中考平面直角坐标系试题集锦
- 格式:docx
- 大小:103.28 KB
- 文档页数:4
初中数学平面直角坐标系习题一.选择题(共10小题)1.在平面直角坐标中,点M(﹣2,﹣5)在()A.第一象限B.第二象限C.第三象限D.第四象限2.已知P(4,a+2)在第一象限内,且点P到两坐标轴的距离相等,则a的值为()A.2B.3C.﹣6D.2或﹣63.在平面直角坐标系中,点M位于第四象限,距x轴2个单位长度,距y轴3个单位长度,则点M的坐标是()A.(2,3)B.(3,﹣2)C.(2,﹣3)D.(﹣3,2)4.在平面直角坐标系中,点P在x轴上,则点P的坐标可以是()A.P(2,5)B.P(﹣4,1)C.P(﹣5,0)D.P(0,4)5.点A在x轴的下方,y轴的左侧,到x轴的距离是3,到y轴的距离是2,则点A的坐标是()A.(﹣2,﹣3)B.(2,﹣3)C.(3,﹣2)D.(﹣3,﹣2)6.坐标平面内有一点A到x轴的距离为3,到y轴的距离为9,点A在第二象限,则A点坐标为()A.(﹣3,9)B.(3,﹣9)C.(﹣9,3)D.(9,﹣3)7.在平面直角坐标系中,点P(0,a)在y轴的负半轴上,则点Q(﹣2,1﹣a)在()A.第四象限B.第三象限C.第二象限D.第一象限8.在平面直角坐标系xOy中,若点A(m2﹣4,m+1)在y轴的非负半轴上,则点B(m﹣1,1﹣2m)在()A.第一象限B.第二象限C.第三象限D.第四象限9.若a为整数,且点M(3a﹣9,2a﹣10)在第四象限,则a2﹣1的值为()A.15B.16C.17D.410.在平面直角坐标系中,若点A(a,﹣b)在第三象限,则点B(﹣ab,b)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限二.填空题(共5小题)11.已知点P(3a﹣6,1﹣a)在y轴上,则点P的坐标为.12.点M在第四象限,距离x轴5个单位长度,距离y轴3个单位长度,则M点的坐标为.13.已知点P(x,y)位于第四象限,且x≤y+4(x,y为整数),写一个符合条件P的坐标.14.如果点P(x,y)的坐标满足x+y=xy,那么称点P为“和谐点”,若某个“和谐点”到x轴的距离为3,则P点的坐标为.15.在平面直角坐标系中,对于点P(x,y),若点Q的坐标为(ax+y,x+ay),其中a为常数,则称点Q为点P的“a级关联点”,例如:点P(2,3)的4级关联点是Q(4×2+3,2+4×3),即Q(11,14).若点M的2级关联点是N(6,9),则点M的坐标是.三.解答题(共5小题)16.在平面直角坐标系中,分别根据下列条件,写出各点的坐标.(1)若点A在y轴上,位于原点上方,距离原点2个单位长度,则点A;(2)若点B在x轴上方,y轴右侧,距离每条坐标轴都是2个单位长度,则点B;(3)若点C在x轴下方,y轴左侧,距离每条坐标轴都是3个单位长度,则点C;(4)若点D在x轴下方,y轴右侧,距离x轴2个单位长度,距离y轴4个单位长度,则点D.17.已知点P(8﹣2m,m﹣1).(1)若点P在x轴上,求m的值.(2)若点P到两坐标轴的距离相等,求P点的坐标.18.在平面直角坐标系中,已知点M(m﹣1,2m+3)(1)若点M在y轴上,求m的值.(2)若点M在第一、三象限的角平分线上,求m的值.19.已知点P(2m+4,m﹣1),请分别根据下列条件,求出点P的坐标.(1)点P在x轴上;(2)点P的纵坐标比横坐标大3;(3)点P在过点A(2,﹣4)且与y轴平行的直线上.20.阅读材料并回答下列问题:在平面直角坐标系xOy中,点P(x,y)经过φ变换得到点P′(x′,y′),变换记作φ(x,y)=(x′,y′),其中(a,b为常数),例如,当a=1,b=1时,则点(﹣1,2)经过φ转换:(1)当a=1,b=﹣1时,则φ(0,﹣1)=;(2)若φ(2,3)=(4,﹣2),求a和b的值;(3)若象限内点P(x,y)的横纵坐标满足y=3x,点P经过φ变换得到点P′(x,y),若点P与点P′重合,求a和b的值.初中数学平面直角坐标系习题二一.选择题(共10小题)1.已知点M(3,﹣2),N(﹣3,﹣2),则直线MN与x轴、y轴的位置关系分别为()A.平行,垂直B.平行,平行C.垂直,平行D.相交,相交2.下列各组中两个点的连线与y轴平行的是()A.(1,1)与(﹣1,﹣1)B.(3,2)与(2,3)C.(3,2)与(5,2)D.(2,3)与(2,5)3.在平面直角坐标系中,点A(x,y),B(3,4),AB=5,且AB∥x轴,则A点坐标为()A.(﹣3,4 )B.(8,4 )C.(3,9)或(﹣2,4)D.(﹣2,4 )或(8,4)4.在平面直角坐标系中,点A(0,a),点B(0,4﹣a),且A在B的下方,点C(1,2),连接AC,BC,若在AB,BC,AC所围成区域内(含边界),横坐标和纵坐标都为整数的点的个数为4个,那么a的取值范围为()A.﹣1<a≤0B.0<a≤1C.1≤a<2D.﹣1≤a≤15.在平面直角坐标系中,平行于坐标轴的线段PQ=5,若点P坐标是(﹣2,1),则点Q 不在第()象限.A.一B.二C.三D.四6.平行于x轴的直线上的任意两点的坐标之间的关系是()A.横坐标相等B.纵坐标相等C.横坐标的绝对值相等D.纵坐标的绝对值相等7.若点P(1﹣3m,2m)的横坐标与纵坐标互为相反数,则点P一定在()A.第一象限B.第二象限C.第三象限D.第四象限8.平面直角坐标系中,点A(﹣3,2),B(3,5),C(x,y),若AC∥x轴,则线段BC 的最小值及此时点C的坐标分别为()A.6,(﹣3,4)B.2,(3,2)C.2,(3,0)D.3,(3,2)9.在坐标平面内,与点A(2,1)距离为1,且与点B(5,1)距离为2的直线共有()A.1条B.2条C.3条D.4条10.如图,在平面直角坐标系中,将直角三角形的直角顶点固定在点P(8,8)处,转动直角三角形,若两条直角边分别与x轴正半轴交于点A,y轴正半轴交于点B,则OA+OB 的值为()A.10B.16C.8D.无法确定二.填空题(共5小题)11.在平面直角坐标系中,已知点A(1,3),点B(1,5),那么AB=.12.已知点P(﹣2,3),Q(n,3)且PQ=4,则n=.13.平面直角坐标系中,已知点A(﹣4,0),B(2,0),C是线段AB的中点,则点C的坐标是.14.在平面直角坐标系中,点A的坐标为(2,1),点B的坐标为(2,9),点C到直线AB 的距离为4,且△ABC是直角三角形,则满足条件的点C有个.15.如图,直线l1⊥l2,在某平面直角坐标系中,x轴∥11,y轴∥l2,点A的坐标为(﹣1,2),点B的坐标为(2,﹣1),那么点C在第象限.三.解答题(共5小题)16.点P是平面直角坐标系中的一点且不在坐标轴上,过点P向x轴、y轴作垂线段,若垂线段的长度的和为4,则点P叫做“垂距点”,例如:如图中的点P(1,3)是“垂距点”.(1)在点A(﹣2,2),B(,﹣),C(﹣1,5)中,“垂距点”是;(2)若D(m,m)是“垂距点”,求m的值.17.如图,已知在平面直角坐标系中,四边形各顶点的坐标分别为A(0,0),B(9,0),C(7,4),D(2,8),求四边形ABCD的面积.18.已知:在平面直角坐标系中,A(0,1),B(2,0),C(4,3)(1)求△ABC的面积;(2)设点P在x轴上,且△ABP与△ABC的面积相等,求点P的坐标.19.已知M(3|a|﹣9,4﹣2a)在y轴负半轴上,直线MN∥x轴,且线段MN长度为4.(1)求点M的坐标;(2)求(2﹣a)2020+1的值;(3)求N点坐标.20.如图,平面直角坐标系中,过点A(0,2)的直线a垂直于y轴,M(9,2)为直线a 上一点.若点P从点M出发,以2cm/s的速度沿直线a向左移动;点Q从原点同时出发,以1cm/s的速度沿x轴向右移动,多久后线段PQ平行于y轴?。
