录用的可能性3种,所以最后的概率333110p ++==,故选D . 【提示】把所求事件转化为求其对立事件,然后求出概率.【考点】随机事件与概率. 6.【答案】C【解析】圆心(1,2),圆心到直线的距离d =,半径r =,所以弦长为4,故选C .【提示】把圆的一般方程化为标准方程,求出圆心和半径,然后利用勾股定理求弦长. 【考点】直线与圆的相交方程,点到直线距离公式.【考点】等差数列的基本性质. 8.【答案】B【解析】1111()()00f x f x x x -=-表示11(,())x f x 到原点的斜率;1212()()()n nf x f x f x x x x ===L 表示 1122(,()),(,())(,())n n x f x x f x x f x L ,,与原点连线的斜率,而1122(,()),(,()),(,())n n x f x x f x x f x L ,在曲线图像上,故只需考虑经过原点的直线与曲线的交点有几个,很明显有3个,故选B . 【提示】利用()f x x的几何意义,将所求转化为直线与曲线的交点个数问题并列用数形结合求解. 【考点】斜线公式,直线与曲线相交. 9.【答案】B【解析】3sin 5sin A B =Q 由正弦定理,所以5353a b a b ==即;因为2b c a +=,所以73c a =,2221cos 22a b c C ab +-==-,所以2π3C =,故选B . 【提示】利用正弦定理、余弦定理和解三角形的基本知识,将三角形中正弦关系转化为边的关系,进而利用余弦定理求解角的大小.【考点】正弦定理和余弦定理的基本运算. 10.【答案】A【解析】2()32f x x ax b '=++,12,x x 是方程2320x ax b ++=的两根,由23(())2()0f x af x b ++=,则又两个()f x 使得等式成立,11()x f x =,211()x x f x >=,其函数图象:如图则有3个交点,故选A .【提示】先求给定函数的导函数,由极值点的定义及题意,得出1()f x x =或2()f x x =,再利用数形结合确定这两个方程实数根的个数. 【考点】函数的单调性、极值.第Ⅱ卷二、填空题11.【答案】(0,1]【解析】2110011011x x x x x ⎧+>⇒><-⎪⎨⎪-≥⇒-≤≤⎩或,求交集之后得x 的取值范围(0,1].【提示】列出函数有意义的限制条件,解不等式组. 【考点】复合函数的定义域. 12.【答案】4【解析】由题意约束条件的图像如下:当直线经过(4,0)时,404z x y =+=+=, 取得最大值.【提示】先画出可行线,再画目标函数线过原点时的直线,向上平移,寻找满足条件的最优解,代入即可得所求.【考点】二元线性规划求目标函数最值. 13.【答案】13-【解析】等式平方得:2222||9||||4||4a b a b a b ==++r r r r r r g 则222||||4||4||||cos a a b a b θ=++r r r r rg ,即 2204||43||cos b b θ=+r rg ,得1cos 3θ=-.【提示】根据两个向量的夹角公式,利用向量模的转化求出两向量夹角余弦值. 【考点】向量的线性运算,平面向量的数量积.【解析】当10x -≤≤,则011x ≤+≤,故(1)(1)(11)(1)f x x x x x +=+--=-+,又(1)2()f x f x +=, 所以(1)()2x x f x +=-. 【提示】根据题意把整体代入,再根据(1)2()f x f x +=求出()f x 【考点】函数解析式. 15.【答案】①②③⑤ 【解析】(1)12CQ =,S 等腰梯形,②正确,图(1)如下;图1(2)1CQ =,S 2)如下;图2(3)34CQ =,画图(3)如下:113C R =,③正确;图3(4)314CQ <<,如图(4)是五边形,④不正确;图4(5)102CQ <<,如下图(5),是四边形,故④正确.图5【提示】利用平面的基本性质结合特殊四边形的判定与性质求解. 【考点】空间立体图形截面的基本性质. 三、解答题16.