第5章平面直角坐标系(中考经典常考题)-江苏省2023-2024学年上学期八年级数学单元培优专题练习(苏科版)一.选择题(共10小题)1.(2023•盐城)在平面直角坐标系中,点A(1,2)在( )A.第一象限B.第二象限C.第三象限D.第四象限2.(2023•常州)在平面直角坐标系中,若点P的坐标为(2,1),则点P关于y轴对称的点的坐标为( )A.(﹣2,﹣1)B.(2,﹣1)C.(﹣2,1)D.(2,1)3.(2022•扬州)在平面直角坐标系中,点P(﹣3,a2+1)所在象限是( )A.第一象限B.第二象限C.第三象限D.第四象限4.(2022•常州)在平面直角坐标系xOy中,点A与点A1关于x轴对称,点A与点A2关于y轴对称.已知点A1(1,2),则点A2的坐标是( )A.(﹣2,1)B.(﹣2,﹣1)C.(﹣1,2)D.(﹣1,﹣2)5.(2020•淮安)在平面直角坐标系中,点(3,2)关于原点对称的点的坐标是( )A.(2,3)B.(﹣3,2)C.(﹣3,﹣2)D.(﹣2,﹣3)6.(2020•扬州)在平面直角坐标系中,点P(x2+2,﹣3)所在的象限是( )A.第一象限B.第二象限C.第三象限D.第四象限7.(2020•南通)以原点为中心,将点P(4,5)按逆时针方向旋转90°,得到的点Q所在的象限为( )A.第一象限B.第二象限C.第三象限D.第四象限8.(2018•扬州)在平面直角坐标系的第二象限内有一点M,点M到x轴的距离为3,到y 轴的距离为4,则点M的坐标是( )A.(3,﹣4)B.(4,﹣3)C.(﹣4,3)D.(﹣3,4)9.(2017•南通)在平面直角坐标系中.点P(1,﹣2)关于x轴对称的点的坐标是( )A.(1,2)B.(﹣1,﹣2)C.(﹣1,2)D.(﹣2,1)10.(2017•南京)过三点A(2,2),B(6,2),C(4,5)的圆的圆心坐标为( )A.(4,)B.(4,3)C.(5,)D.(5,3)二.填空题(共10小题)11.(2023•宿迁)平面直角坐标系中,点A(2,3)关于x轴的对称的点的坐标是 .12.(2023•连云港)画一条水平数轴,以原点O为圆心,过数轴上的每一刻度点画同心圆,过原点O按逆时针方向依次画出与正半轴的角度分别为30°、60°、90°、120°、…、330°的射线,这样就建立了“圆”坐标系.如图,在建立的“圆”坐标系内,我们可以将点A、B、C的坐标分别表示为A(6,60°)、B(5,180°)、C(4,330°),则点D 的坐标可以表示为 .13.(2021•扬州)在平面直角坐标系中,若点P(1﹣m,5﹣2m)在第二象限,则整数m的值为 .14.(2021•南京)如图,在平面直角坐标系中,△AOB的边AO,AB的中点C,D的横坐标分别是1,4,则点B的横坐标是 .15.(2020•泰州)以水平数轴的原点O为圆心,过正半轴Ox上的每一刻度点画同心圆,将Ox逆时针依次旋转30°、60°、90°、…、330°得到11条射线,构成如图所示的“圆”坐标系,点A、B的坐标分别表示为(5,0°)、(4,300°),则点C的坐标表示为 .16.(2018•常州)已知点P(﹣2,1),则点P关于x轴对称的点的坐标是 .17.(2016•淮安)点A(3,﹣2)关于x轴对称的点的坐标是 .18.(2018•宿迁)在平面直角坐标系中,将点(3,﹣2)先向右平移2个单位长度,再向上平移3个单位长度,则所得点的坐标是 .19.(2018•南京)在平面直角坐标系中,点A的坐标是(﹣1,2),作点A关于y轴的对称点,得到点A',再将点A'向下平移4个单位,得到点A″,则点A″的坐标是( , ).20.(2015•南京)在平面直角坐标系中,点A的坐标是(2,﹣3),作点A关于x轴的对称点,得到点A′,再作点A′关于y轴的对称点,得到点A″,则点A″的坐标是( , ).第5章平面直角坐标系(中考经典常考题)-江苏省2023-2024学年上学期八年级数学单元培优专题练习(苏科版)参考答案与试题解析一.选择题(共10小题)1.(2023•盐城)在平面直角坐标系中,点A(1,2)在( )A.第一象限B.第二象限C.第三象限D.第四象限【答案】A【解答】解:∵点A(1,2)的横坐标和纵坐标均为正数,∴点A(1,2)在第一象限.故选:A.2.(2023•常州)在平面直角坐标系中,若点P的坐标为(2,1),则点P关于y轴对称的点的坐标为( )A.(﹣2,﹣1)B.(2,﹣1)C.(﹣2,1)D.(2,1)【答案】C【解答】解:点P的坐标是(2,1),则点P关于y轴对称的点的坐标是(﹣2,1),故选:C.3.(2022•扬州)在平面直角坐标系中,点P(﹣3,a2+1)所在象限是( )A.第一象限B.第二象限C.第三象限D.第四象限【答案】B【解答】解:∵a2≥0,∴a2+1≥1,∴点P(﹣3,a2+1)所在的象限是第二象限.故选:B.4.(2022•常州)在平面直角坐标系xOy中,点A与点A1关于x轴对称,点A与点A2关于y轴对称.已知点A1(1,2),则点A2的坐标是( )A.(﹣2,1)B.(﹣2,﹣1)C.(﹣1,2)D.(﹣1,﹣2)【答案】D【解答】解:∵点A与点A1关于x轴对称,已知点A1(1,2),∴点A的坐标为(1,﹣2),∵点A与点A2关于y轴对称,∴点A2的坐标为(﹣1,﹣2),故选:D.5.(2020•淮安)在平面直角坐标系中,点(3,2)关于原点对称的点的坐标是( )A.(2,3)B.(﹣3,2)C.(﹣3,﹣2)D.(﹣2,﹣3)【答案】C【解答】解:点(3,2)关于原点对称的点的坐标是:(﹣3,﹣2).故选:C.6.(2020•扬州)在平面直角坐标系中,点P(x2+2,﹣3)所在的象限是( )A.第一象限B.第二象限C.第三象限D.第四象限【答案】D【解答】解:∵x2+2>0,∴点P(x2+2,﹣3)所在的象限是第四象限.故选:D.7.(2020•南通)以原点为中心,将点P(4,5)按逆时针方向旋转90°,得到的点Q所在的象限为( )A.第一象限B.第二象限C.第三象限D.第四象限【答案】B【解答】解:如图,∵点P(4,5)按逆时针方向旋转90°,得点Q所在的象限为第二象限.故选:B.8.(2018•扬州)在平面直角坐标系的第二象限内有一点M,点M到x轴的距离为3,到y 轴的距离为4,则点M的坐标是( )A.(3,﹣4)B.(4,﹣3)C.(﹣4,3)D.(﹣3,4)【答案】C【解答】解:由题意,得x=﹣4,y=3,即M点的坐标是(﹣4,3),故选:C.9.(2017•南通)在平面直角坐标系中.点P(1,﹣2)关于x轴对称的点的坐标是( )A.(1,2)B.(﹣1,﹣2)C.(﹣1,2)D.(﹣2,1)【答案】A【解答】解:点P(1,﹣2)关于x轴的对称点的坐标是(1,2),故选:A.10.(2017•南京)过三点A(2,2),B(6,2),C(4,5)的圆的圆心坐标为( )A.(4,)B.(4,3)C.(5,)D.(5,3)【答案】A【解答】解:如图,设△ABC的外心E(4,t),则CE=5﹣t,EM=t﹣2,∵EC=AE,∴5﹣t=,解得t=,可得结论.故选:A.二.填空题(共10小题)11.(2023•宿迁)平面直角坐标系中,点A(2,3)关于x轴的对称的点的坐标是 (2,﹣3) .【答案】见试题解答内容【解答】解:点A(2,3)关于x轴的对称点的坐标是(2,﹣3),故答案为:(2,﹣3).12.(2023•连云港)画一条水平数轴,以原点O为圆心,过数轴上的每一刻度点画同心圆,过原点O按逆时针方向依次画出与正半轴的角度分别为30°、60°、90°、120°、…、330°的射线,这样就建立了“圆”坐标系.如图,在建立的“圆”坐标系内,我们可以将点A、B、C的坐标分别表示为A(6,60°)、B(5,180°)、C(4,330°),则点D 的坐标可以表示为 (3,150°) .【答案】(3,150°).【解答】解:∵点D与圆心的距离为3,射线OD与x轴正方向之间的夹角为150°,∴点D的坐标为(3,150°).故答案为:(3,150°).13.(2021•扬州)在平面直角坐标系中,若点P(1﹣m,5﹣2m)在第二象限,则整数m的值为 2 .【答案】见试题解答内容【解答】解:由题意得:,解得:,∴整数m的值为2,故答案为:2.14.(2021•南京)如图,在平面直角坐标系中,△AOB的边AO,AB的中点C,D的横坐标分别是1,4,则点B的横坐标是 6 .【答案】6.【解答】解:∵边AO,AB的中点为点C、D,∴CD是△OAB的中位线,CD∥OB,∵点C,D的横坐标分别是1,4,∴CD=3,∴OB=2CD=6,∴点B的横坐标为6.故答案为:6.15.(2020•泰州)以水平数轴的原点O为圆心,过正半轴Ox上的每一刻度点画同心圆,将Ox逆时针依次旋转30°、60°、90°、…、330°得到11条射线,构成如图所示的“圆”坐标系,点A、B的坐标分别表示为(5,0°)、(4,300°),则点C的坐标表示为 (3,240°) .【答案】见试题解答内容【解答】解:如图所示:点C的坐标表示为(3,240°).故答案为:(3,240°).16.(2018•常州)已知点P(﹣2,1),则点P关于x轴对称的点的坐标是 (﹣2,﹣1) .【答案】见试题解答内容【解答】解:点P(﹣2,1),则点P关于x轴对称的点的坐标是(﹣2,﹣1),故答案为:(﹣2,﹣1).17.(2016•淮安)点A(3,﹣2)关于x轴对称的点的坐标是 (3,2) .【答案】见试题解答内容【解答】解:点A(3,﹣2)关于x轴对称的点的坐标是(3,2).故答案为:(3,2).18.(2018•宿迁)在平面直角坐标系中,将点(3,﹣2)先向右平移2个单位长度,再向上平移3个单位长度,则所得点的坐标是 (5,1) .【答案】见试题解答内容【解答】解:∵将点(3,﹣2)先向右平移2个单位长度,∴得到(5,﹣2),∵再向上平移3个单位长度,∴所得点的坐标是:(5,1).故答案为:(5,1).19.(2018•南京)在平面直角坐标系中,点A的坐标是(﹣1,2),作点A关于y轴的对称点,得到点A',再将点A'向下平移4个单位,得到点A″,则点A″的坐标是( 1 , ﹣2 ).【答案】见试题解答内容【解答】解:∵点A的坐标是(﹣1,2),作点A关于y轴的对称点,得到点A',∴A′(1,2),∵将点A'向下平移4个单位,得到点A″,∴点A″的坐标是:(1,﹣2).故答案为:1,﹣2.20.(2015•南京)在平面直角坐标系中,点A的坐标是(2,﹣3),作点A关于x轴的对称点,得到点A′,再作点A′关于y轴的对称点,得到点A″,则点A″的坐标是( ﹣2 , 3 ).【答案】见试题解答内容【解答】解:∵点A的坐标是(2,﹣3),作点A关于x轴的对称点,得到点A′,∴A′的坐标为:(2,3),∵点A′关于y轴的对称点,得到点A″,∴点A″的坐标是:(﹣2,3).故答案为:﹣2;3.。
初中数学函数之平面直角坐标系经典测试题附答案一、选择题1.如果点P (m +3,m +1)在x 轴上,则点P 的坐标为( )A .(0,2)B .(2,0)C .(4,0)D .(0,﹣4)【答案】B【解析】【分析】根据点P 在x 轴上,即y =0,可得出m 的值,从而得出点P 的坐标.【详解】根据点P 在x 轴上,即y =0,可得出m 的值,从而得出点P 的坐标.解:∵点P (m +3,m +1)在x 轴上,∴y =0,∴m +1=0,解得:m =﹣1,∴m +3=﹣1+3=2,∴点P 的坐标为(2,0).故选:B .【点睛】本题考查了点的坐标,注意平面直角坐标系中,点在x 轴上时纵坐标为0,得出m 的值是解题关键.2.在平面直角坐标系中,长方形ABCD 的三个顶点()(32),(12),1,1,A B C ---,,则第四个顶点D 的坐标是( ).A .()2,1-B .(3,1)-C .()2,3-D .(3,1)-【答案】B【解析】【分析】根据矩形的性质(对边相等且每个角都是直角),由矩形ABCD 点的顺序得到CD ⊥AD ,可以把D 点坐标求解出来.【详解】解:根据矩形ABCD 点的顺序可得到CD ⊥AD , 又∵()(32),(12),1,1,A B C ---,, ∴A 、B 纵坐标相等,B 、C 横坐标相等,∴A 、D 横坐标相等,即3;D 、C 纵坐标相等,即-1,因此(31)D -,【点睛】本题主要考查了矩形的性质和直角坐标系的基本概念,利用矩形四个角都是直角、对边相等是解题的关键.3.若点A (a+1,b ﹣2)在第二象限,则点B (﹣a ,1﹣b )在( )A .第一象限B .第二象限C .第三象限D .第四象限 【答案】D【解析】分析:直接利用第二象限横纵坐标的关系得出a ,b 的符号,进而得出答案.详解:∵点A (a+1,b-2)在第二象限,∴a+1<0,b-2>0,解得:a <-1,b >2,则-a >1,1-b <-1,故点B (-a ,1-b )在第四象限.故选D .点睛:此题主要考查了点的坐标,正确记忆各象限内点的坐标符号是解题关键.4.如果点P (),3m 在第二象限,那么点Q ()3,m -在( )A .第一象限B .第二象限C .第三象限D .第四象限【答案】C【解析】【分析】根据第二象限的横坐标小于零可得m 的取值范围,进而判定Q 点象限.【详解】解:由点P (),3m 在第二象限可得m <0,再由-3<0和m <0可知Q 点在第三象限, 故选择C.【点睛】本题考查了各象限内坐标的符号特征.5.如图,在平面直角坐标系中,以O 为圆心,适当长为半径画弧,交x 轴于点M ,交y轴于点N ,再分别以点M 、N 为圆心,大于12MN 的长为半径画弧,两弧在第二象限交于点P .若点P 的坐标为(2a ,b+1),则a 与b 的数量关系为( )A .a=bB .2a+b=﹣1C .2a ﹣b=1D .2a+b=1【答案】B【解析】试题分析:根据作图方法可得点P 在第二象限角平分线上,则P 点横纵坐标的和为0,即2a+b+1=0,∴2a+b=﹣1.故选B .6.如图,动点P 从()0,3出发,沿箭头所示方向运动,每当碰到矩形的边时反弹,反弹时反射角等于入射角.当点P 第2018次碰到矩形的边时,点P 的坐标为( )A .()1,4B .()5,0C .()7,4D .()8,3【答案】C【解析】【分析】 理解题意,由反射角与入射角的定义作出图形,观察出反弹6次为一个循环的规律,解答即可.【详解】如图,经过6次反弹后动点回到出发点(0,3),∵2018÷6=336…2,∴当点P 第2018次碰到矩形的边时为第336个循环组的第2次反弹,点P 的坐标为(7,4).故选C .【点睛】本题考查了平面直角坐标系中点的坐标规律,首先作图,然后观察出每6次反弹为一个循环,据此解答即可.7.在平面直角坐标系中,点P(x ﹣3,x+3)是x 轴上一点,则点P 的坐标是( )A.(0,6) B.(0,﹣6) C.(﹣6,0) D.(6,0)【答案】C【解析】【分析】根据x轴上的点的纵坐标为0列式计算即可得解.【详解】∵点P(x﹣3,x+3)是x轴上一点,∴x+3=0,∴x=﹣3,∴点P的坐标是(﹣6,0),故选:C.【点睛】本题考查了点的坐标,是基础题,熟记x轴上的点的纵坐标为0是解题的关键.8.平面直角坐标系中,P(-2a-6,a-5)在第三象限,则a的取值范围是()A.a>5 B.a<-3 C.-3≤a≤5D.-3<a<5【答案】D【解析】【分析】根据第三象限的点的坐标特点:x<0,y<0,列不等式组,求出a的取值范围即可.【详解】∵点P在第三象限,∴26050aa--<⎧⎨-<⎩,解得:-3<a<5,故选D.【点睛】本题考查了象限点的坐标的符号特征以及解不等式,该知识点是中考的常考点,常与不等式、方程结合起来求一些字母的取值范围,比如本题中求a的取值范围.9.如图,正方形ABCD的顶点A(1,1),B(3,1),规定把正方形ABCD“先沿x轴翻折,再向左平移1个单位”为一次变换,这样连续经过2019次变换后,正方形ABCD的顶点C的坐标为()A.(﹣2018,3)B.(﹣2018,﹣3)C .(﹣2016,3)D .(﹣2016,﹣3)【答案】D【解析】【分析】 首先由正方形ABCD ,顶点A (1,1)、B (3,1)、C (3,3),然后根据题意求得第1次、2次、3次变换后的点C 的对应点的坐标,即可得规律:第n 次变换后的点C 的对应点的为:当n 为奇数时为(3-n ,-3),当n 为偶数时为(3-n ,3),继而求得把正方形ABCD 连续经过2019次这样的变换得到正方形ABCD 的点C 的坐标.【详解】∵正方形ABCD ,顶点A (1,1)、B (3,1),∴C (3,3).根据题意得:第1次变换后的点C 的对应点的坐标为(3﹣1,﹣3),即(2,﹣3), 第2次变换后的点C 的对应点的坐标为:(3﹣2,3),即(1,3),第3次变换后的点C 的对应点的坐标为(3﹣3,﹣3),即(0,﹣3),第n 次变换后的点C 的对应点的为:当n 为奇数时为(3﹣n ,﹣3),当n 为偶数时为(3﹣n ,3),∴连续经过2019次变换后,正方形ABCD 的点C 的坐标变为(﹣2016,﹣3). 故选D .【点睛】此题考查了对称与平移的性质.此题难度较大,属于规律性题目,注意得到规律:第n 次变换后的点C 的对应点的坐标为:当n 为奇数时为(3-n ,-3),当n 为偶数时为(3-n ,3)是解此题的关键.10.在平面直角坐标系中,以原点为中心,把点()2,3A 逆时针旋转180︒,得到点B ,则点B 的坐标为( )A .()2,3-B .()2,3--C .(2,3)-D .(3,2)--【答案】B【解析】【分析】根据中心对称的性质解决问题即可.【详解】由题意A ,B 关于O 中心对称,∵A (2,3),∴B (-2,-3),故选:B .【点睛】此题考查中心对称,坐标与图形的变化,解题的关键是熟练掌握基本知识,属于中考常考题型.11.象棋在中国有着三千多年的历史,由于用具简单,趣味性强,成为流行极为广泛的益智游戏.如图,是一局象棋残局,已知表示棋子“炮”和“車”的点的坐标分别为(1,2),(2,0)-,则表示棋子“馬”的点的坐标为( )A .(4,2)B .(2,4)C .(3,2)D .(2, 1)【答案】A【解析】【分析】 根据棋子“炮”和“車”的点坐标,推断出原点位置,进而可得出“馬”的点的坐标.【详解】如图所示,根据“車”的点坐标为()2,0-,可知x 轴在“車”所在的横线上,又根据“炮”的点坐标()1,2,可推出原点坐标如图所示,进而可知“馬”的点的坐标为()4,2,故选:A .【点睛】本题综合考查点的坐标位置的确定.解答本题的关键是由“炮”和“車”的点坐标确定出原点的坐标.12.