【答案】(1)ππ13()sin sin coscos sin sin sin sin 3322f x x x x x x x x x =++=+=+ππ66x x ⎛⎫⎛⎫+=+ ⎪ ⎪⎝⎭⎝⎭,当πsin 16x ⎛⎫+=- ⎪⎝⎭时,min ()f x = 此时π3π2π62x k +=+,4π2π,()3x k k ∴=+∈Z ,所以,()f x 的最小值为x 的集合4π2π,3x x k k ⎧⎫=+∈⎨⎬⎩⎭Z .(2)sin y x =横坐标不变,倍,得y x ;然后y x =向左平移π6个单位,得π()6f x x ⎛⎫=+ ⎪⎝⎭.【提示】把目标函数通过恒等变换转换为三角函数标准式得到结果,结合三角函数解析式,考查三角函数图象的平移伸缩变换等基础知识和基本技能. 【考点】三角函数的图象及性质,三角恒等变换.17.【答案】解:(1)设甲校高三年级学生总人数为n .由题意知,300.05n=,即600n =.样本中甲校高三年级学生数学成绩不及格人数为5.据此估计甲校高三年级此次联考数学成绩及格率为551306-=.(2)设甲、乙两校样本平均数分别为1x ',2x '.根据样本茎叶图可知,()121230()3030(75)(55814)241265(262479)(2220)92x x x x '-'='-'=-++-+--+--+-+249537729215=+--++=.因此120.5x x '-'=.故12x x -的估计值为0.5分.【提示】利用样本估计总体的思想,从茎叶图中得出数据进行平均数计算. 【考点】随机抽样,茎叶图.18.【答案】(1)连接AC ,交BD 于O 点,连接PO .因为底面ABCD 是菱形,AC BD ∴⊥,BO DO =.由PB PD =知,PO BD ⊥.再由PO AC O =I 知,BD ⊥面APC ,因此BD PC ⊥(2)因为E 是PA 的中点,所以1122P BCE C PEB C PAB B APC V V V V ----===.由2PB PD AB AD ==== 知,ABD PBD △≌△.因为60BAD ∠=︒,所以PO AO ==AC =1BO =.又PA =,222PO AO PA +=,即PO AC ⊥,故132APC S PO AC ==g △. 由(1)知,BO ⊥面APC ,因此11112232P BCE B APCAPC V V BO S --===g g g △. 【提示】根据线面垂直得到线线垂直;根据四棱锥体积求出体积. 【考点】点、直线、平面之间的位置关系,四棱锥体积公式.19.【答案】(1)由12a =,248a a +=,1212()()cos sin n n n n n f x a a a x a x a x ++++=-++-gg , 1212sin cos n n n n n f x a a a a x a x ++++'=-+-⋅-⋅(),121π02n n n n f a a a a +++⎛⎫'=-+-= ⎪⎝⎭,所以122n n n a a a ++=+{}n a ∴是等差数列.而12a =,34a =,1d =,2111n a n n ∴=+-=+g ().(2)11112212(1)222n n n a n n b a n n +⎛⎫⎛⎫=+=++=++ ⎪ ⎪⎝⎭⎝⎭,()112221212(21)11=(3)1312122n n n n n n S n n n n ++=+++-=++---.【提示】根据()f x 的导函数证明n a 为等差数列,然后根据首项、公差得到通项公式;把{}n a 通项公式代入{}n b ,求出结果.【考点】等差数列,等比数列的基本性质. 20.【答案】(1)21aa + (2)2122kk k --+【解析】(1)因为方程22100()()ax a x a -+=>有两个实根10x =,221ax a=+,故()0f x >的解集为12{|}x x x x <<,因此区间20,1a a I ⎛⎫⎪+⎝⎭=,区间长度为21a a +. (2)设2()1ad a a=+,则222()11a a d a -(+')=,令()0d a '=,得1a =.由于01k <<,当11k a -≤<时,()0d a '>, ()d a 单调递增;当11a k <≤+时,()0d a '<,()d a 单调递减.因此当11k a k -≤≤+时,()d a 的最小值必定在1a k =-或1a k =+处取得.