如果点P 在第三象限内,点P 到x 轴的距离是4,到y 轴的距离是5,那么点P 的坐标是( )A .(﹣4,﹣5)B .(﹣4,5)C .(﹣5,4)D .(﹣5,﹣4)【答案】D【解析】【分析】根据第三象限内点的横坐标是负数,纵坐标是负数以及点到x 轴的距离等于纵坐标的绝对值,到y 轴的距离等于横坐标的绝对值解答.解:∵第三象限的点P 到x 轴的距离是4,到y 轴的距离是5,∴点P 的横坐标是﹣5,纵坐标是﹣4,∴点P 的坐标为(﹣5,﹣4).故选:D.【点睛】本题考查了点的坐标,熟记点到x 轴的距离等于纵坐标的绝对值,到y 轴的距离等于横坐标的绝对值是解题的关键.13.若点(24,24)P m m -+在y 轴上,那么m 的值为( )A .2B .2-C .2±D .0【答案】A【解析】【分析】依据点P (2m-4,2m+4)在y 轴上,其横坐标为0,列式可得m 的值.【详解】∵P (2m-4,2m+4)在y 轴上,∴2m-4=0,解得m=2,故选:A .【点睛】此题考查点的坐标,解题关键在于掌握y 轴上点的横坐标为0.14.如图,在平面直角坐标系中.四边形OABC 是平行四边形,其中()()2,03,1,A B 、将ABCD Y 在x 轴上顺时针翻滚.如:第一次翻滚得到111,AB C O Y 第二次翻滚得到1122B AO C Y ,···则第五次翻滚后,C 点的对应点坐标为( )A .(622,2+B .2,622+ C .2,622- D .(622,2- 【答案】A【解析】ABCD Y 在x 轴上顺时针翻滚,四次一个循环,推出第五次翻滚后,点A 的坐标,再利用平移的性质求出C 的对应点坐标即可.【详解】连接AC ,过点C 作CH ⊥OA 于点H ,∵四边形OABC 是平行四边形,A(2,0)、B(3,1),∴C(1,1),∴∠COA=45°,OC=AB=2, ∴OH= OC÷2=1,∴AH=2-1=1,∴OA=AH ,∴OC=AC ,∴∆OAC 是等腰直角三角形,∴AC ⊥OC ,∵ABCD Y 在x 轴上顺时针翻滚,四次一个循环,∴第五次翻滚后点,A 的坐标为(6+22,0),把点A 向上平移2个单位得到点C , ∴第五次翻滚后,C 点的对应点坐标为()622,2+.故选:A .【点睛】本题主要考查图形与坐标,涉及平行四边形的性质,等腰直角三角形的性质以及平移的性质,找到点的坐标的变化规律,是解的关键.15.如图所示,长方形BCDE 的各边分别平行于x 轴或y 轴,物体甲和物体乙分别由点A(2, 0)同时出发,沿长方形BCDE 的边作环绕运动,物体甲按逆时针方向以1个单位长度秒匀速运动,物体乙按顺时针方向以2个单位长度秒匀速运动,则两个物体运动后的第2020次相遇点的坐标是( )A .(2,0)B .(-1,-1)C .( -2,1)D .(-1, 1)【答案】D【解析】【分析】 利用行程问题中的相遇问题,由于长方形的边长为4和2,物体乙是物体甲的速度的2倍,求得每一次相遇的地点,找出规律即可解答;【详解】∵A (2,0),四边形BCDE 是长方形,∴B (2,1),C (-2,1),D (-2,-1),E (2,-1),∴BC=4,CD=2,∴长方形BCDE 的周长为()2422612⨯+=⨯=,∵甲的速度为1,乙的速度为2,∴第一次相遇需要的时间为12÷(1+2)=4(秒),此时甲的路程为1×4=4,甲乙在(-1,1)相遇,以此类推,第二次甲乙相遇时的地点为(-1,-1),第三次为(2,0),第四次为(-1,1),第五次为(-1,-1),第六次为(2,0),L L ,∴甲乙相遇时的地点是每三个点为一个循环,∵202036733÷=L ,∴第2020次相遇地点的坐标为(-1,1);故选D.【点睛】本题主要考查了规律型:点的坐标,掌握甲乙运动相遇时点坐标的规律是解题的关键.16.如图,在平面直角坐标系中,四边形OABC 是菱形,点C 的坐标为()2,3,则菱形OABC 的面积是( )A .6B .13C .3132D .313【答案】D【解析】【分析】 作CH ⊥x 轴于点H ,利用勾股定理求出OC 的长,根据菱形的性质可得OA =OC ,即可求解.【详解】如图所示,作CH ⊥x 轴于点H ,∵四边形OABC 是菱形,∴OA =OC ,∵点C 的坐标为()2,3,∴OH =2,CH =3,∴OC =22OH CH +=2223+=13∴菱形OABC 的面积=OA·CH =313 故选:D【点睛】本题考查菱形的性质、勾股定理、坐标与图形的性质、菱形的面积公式,解题的关键是学会添加辅助线,构造直角三角形.17.在平面直角坐标系中,对于平面内任一点(a ,b ),若规定以下三种变换:①f (a ,b )=(-a ,b ),如f (1,2)=(-1,2);②g (a ,b )=(b ,a ),如g (1,2)=(2,1);③h (a ,b )=(-a ,-b ),如h (1,2)=(-1,-2);按照以上变换有:g (h (f (1,2)))=g (h (-1,2))=g (1,-2)=(-2,1),那么h (f (g (3,-4)))等于A .(4,-3)B .(-4,3)C .(-4,-3)D .(4,3)【答案】C【解析】【分析】根据f (a ,b )=(-a ,b ).g (a ,b )=(b ,a ).h (a ,b )=(-a ,-b ),可得答案.【详解】由已知条件可得h (f (g (3,-4)))= h (f (-4,3))= h (4,3)=(-4,-3) 故选:C【点睛】本题考查了点的坐标,利用f (a ,b )=(-a ,b ).g (a ,b )=(b ,a ).h (a ,b )=(-a ,-b )是解题关键.18.预备知识:线段中点坐标公式:在平面直角坐标系中,已知A (x 1,y 1),B (x 2,y 2),设点M 为线段AB 的中点,则点M 的坐标为(122x x +,122y y +)应用:设线段CD 的中点为点N ,其坐标为(3,2),若端点C 的坐标为(7,3),则端点D 的坐标为( )A .(﹣1,1)B .(﹣2,4)C .(﹣2,1)D .(﹣1,4) 【答案】A【解析】【分析】根据线段的中点坐标公式即可得到结论.【详解】设D (x ,y ), 由中点坐标公式得:7+x 2=3,3+y 2=2, ∴x =﹣1,y =1,∴D (﹣1,1),故选A .【点睛】此题考查坐标与图形性质,关键是根据线段的中点坐标公式解答.19.在直角坐标系中,若点P(2x -6,x -5)在第四象限,则x 的取值范围是( )A .3<x <5B .-5<x <3C .-3<x <5D .-5<x <-3【答案】A【解析】【分析】点在第四象限的条件是:横坐标是正数,纵坐标是负数.解:∵点P(2x-6,x-5)在第四象限,∴260 {50xx->-<,解得:3<x<5.故选:A.【点睛】主要考查了平面直角坐标系中第四象限的点的坐标的符号特点.20.已知平面内不同的两点A(a+2,4)和B(3,2a+2)到x轴的距离相等,则a的值为( )A.﹣3 B.﹣5 C.1或﹣3 D.1或﹣5【答案】A【解析】分析:根据点A(a+2,4)和B(3,2a+2)到x轴的距离相等,得到4=|2a+2|,即可解答.详解:∵点A(a+2,4)和B(3,2a+2)到x轴的距离相等,∴4=|2a+2|,a+2≠3,解得:a=−3,故选A.点睛:考查点的坐标的相关知识;用到的知识点为:到x轴和y轴的距离相等的点的横纵坐标相等或互为相反数.。
平面直角坐标系一.选择题(共10小题)1.下列各点中在第二象限的是()A.(3,2) B.(﹣3,﹣2) C.(﹣3,2)D.(3,﹣2)2.在平面直角坐标系中,点(3,﹣4)所在的象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限3.已知点P(x+3,x﹣4)在x轴上,则x的值为()A.3 B.﹣3 C.﹣4 D.44.如图在正方形网格中,若A(1,1),B(2,0),则C点的坐标为()A.(﹣3,﹣2) B.(3,﹣2)C.(﹣2,﹣3) D.(2,﹣3)5.如图所示,在平面直角坐标系中,半径均为1个单位长度的半圆O1、O2、O3,…组成一条平滑的曲线,点P从原点O出发,沿这条曲线向右运动,速度为每秒个单位长度,则第2017秒时,点P的坐标是()A.(2016,0)B.(2017,1)C.(2017,﹣1)D.(2018,0)6.点P(﹣3,2)在平面直角坐标系中所在的象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限7.如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),…,按这样的运动规律,经过第2011次运动后,动点P的坐标是()A.(2011,0)B.(2011,1)C.(2011,2)D.(2010,0)8.若x轴上的点P到y轴的距离为3,则点P的坐标为()A.(0,3) B.(0,3)或(0,﹣3) C.(3,0) D.(3,0)或(﹣3,0)9.若点P(x,5)在第二象限内,则x应是()A.正数 B.负数 C.非负数D.有理数10.若点P(x,y)的坐标满足xy=0,则点P的位置是()A.在x轴上 B.在y轴上C.是坐标原点D.在x轴上或在y轴上二.填空题(共8小题)11.若点B(a,b)在第三象限,则点C(﹣a+1,3b﹣5)在第象限.12.点A的坐标(4,﹣3),它到x轴的距离为.13.已知点P的坐标为(2﹣a,3a+6),且点P到两坐标轴的距离相等,则a= .14.已知点M(a,b),且a•b>0,a+b<0,则点M在第象限.15.在直角坐标系中,若点P(a﹣2,a+5)在y轴上,则点P的坐标为.16.如图,在平面直角坐标系中,直线l:y=x+2交x轴于点A,交y轴于点A1,点A2,A3,…在直线l上,点B1,B2,B3,…在x轴的正半轴上,若△A1OB1,△A2B1B2,△A3B2B3,…,依次均为等腰直角三角形,直角顶点都在x轴上,则第n个等腰直角三角形A n B n﹣1B n顶点B n的横坐标为.17.确定平面内某一点的位置一般需要个数据.18.在平面直角坐标系中,对于平面内任一点(a,b),若规定以下三种变换:①△(a,b)=(﹣a,b);②○(a,b)=(﹣a,﹣b);③Ω(a,b)=(a,﹣b),按照以上变换例如:△(○(1,2))=(1,﹣2),则○(Ω(3,4))等于.三.解答题(共4小题)19.已知平面直角坐标系中有一点M(m﹣1,2m+3)(1)点M到x轴的距离为1时,M的坐标?(2)点N(5,﹣1)且MN∥x轴时,M的坐标?20.已知点P(a﹣2,2a+8),分别根据下列条件求出点P的坐标.(1)点P在x轴上;(2)点P在y轴上;(3)点Q的坐标为(1,5),直线PQ∥y轴;(4)点P到x轴、y轴的距离相等.21.如图,A(﹣1,0),C(1,4),点B在x轴上,且AB=3.(1)求点B的坐标;(2)求△ABC的面积;(3)在y轴上是否存在点P,使以A、B、P三点为顶点的三角形的面积为10?若存在,请直接写出点P的坐标;若不存在,请说明理由.22.如图,在平面直角坐标系中,点A,B的坐标分别为A(0,α),B(b,α),且α、b满足(a﹣2)2+|b﹣4|=0,现同时将点A,B分别向下平移2个单位,再向左平移1个单位,分别得到点A,B的对应点C,D,连接AC,BD,AB.(1)求点C,D的坐标及四边形ABDC的面积S四边形ABCD(2)在y轴上是否存在一点M,连接MC,MD,使S△MCD=S四边形ABDC?若存在这样一点,求出点M的坐标,若不存在,试说明理由.(3)点P是线段BD上的一个动点,连接PA,PO,当点P在BD上移动时(不与B,D重合)的值是否发生变化,并说明理由.参考答案与试题解析一.选择题(共10小题)1.下列各点中在第二象限的是()A.(3,2) B.(﹣3,﹣2) C.(﹣3,2)D.(3,﹣2)【分析】根据各象限内点的坐标特征对各选项分析判断后利用排除法求解.【解答】解:A、(3,2)在第一象限,故本选项错误;B、(﹣3,﹣2)在第三象限,故本选项错误;C、(﹣3,2)在第二象限,故本选项正确;D、(3,﹣2)在第四象限,故本选项错误.故选C.【点评】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).2.在平面直角坐标系中,点(3,﹣4)所在的象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限【分析】应先判断出点的横纵坐标的符号,进而判断点所在的象限.【解答】解:∵点的横坐标3>0,纵坐标﹣4<0,∴点P(3,﹣4)在第四象限.故选D.【点评】本题主要考查了平面直角坐标系中各个象限的点的坐标的符号特点.四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).3.已知点P(x+3,x﹣4)在x轴上,则x的值为()A.3 B.﹣3 C.﹣4 D.4【分析】直接利用x轴上点的纵坐标为0,进而得出答案.【解答】解:∵点P(x+3,x﹣4)在x轴上,∴x﹣4=0,解得:x=4,故选:D.【点评】此题主要考查了点的坐标,正确把握x轴上点的坐标性质是解题关键.4.如图在正方形网格中,若A(1,1),B(2,0),则C点的坐标为()A.(﹣3,﹣2) B.(3,﹣2)C.(﹣2,﹣3) D.(2,﹣3)【分析】根据A(1,1),B(2,0),再结合图形即可确定出点C的坐标.【解答】解:∵点A的坐标是:(1,1),点B的坐标是:(2,0),∴点C的坐标是:(3,﹣2).故选B.【点评】本题主要考查了点的坐标.点坐标就是在平面直角坐标系中,坐标平面内的点与一对有序实数是一一对应的关系,这对有序实数则为这个点的坐标点的坐标.5.如图所示,在平面直角坐标系中,半径均为1个单位长度的半圆O1、O2、O3,…组成一条平滑的曲线,点P从原点O出发,沿这条曲线向右运动,速度为每秒个单位长度,则第2017秒时,点P的坐标是()A.(2016,0)B.(2017,1)C.(2017,﹣1)D.(2018,0)【分析】以时间为点P的下标,根据半圆的半径以及部分点P的坐标可找出规律“P4n(n,0),P4n+1(4n+1,1),P4n+2(4n+2,0),P4n+3(4n+3,﹣1)”,依此规律即可得出第2017秒时,点P的坐标.【解答】解:以时间为点P的下标.观察,发现规律:P0(0,0),P1(1,1),P2(2,0),P3(3,﹣1),P4(4,0),P5(5,1),…,∴P4n(n,0),P4n+1(4n+1,1),P4n+2(4n+2,0),P4n+3(4n+3,﹣1).∵2017=504×4+1,∴第2017秒时,点P的坐标为(2017,1).故选B【点评】本题考查了规律型中点的坐标,解题的关键是找出点P的变化规律“P4n(n,0),P4n+1(4n+1,1),P4n+2(4n+2,0),P4n+3(4n+3,﹣1)”.本题属于基础题,难度不大,解决该题型题目时,根据圆的半径及时间罗列出部分点P的坐标,根据坐标发现规律是关键.6.点P(﹣3,2)在平面直角坐标系中所在的象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限【分析】根据平面直角坐标系中点的坐标符号可得答案.【解答】解:点P(﹣3,2)在平面直角坐标系中所在的象限是第二象限,故选:B.【点评】此题主要考查了点的坐标,关键是掌握平面直角坐标系中个象限内的点的坐标符号,第一象限(+,+),第二象限(﹣,+),第三象限(﹣,﹣)第四象限(+,﹣).7.如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),…,按这样的运动规律,经过第2011次运动后,动点P的坐标是()A.(2011,0)B.(2011,1)C.(2011,2)D.(2010,0)【分析】观察不难发现,点的横坐标等于运动的次数,纵坐标每4次为一个循环组循环,用2011除以4,余数是几则与第几次的纵坐标相同,然后求解即可.【解答】解:∵第1次运动到点(1,1),第2次运动到点(2,0),第3次接着运动到点(3,2),第4次运动到点(4,0),第5次运动到点(5,1)…,∴运动后点的横坐标等于运动的次数,第2011次运动后点P的横坐标为2011,纵坐标以1、0、2、0每4次为一个循环组循环,∵2011÷4=502…3,∴第2011次运动后动点P的纵坐标是第503个循环组的第3次运动,与第3次运动的点的纵坐标相同,为2,∴点P(2011,2).故选C.【点评】本题是对点的坐标的规律的考查,根据图形观察出点的横坐标与纵坐标的变化规律是解题的关键.8.若x轴上的点P到y轴的距离为3,则点P的坐标为()A.(0,3) B.(0,3)或(0,﹣3) C.(3,0) D.(3,0)或(﹣3,0)【分析】由于点P到y轴的距离是3,并且在x轴上,由此即可P横坐标和纵坐标,也就确定了P的坐标.【解答】解:∵P在x轴上,∴P的纵坐标为0,∵P到y轴的距离是3,∴P的横坐标为3或﹣3,∴点P坐标是(3,0)或(﹣3,0).故选D.【点评】此题主要考查了根据点在坐标系中的位置及到坐标轴的距离确定点的坐标,解决这些问题要熟练掌握坐标系各个不同位置的坐标特点.9.若点P(x,5)在第二象限内,则x应是()A.正数 B.负数 C.非负数D.有理数【分析】在第二象限时,横坐标<0,纵坐标>0,因而就可得到x<0,即可得解.【解答】解:∵点P(x,5)在第二象限,∴x<0,即x为负数.故选B.