而22123112311112<112k k k k d k k k d k k k -+(-)++(+)(-)--==(+)-+,故()1)1(d k d k -<+. 因此当1a k =-时,()d a 在区间1,]1[k k -+上取得最小值2122kk k--+. 【提示】利用导数求函数单调区间、最值. 【考点】一元二次方程,导函数.21.【答案】(1)22184x y +=(2)见解析【解析】(1)因为焦距为4,所以224a b -=.又因为椭圆C过点P ,所以22231a b+=,故28a =,24b =,从而椭圆C 的方程为22184x y +=. (2)由题意,E 点坐标为0(),0x .设0(),D D x,则0(,AE x =-u u u r,(,D AD x =-u u u r.再由AD AE ⊥知,0AE AD =u u u r u u u rg ,即080D x x +=.由于000x y ≠,故08D x x =-.因为点G 是点D 关于y 轴的对称点,所以点08,0G x ⎛⎫⎪⎝⎭.故直线QG 的斜率000028008G x Q k y x y x x =--=. 又因00()Q x y ,在C 上,所以220028x y +=④从而002QG x k y -=.故直线QG 的方程为00082x y x y x ⎛⎫=-- ⎪⎝⎭④将④代入C 方程,得22220000216640(1)6x y x x x y +-+-=.④再将④代入④,化简得220020x x x x -+=.解得0x x =,0y y =,即直线QG 与椭圆C 一定有唯一的公共点.【提示】根据焦距和点P 求出椭圆的标准方程;联立直线与椭圆方程求证公共点个数. 【考点】椭圆的标准方程及其几何性质,直线与椭圆的位置关系.。
绝密★启用前
2013年普通高等学校招生全国统一考试(安徽卷)
数学(文科)
本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷1至2页,第Ⅱ卷3至4页。
全卷满分150分。
考试用时120分钟。
考生注意事项:
1. 答题前,务必在试题卷、答题卡规定的地方填写自己的姓名、座位号,并认真核对答题卡上所粘帖的条形码中姓名、座位号与本人姓名、座位号是否一致。
务必在答题卡背面规定的地方填写姓名和座位号后两位。
2. 答第Ⅰ卷时,每小题选出答案后,用2B 铅笔把答题卡上....
对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。
3. 答第Ⅱ卷时,必须用0.5毫米黑色墨水签字笔在答题卡上....
书写,要求字体工整、笔迹清晰。
作图题时可先用铅笔在答题卡...
规定的位置绘出,确认后用0.5毫米的黑色墨水签字笔描清楚。
必须在题号所指示的答题区域作答,超出答题区域书写的答案无效.............,在试题卷....、草稿纸上答.....题无效...。
4. 考试结束,务必将试题卷和答题卡一并上交。
第Ⅰ卷(选择题 共50分)
一、 选择题:本大题共10小题。
每小题5分,共50分。
在每个小题给出的四个选项中,
只有一项是符合题目要求的。
(1)设i 是虚数单位,若复数a--
(a ∈R )是纯虚数,则a 的值为 ( )
(A )-3 (B )-1 (C )1 (D )3 (2)已知A={x|x+1>0},B={-2,-1,0,1},则(R A )∩B= ( )
(A ){-2,-1} (B ){-2}
(C ){-2,0,1} (D ){0,1}
(3)如图所示,程序据图(算法流程图)的输出结果为
(A ) (B ) (C )
(D )
(4)“(2x-1)x=0”是“x=0”的
(A)充分不必要条件(B)必要补充分条件
(C)充分必要条件(D)既不充分也不必要条件
(5)若某公司从五位大学毕业生甲、乙、丙、丁、戌中录用三人,这无人被录用的机会均等,则甲或乙被录用的概率为
(A)2/3 (B)2/5
(C)3/5 (D)9/10
(6)直线x+2y-5+=0被圆x2+y2-2x-4y=0截得的弦长为
(A)1 (B)2
(C)4 (D)
(7)设s n为等差数列{a n}的前n项和,s1=4a3,a2=-2,则a9=
(A)6 (B)4
(C)-2 (D)2