【点评】解决本题解决的关键是熟记在各象限内点的坐标的符号,第一象限点的坐标符号为(+,+),第二象限点的坐标符号为(﹣,+),第三象限点的坐标符号为(﹣,﹣),第四象限点的坐标符号为(+,﹣).10.若点P(x,y)的坐标满足xy=0,则点P的位置是()A.在x轴上 B.在y轴上C.是坐标原点D.在x轴上或在y轴上【分析】根据坐标轴上的点的坐标特点解答即可.【解答】解:因为xy=0,所以x、y中至少有一个是0;当x=0时,点在y轴上;当y=0时,点在x轴上.当x=0,y=0时是坐标原点.所以点P的位置是在x轴上或在y轴上.故选:D.【点评】本题主要考查了坐标轴上点的坐标特点,即点在x轴上点的坐标为纵坐标等于0;点在y轴上点的坐标为横坐标等于0.二.填空题(共8小题)11.若点B(a,b)在第三象限,则点C(﹣a+1,3b﹣5)在第四象限.【分析】先根据B(a,b)在第三象限判断出a,b的符号,进而判断出﹣a+1,3b﹣5的符号,即可判断出点C所在的象限.【解答】解:∵点B(a,b)在第三象限,∴a<0,b<0,∴﹣a+1>0,3b﹣5<0,则点C(﹣a+1,3b﹣5)满足点在第四象限的条件,故点C(﹣a+1,3b﹣5)在第四象限.【点评】本题主要考查了平面直角坐标系中各个象限的点的坐标的符号特点.四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).12.点A的坐标(4,﹣3),它到x轴的距离为 3 .【分析】求得﹣3的绝对值即为点A到x轴的距离.【解答】解:∵|﹣3|=3,∴点A(4,﹣3)到x轴的距离为3.故答案填:3.【点评】本题考查的是点的坐标的几何意义,用到的知识点为:点到x轴的距离为点的纵坐标的绝对值.13.已知点P的坐标为(2﹣a,3a+6),且点P到两坐标轴的距离相等,则a= ﹣1或﹣4 .【分析】由于点P的坐标为(2﹣a,3a+6)到两坐标轴的距离相等,则|2﹣a|=|3a+6|,然后去绝对值得到关于a的两个一次方程,再解方程即可.【解答】解:根据题意得|2﹣a|=|3a+6|,所以2﹣a=3a+6或2﹣a=﹣(3a+6),解得a=﹣1或a=﹣4.故答案为﹣1或﹣4.【点评】本题考查了点的坐标:直角坐标系中点与有序实数对一一对应;在x轴上点的纵坐标为0,在y轴上点的横坐标为0;记住各象限点的坐标特点.14.已知点M(a,b),且a•b>0,a+b<0,则点M在第三象限.【分析】由于a•b>0则a、b同号,而a+b<0,于是a<0,b<0,然后根据各象限点的坐标特点进行判断.【解答】解:∵a•b>0,∴a、b同号∵a+b<0,∴a<0,b<0,∴点M(a,b)在第三象限.故答案为三.【点评】本题考查了坐标:直角坐标系中点与有序实数对一一对应;在x轴上点的纵坐标为0,在y轴上点的横坐标为0;记住各象限点的坐标特点.15.在直角坐标系中,若点P(a﹣2,a+5)在y轴上,则点P的坐标为(0,7).【分析】让点P的横坐标为0列式求得a的值,即可求得点P的坐标.【解答】解:∵点P(a﹣2,a+5)在直角坐标系的y轴上,∴a﹣2=0,解得a=2,a+5=7,∴P坐标为(0,7).故答案为:(0,7).【点评】此题主要考查了点的坐标特点,解决本题的关键是掌握好坐标轴上的点的坐标的特征:y轴上的点的横坐标为0.16.如图,在平面直角坐标系中,直线l:y=x+2交x轴于点A,交y轴于点A1,点A2,A3,…在直线l上,点B1,B2,B3,…在x轴的正半轴上,若△A1OB1,△A2B1B2,△A3B2B3,…,依次均为等腰直角三角形,直角顶点都在x轴上,则第n个等腰直角三角形A n B n﹣1B n顶点B n的横坐标为2n+1﹣2 .【分析】先求出B1、B2、B3…的坐标,探究规律后,即可根据规律解决问题.【解答】解:由题意得OA=OA1=2,∴OB1=OA1=2,B1B2=B1A2=4,B2A3=B2B3=8,∴B1(2,0),B2(6,0),B3(14,0)…,2=22﹣2,6=23﹣2,14=24﹣2,…∴B n的横坐标为2n+1﹣2.故答案为 2n+1﹣2.【点评】本题考查规律型:点的坐标、等腰直角三角形的性质等知识,解题的关键是从特殊到一般,探究规律,利用规律解决问题,属于中考常考题型.17.确定平面内某一点的位置一般需要 2 个数据.【分析】坐标平面内的点与有序实数对是一一对应的.【解答】解:∵确定一个点的坐标需要横、纵坐标,∴是2个数据.故填:2.【点评】本题考查的是有序数对应由2个数据构成.18.在平面直角坐标系中,对于平面内任一点(a,b),若规定以下三种变换:①△(a,b)=(﹣a,b);②○(a,b)=(﹣a,﹣b);③Ω(a,b)=(a,﹣b),按照以上变换例如:△(○(1,2))=(1,﹣2),则○(Ω(3,4))等于(﹣3,4).【分析】根据三种变换规律的特点解答即可.【解答】解:○(Ω(3,4))=○(3,﹣4)=(﹣3,4).故答案为:(﹣3,4).【点评】本题考查了点的坐标,读懂题目信息,理解三种变换的变换规律是解题的关键.三.解答题(共4小题)19.已知平面直角坐标系中有一点M(m﹣1,2m+3)(1)点M到x轴的距离为1时,M的坐标?(2)点N(5,﹣1)且MN∥x轴时,M的坐标?【分析】(1)根据题意可知2m+3的绝对值等于1,从而可以得到m的值,进而得到件M的坐标;(2)根据题意可知点M的纵坐标等于点N的纵坐标,从而可以得到m的值,进而得到件M 的坐标.【解答】解:(1)∵点M(m﹣1,2m+3),点M到x轴的距离为1,∴|2m+3|=1,解得,m=﹣1或m=﹣2,当m=﹣1时,点M的坐标为(﹣2,1),当m=﹣2时,点M的坐标为(﹣3,﹣1);(2)∵点M(m﹣1,2m+3),点N(5,﹣1)且MN∥x轴,∴2m+3=﹣1,解得,m=﹣2,故点M的坐标为(﹣3,﹣1).【点评】本题考查点的坐标,解题的关键是明确题意,求出m的值.20.已知点P(a﹣2,2a+8),分别根据下列条件求出点P的坐标.(1)点P在x轴上;(2)点P在y轴上;(3)点Q的坐标为(1,5),直线PQ∥y轴;(4)点P到x轴、y轴的距离相等.【分析】(1)利用x轴上点的坐标性质纵坐标为0,进而得出a的值,即可得出答案;(2)利用y轴上点的坐标性质横坐标为0,进而得出a的值,即可得出答案;(3)利用平行于y轴直线的性质,横坐标相等,进而得出a的值,进而得出答案;(4)利用点P到x轴、y轴的距离相等,得出横纵坐标相等或相反数进而得出答案.【解答】解:(1)∵点P(a﹣2,2a+8),在x轴上,∴2a+8=0,解得:a=﹣4,故a﹣2=﹣4﹣2=﹣6,则P(﹣6,0);(2))∵点P(a﹣2,2a+8),在y轴上,∴a﹣2=0,解得:a=2,故2a+8=2×2+8=12,则P(0,12);(3)∵点Q的坐标为(1,5),直线PQ∥y轴;,∴a﹣2=1,解得:a=3,故2a+8=14,则P(1,14);(4)∵点P到x轴、y轴的距离相等,∴a﹣2=2a+8或a﹣2+2a+8=0,解得:a1=﹣10,a2=﹣2,故当a=﹣10则:a﹣2=﹣12,2a+8=﹣12,则P(﹣12,﹣12);故当a=﹣2则:a﹣2=﹣4,2a+8=4,则P(﹣4,4).综上所述:P(﹣12,﹣12),(﹣4,4).【点评】此题主要考查了点的坐标性质,用到的知识点为:点到坐标轴的距离相等,那么点的横纵坐标相等或互为相反数以及在坐标轴上的点的性质.21.如图,A(﹣1,0),C(1,4),点B在x轴上,且AB=3.(1)求点B的坐标;(2)求△ABC的面积;(3)在y轴上是否存在点P,使以A、B、P三点为顶点的三角形的面积为10?若存在,请直接写出点P的坐标;若不存在,请说明理由.【分析】(1)分点B在点A的左边和右边两种情况解答;(2)利用三角形的面积公式列式计算即可得解;(3)利用三角形的面积公式列式求出点P到x轴的距离,然后分两种情况写出点P的坐标即可.【解答】解:(1)点B在点A的右边时,﹣1+3=2,点B在点A的左边时,﹣1﹣3=﹣4,所以,B的坐标为(2,0)或(﹣4,0);(2)△ABC的面积=×3×4=6;(3)设点P到x轴的距离为h,则×3h=10,解得h=,点P在y轴正半轴时,P(0,),点P在y轴负半轴时,P(0,﹣),综上所述,点P的坐标为(0,)或(0,﹣).【点评】本题考查了坐标与图形性质,主要利用了三角形的面积,难点在于要分情况讨论.22.如图,在平面直角坐标系中,点A,B的坐标分别为A(0,α),B(b,α),且α、b满足(a﹣2)2+|b﹣4|=0,现同时将点A,B分别向下平移2个单位,再向左平移1个单位,分别得到点A,B的对应点C,D,连接AC,BD,AB.(1)求点C,D的坐标及四边形ABDC的面积S四边形ABCD(2)在y轴上是否存在一点M,连接MC,MD,使S△MCD=S四边形ABDC?若存在这样一点,求出点M的坐标,若不存在,试说明理由.(3)点P是线段BD上的一个动点,连接PA,PO,当点P在BD上移动时(不与B,D重合)的值是否发生变化,并说明理由.【分析】(1)先由非负数性质求出a=2,b=4,再根据平移规律,得出点C,D的坐标,然后根据四边形ABDC的面积=AB×OA即可求解;(2)存在.设M坐标为(0,m),根据S△PAB=S四边形ABDC,列出方程求出m的值,即可确定M 点坐标;(3)过P点作PE∥AB交OC与E点,根据平行线的性质得∠BAP+∠DOP=∠APE+∠OPE=∠APO,故比值为1.【解答】解:(1)∵(a﹣2)2+|b﹣4|=0,∴a=2,b=4,∴A(0,2),B(4,2).∵将点A,B分别向下平移2个单位,再向左平移1个单位,分别得到点A,B的对应点C,D,∴C(﹣1,0),D(3,0).∴S四边形ABDC=AB×OA=4×2=8;(2)在y轴上存在一点M,使S△MCD=S四边形ABCD.设M坐标为(0,m).∵S△MCD=S四边形ABDC,∴×4|m|=8,∴2|m|=8,解得m=±4.∴M(0,4)或(0,﹣4);(3)当点P在BD上移动时, =1不变,理由如下:过点P作PE∥AB交OA于E.∵CD由AB平移得到,则CD∥AB,∴PE∥CD,∴∠BAP=∠APE,∠DOP=∠OPE,∴∠BAP+∠DOP=∠APE+∠OPE=∠APO,∴=1.【点评】本题考查了坐标与图形平移的关系,坐标与平行四边形性质的关系,平行线的性质及三角形、平行四边形的面积公式.关键是理解平移规律,作平行线将相关角进行转化.。
中考复习数学专题训练:《平面直角坐标系》解答题专项培优(三)1.已知平面直角坐标系中有一点P(2m+1,m﹣3).(1)若点P在第四象限,求m的取值范围;(2)若点P到y轴的距离为3,求点P的坐标.2.已知:点P(2﹣a,3),且点P到x轴、y轴的距离相等.求:点P的坐标.3.在平面直角坐标系xOy中,对于点P(x,y),若点Q的坐标为(ax+y,x+ay),则称点Q是点P的“a级关联点”(其中a为常数,且a≠0),例如,点P(1,4)的“2级关联点”为Q(2×1+4,1+2×4),即Q(6,9).(1)若点P的坐标为(﹣1,5),则它的“3级关联点”的坐标为;(2)若点P的“5级关联点”的坐标为(9,﹣3),求点P的坐标;(3)若点P(m﹣1,2m)的“﹣3级关联点”P′位于坐标轴上.求点P′的坐标.4.已知点P(8﹣2m,m﹣1).(1)若点P在x轴上,求m的值.(2)若点P到两坐标轴的距离相等,求P点的坐标.5.在平面直角坐标系中,已知点M(m﹣1,2m+3)(1)若点M在y轴上,求m的值.(2)若点M在第一、三象限的角平分线上,求m的值.6.在平面直角坐标系中,一只蚂蚁从原点O出发,按向上、向右、向下、向右……的方向依次不断移动,每次移动一个单位长度,其行走路线如图.(1)填写下列各点的坐标:A1(,),A3(,),A12(,);(2)写出点A n的坐标(n是4的倍数);(3)写出A 2016和点A 2017的坐标,并指出蚂蚁从点A 2016到点A 2017的移动方向.7.综合与实践问题背景:(1)已知A (1,2),B (3,2),C (1,﹣1),D (﹣3,﹣3).在平面直角坐标系中描出这几个点,并分别找到线段AB 和CD 中点P 1、P 2,然后写出它们的坐标,则P 1 ,P 2 .探究发现:(2)结合上述计算结果,你能发现若线段的两个端点的坐标分别为(x 1,y 1),(x 2,y 2),则线段的中点坐标为 .拓展应用:(3)利用上述规律解决下列问题:已知三点E (﹣1,2),F (3,1),G (1,4),第四个点H (x ,y )与点E 、点F 、点G 中的一个点构成的线段的中点与另外两个端点构成的线段的中点重合,求点H 的坐标.8.如图,学校植物园的护栏是由两种大小不等的正方形间隔排列组成,将护栏的图案放在平面直角坐标系中,已知小正方形的边长为1米,则A 1的坐标为(2,2)、A 2的坐标为(5,2)(1)A 3的坐标为 ,A n 的坐标(用n 的代数式表示)为 .(2)2020米长的护栏,需要两种正方形各多少个?9.在平面直角坐标系中,一蚂蚁从原点O 出发,按向上、向右、向下、向右的方向依次不断移动,每次移动1个单位,其行走路线如图所示.(1)填写下列各点的坐标:A 4 ,A 8 ;(2)写出点A 4n 的坐标(n 为正整数) ;(3)蚂蚁从点A 2014到点A 2017的移动方向 .10.如图,在直角坐标系的坐标轴上按如下规律取点:A 1在x 轴正半轴上,A 2在y 轴正半轴上,A 3在x 轴负半轴上,A 4在y 轴负半轴上,A 5在x 轴正半轴上,…,且OA 1+1=OA 2,OA 2+1=OA 3,OA 3+1=OA 4…,设A 1,A 2,A 3,A 4…,有坐标分别为(a 1,0),(0,a 2),(a 3,0),(0,a 4)…,s n =a 1+a 2+a 3+…+a n .(1)当a 1=1时,求a 5的值;(2)若s 7=1,求a 1的值;(3)当a 1=1时,直接写出用含k (k 为正整数)的式子表示x 轴负半轴上所取点坐标.11.如图,方格纸中每个小方格都是长为1个单位的正方形,若学校位置坐标为A (1,2),解答以下问题:(1)请在图中建立适当的直角坐标系,并写出图书馆(B )位置的坐标;(2)若体育馆位置坐标为C (﹣3,3),请在坐标系中标出体育馆的位置,并顺次连接学校、图书馆、体育馆,得到△ABC ,求△ABC 的面积.12.国庆假期期间,笑笑所在的学习小组组织了到方特梦幻王国的游园活动,笑笑和乐乐对着景区示意图(如图所示)讨论景点位置:(图中小正方形边长代表100m)笑笑说:“西游传说坐标(300,300).”乐乐说:“华夏五千年坐标(﹣100,﹣400).”若他们二人所说的位置都正确(1)在图中建立适当的平面直角坐标系xOy;(2)用坐标描述其他地点的位置.13.如图所示的是某市市政府周边的一些建筑,以市政府为坐标原点,建立平面直角坐标系(每个小方格的边长为1).(1)请写出商会大厦和医院的坐标;(2)王老师在市政府办完事情后,沿(2,0)→(2,﹣1)→(2,﹣3)→(0,﹣3)→(0,﹣1)→(﹣2,﹣1)的路线逛了一下,然后到汽车站坐车回家,写出他路上经过的地方.14.如图(小方格的边长为1),这是某市部分简图.(1)请你根据下列条件建立平面直角坐标系(在图中直接画出):①火车站为原点;②宾馆的坐标为(2,2).(2)市场、超市的坐标分别为、;(3)请将体育场、宾馆和火车站看作三点,用线段连起来,得△ABC,然后将此三角形向下平移4个单位长度,再画出平移后的△A′B′C′(在图中直接画出);(4)根据坐标情况,求△ABC的面积.15.如图,这是某市部分简图,为了确定各建筑物的位置:(图中小正方形的边长代表100m 长)(1)请你以火车站为原点建立平面直角坐标系.(2)写出市场、超市、医院的坐标.16.在平面直角坐标系xOy中,对于P,Q两点给出如下定义:若点P到x、y轴的距离中的最大值等于点Q到x、y轴的距离中的最大值,则称P,Q两点为“等距点”.下图中的P,Q两点即为“等距点”.(1)已知点A的坐标为(﹣3,1),①在点E(0,3),F(3,﹣3),G(2,﹣5)中,为点A的“等距点”的是;②若点B的坐标为B(m,m+6),且A,B两点为“等距点”,则点B的坐标为;(2)若T1(﹣1,﹣k﹣3),T2(4,4k﹣3)两点为“等距点”,求k的值.17.在平面直角坐标系xOy中,对任意两点P1(x1,y1),P2(x2,y2),如果|x1﹣x2|+|y1﹣y2|=d,则称P1与P2互为“d﹣距点”.例如:点P1(3,6),p2(1,7),由d=|3﹣1|+|6﹣7|=3,可得P1与P2互为“3﹣距点”.(1)在点D(﹣2,﹣2),E(5,﹣1),F(0,4)中,原点O的“4﹣距点”是(填字母);(2)已知点A(2,1),点B(0,b),过点B平行于x轴的直线l.①当b=3时,直线l上的点A的“2﹣距点”的坐标为;②若直线l上存在点A的“2﹣距点”,在坐标系中画出这些A的“2﹣距点”组成的图形,并写出b的取值范围.18.已知M(3|a|﹣9,4﹣2a)在y轴负半轴上,直线MN∥x轴,且线段MN长度为4.(1)求点M的坐标;(2)求(2﹣a)2020+1的值;(3)求N点坐标.19.如图1,在平面直角坐标系中,点A、B、C、D均在坐标轴上,AB∥CD.(1)求证:∠ABO+∠CDO=90°;(2)如图2,BM平分∠ABO交x轴于点M,DN平分∠CDO交y轴于点N,求∠BMO+∠OND 的值.20.在平面直角坐标系中,已知点M (m ﹣1,2m +3).(1)若点M 在y 轴上,求m 的值.(2)若点N (﹣3,2),且直线MN ∥y 轴,求线段MN 的长.21.