(8)函数y=f(x)的图像如图所示,在区间[a,b]上可找到n(n≥2)个不同的数x1,x2,…x n,使得f(x1)/x1=f(x2)/x2=…=f(x n)/x n,则n的取值范围为
(A) {2,3} (B){2,3,4}
(C){3,4} (D){3,4,5}
(9)设△ABC的内角A,B,C所对边的长分别为a,b,c,若b+c=2a,3sinA=5sinB,则角C=
(A) π/3 (B)2π/3
(C)3π/4 (D)5π/6
(10)已知函数f(s)=x3+ax2+bx+c有两个极致点x1,x2,若f(x1)则关于x的方程3(f(x))2+2af (x)+b=0的不同实根个数为
(A)3 (B)4
(C) 5 (D)6
第Ⅱ卷(非选择题共100分)
考生注意事项:
请用0.5毫米黑色墨水签字笔在答题卡上作答,在试题卷上答题无效。
二.填空题:本大题共
5小题,每小题5分,共25分。
把答案填在答题卡的相应位置。
(11)函数y=ln(1+1/x)+的定义域为_____________。
(12)若非负数变量x、y满足约束条件,则x+y的最大值为__________。
(13)若非零向量a,b满足|a|=3|b|=|a+2b|,则a与b夹角的余弦值为_______。
(14)定义在R上的函数f(x)满足f(x+1)=2f(x).若当0≤x≤1时。
f(x)=x(1-x),则当-1≤x≤0时,f(x)=________________。
(15)如图,正方体ABCD-A1B1C1D1的棱长为1,p为BC的中点,Q为线段CC1上的动点,过点A,P,Q的平面截该正方体所得的洁面记为S,则下列命题正确的是(写出所有正确命题的编号)。
①当0<CQ<1/2时,S为四边形
②当CQ=1/2时,S为等腰梯形
③当CQ=3/4时,S与C1D1的交点R满足C1R=1/3
④当3/4<CQ<1时,S为六边形
⑤当CQ=1时,S的面积为/2
(16)(本小题满分12分)
设函数f(x)=sinx+sin(x+π/3)。
(Ⅰ)求f(x)的最小值,并求使f(x)取得最小值的x的集合;
(Ⅱ)不画图,说明函数y=f(x)的图像可由y=sinx的图象经过怎样的变化的到。
(17)(本小题满分12分)
为调查甲、乙两校高三年级学生某次联考数学成绩情况,用简单随机抽样,从这两校中为各抽取30名高三年级学生,以他们的数学成绩(百分制)作为样本,样本数据的茎叶图如
下:
甲乙
7 4 5
5 3 3 2 5 3 3 8
5 5 4 3 3 3 1 0 0
6 0 6 9 1 1 2 2 3 3 5
8 6 6 2 2 1 1 0 0 7 0 0 2 2 2 3 3 6 6 9
7 5 4 4 2 8 1 1 5 5 8
2 0 9 0
(Ⅰ)若甲校高三年级每位学生被抽取的概率为0.05,求甲校高三年级学生总人数,并估计甲校高三年级这次联考数学成绩的及格率(60分及60分以上为及格);
(Ⅱ)设甲、乙两校高三年级学生这次联考数学平均成绩分别为x1,x2,估计x1-x2的值。
(18)(本小题满分12分)
如图,四棱锥P-ABCD 的地面ABCD是边长为2的菱形,∠BAD=600。
已知PB=PD=2,PA=.
(Ⅰ)证明:PC⊥BD
(Ⅱ)若E为PA的中点,求三菱锥P-BCE的体积。
(19)(本小题满分13分)
设数列|an|满足a1=2,a2+a4=8,且对任意n∈N*,函数
f(x)=(an-an+1+an+2)x+a-n+2,cosx-ax-2sinx
满足fn(π/2)=0
(Ⅰ)求数列{ax}的通用公式;
(Ⅱ)若bx=2(an+1/2xn)求数列{bn}的前n项和Snx
20.设函数f(x)=cx-(1+a2)x2,其中a>0,区间I={X{f (x)da>0
(Ⅰ)求I的长度(注:区间(a,β)的长度定义为β-α);
(Ⅱ)给定常数k ∈(0,1),当1-k≤a≤1+k时,求I长度的最小值。
(21)(本小题满分13分)21.已知椭圆C:x²/a²+y²/b²=1(a>b>0)的焦距为4,且过点p(,)。
(Ⅰ)求椭圆C的方程;
(Ⅱ)设Q(x a,y a)(x a,y a≠0)为椭圆C上一点,过点Q作x轴的垂线,垂足为E。
取点A(Q,2),连接AE,过点A作AE的垂线交x轴于点D。
点C是点D关于y轴的对称点,作直线QC,问这样作出的直线QC是否与椭圆C一定有唯一的公共点?并说明理由。