阅读一段文字,再回答下列问题:已知在平面内两点的坐标为P 1(x 1,y 1),P 2(x 2,y 2),则该两点间距离公式为P 1P 2=,同时,当两点在同一坐标轴上或所在直线平行于x 轴、平行于y 轴时,两点间的距离公式可化简成|x 1﹣x 2|和|y 1﹣y 2|(1)若已知两点A (3,3),B (﹣2,﹣1),试求A ,B 两点间的距离;(2)已知点M ,N 在平行于y 轴的直线上,点M 的纵坐标为7,点N 的纵坐标为﹣2,试求M ,N 两点间的距离;(3)已知一个三角形各顶点的坐标为A (﹣1,),B (,),C (,),你能判定这三点是否共线?若共线请说明理由,若不共线请求出图形的面积.22.先阅读下列一段文字,再回答后面的问题:已知在平面直角坐标系内两点P 1(x 1,y 1),P 2(x 2,y 2),其两点间的距离P 1P 2=,同时,当两点所在的直线在坐标轴或平行于坐标轴或垂直于坐标轴时,两点间距离公式可简化为|x 2﹣x 1|或|y 2﹣y |.(1)已知A (1,3),B (﹣3,﹣5),试求A ,B 两点间的距离;(2)已知线段MN ∥y 轴,MN =4,若点M 的坐标为(2,﹣1),试求点N 的坐标;(3)已知一个三角形各顶点坐标为D (0,6),E (﹣3,2),F (3,2),你能判定此三角形的形状吗?说明理由.23.在平面直角坐标系中,有A (﹣2,a +1),B (a ﹣1,4),C (b ﹣2,b )三点.(1)当AB ∥x 轴时,求A 、B 两点间的距离;(2)当CD ⊥x 轴于点D ,且CD =1时,求点C 的坐标.24.在平面直角坐标系中,有A (﹣2,a +2),B (a ﹣3,4)C (b ﹣4,b )三点.(1)当AB ∥x 轴时,求A 、B 两点间的距离;(2)当CD ⊥x 轴于点D ,且CD =3时,求点C 的坐标.25.如图①,我们在“格点”直角坐标系上可以清楚看到:要找AB 或DE 的长度,显然是转化为求Rt △ABC 或Rt △DEF 的斜边长.下面:以求DE 为例来说明如何解决:从坐标系中发现:D (﹣7,5),E (4,﹣3).所以DF =|5﹣(﹣3)|=8,EF =|4﹣(﹣7)|=11,所以由勾股定理可得:DE ==. 下面请你参与:(1)在图①中:AC = ,BC = ,AB = .(2)在图②中:设A (x 1,y 1),B (x 2,y 2),试用x 1,x 2,y 1,y 2表示AC = ,BC = ,AB = .(3)(2)中得出的结论被称为“平面直角坐标系中两点间距离公式”,请用此公式解决如下题目:已知:A (2,1),B (4,3),C 为坐标轴上的点,且使得△ABC 是以AB 为底边的等腰三角形.请求出C 点的坐标.参考答案1.解:(1)由题知,解得:﹣<m <3;(2)由题知|2m +1|=3,解得m =1或m =﹣2.当m =1时,得P (3,﹣2);当m =﹣2时,得P (﹣3,﹣5).综上,点P 的坐标为(3,﹣2)或(﹣3,﹣5).2.解:∵点P(2﹣a,3)到x轴、y轴的距离相等.∴|2﹣a|=3,∴2﹣a=±3,∴a=5或a=﹣1,∴点P的坐标(﹣3,3)或(3,3).3.解:(1)3×(﹣1)+5=2;﹣1+3×5=14,∴若点P的坐标为(﹣1,5),则它的“3级关联点”的坐标为(2,14).故答案为:(2,14);(2)设点P的坐标为(a,b),由题意可知,解得:,∴点P的坐标为(2,﹣1);(3)∵点P(m﹣1,2m)的“﹣3级关联点”为P′(﹣3(m﹣1)+2m,m﹣1+(﹣3)×2m),①P′位于x轴上,∴m﹣1+(﹣3)×2m=0,解得:m=,∴﹣3(m﹣1)+2m=4,∴P′(4,0).②P′位于y轴上,∴﹣3(m﹣1)+2m=0,解得:m=3∴m﹣1+(﹣3)×2m=﹣16,∴P′(0,﹣16).综上所述,点P′的坐标为(4,0)或(0,﹣16).4.解:(1)∵点P(8﹣2m,m﹣1)在x轴上,∴m﹣1=0,解得:m=1;(2)∵点P 到两坐标轴的距离相等,∴|8﹣2m |=|m ﹣1|,∴8﹣2m =m ﹣1或8﹣2m =1﹣m ,解得:m =3或m =7,∴P (2,2)或(﹣6,6).5.解:(1)由题意得:m ﹣1=0,解得:m =1;(2)由题意得:m ﹣1=2m +3,解得:m =﹣4.6.解:(1)∵蚂蚁每次移动1个单位,∴OA 1=1,OA 3=1,OA 12=6,∴A 1(0,1),A 3(1,0),A 12(6,0);故答案为:0,1;1,0,6,0;(2)根据(1)OA n =n ÷2=,∴点A 4n 的坐标(,0);(3)∵2016÷4=504,∴从点A 2016到点A 2018的移动方向:点A 2016在x 轴上,向上移动一个到A 2017,∴A 2016(1008,0),A 2017(1008,1).7.解:(1)如图:A (1,2),B (3,2),C (1,﹣1),D (﹣3,﹣3).在平面直角坐标系中描出它们如下:线段AB 和CD 中点P 1、P 2的坐标分别为(2,2)、(﹣1,﹣2)故答案为:(2,2)、(﹣1,﹣2).(2)若线段的两个端点的坐标分别为(x1,y1),(x2,y2),则线段的中点坐标为.故答案为:.(3)∵E(﹣1,2),F(3,1),G(1,4),∴EF、FG、EG的中点分别为:(1,)、(2,)、(0,3)∴①HG过EF中点(1,)时,=1,=解得:x=1,y=﹣1,故H(1,﹣1);②EH过FG中点(2,)时,=2,=解得:x=5,y=3,故H(5,3);③FH过EG的中点(0,3)时,=0,=3解得:x=﹣3,y=5,故H(﹣3,5).∴点H的坐标为:(1,﹣1),(5,3),(﹣3,5).8.解:(1)∵A1的坐标为(2,2)、A2的坐标为(5,2),∴A1,A2,A3,…,A n各点的纵坐标均为2,∵小正方形的边长为1,∴A1,A2,A3,…,A n各点的横坐标依次大3,∴A3(5+3,2),A n(,2),即A3(8,2),A n(3n﹣1,2),故答案为(8,2);(3n﹣1,2);(2)∵2020÷3=673…1,∴需要小正方形674个,大正方形673个.9.解:(1)由图可知,A4,A8,A12都在x轴上,∵小蚂蚁每次移动1个单位,∴OA4=2,OA8=4,∴A 4(2,0),A 8(4,0),故答案为:(2,0);(4,0);(2)根据(1)OA 4n =4n ÷2=2n ,∴点A 4n 的坐标(2n ,0);故答案为:(2n ,0);(3)∵2014÷4=503…2,∴2014除以4余数为2,∴从点A 2014到点A 2017的移动方向与从点A 2到A 5的方向一致为:向下,向右,再向上. 故答案为:向下,向右,再向上.10.解:(1)当a 1=1时,a 2=1+1=2,a 3=﹣(2+1)=﹣3,a 4=﹣(3+1)=﹣4,a 5=4+1=5;(2)∵a 2=a 1+1,a 3=﹣(a 1+2),a 4=﹣(a 1+3),a 5=a 1+4,a 6=a 1+5,a 7=﹣(a 1+6), ∴s 7=a 1+a 2+…+a 7=a 1﹣1,当s 7=1时,则a 1﹣1=1,∴a 1=2;(3)∵当a 1=1时,则a 3=﹣3,a 7=﹣7,a 11=﹣11,…∴a 4k ﹣1=﹣(4k ﹣1)=﹣4k +1∴A 4k ﹣1(﹣4k +1,0).11.解:(1)建立直角坐标系如图所示:图书馆(B)位置的坐标为(﹣3,﹣2);(2)标出体育馆位置C如图所示,观察可得,△ABC中BC边长为5,BC边上的高为4,所以△ABC的面积为==10.12.解:(1)如图所示:(2)太空飞梭(0,0),秦岭历险(0,400),魔幻城堡(400,﹣200),南门(0,﹣500),丛林飞龙(﹣200,﹣100).13.解:(1)由图可得:商会大厦的坐标为(﹣1,2),医院的坐标为(3,1).(2)路上经过的地方为:大剧院,体育公园,购物广场.14.解:(1)如图,(2)市场的坐标为(4,3),超市的坐标为(2,﹣3);(3)如图;(4)△ABC面积=3×6﹣×2×2﹣×4×3﹣×1×6=18﹣2﹣6﹣3=7.故答案为(4,3),(2,﹣3).15.解:(1)建立平面直角坐标系如图所示;(2)市场(400,300),医院(﹣200,﹣200),超市(200,﹣300).16.解:(1)①∵点A (﹣3,1)到x 、y 轴的距离中最大值为3,∴与A 点是“等距点”的点是E 、F .②当点B 坐标中到x 、y 轴距离其中至少有一个为3的点有(3,9)、(﹣3,3)、(﹣9,﹣3),这些点中与A 符合“等距点”的是(﹣3,3).故答案为①E 、F ;②(﹣3,3);(2)T 1(﹣1,﹣k ﹣3),T 2(4,4k ﹣3)两点为“等距点”,①若|4k ﹣3|≤4时,则4=﹣k ﹣3或﹣4=﹣k ﹣3解得k =﹣7(舍去)或k =1.②若|4k ﹣3|>4时,则|4k ﹣3|=|﹣k ﹣3|解得k =2或k =0(舍去).根据“等距点”的定义知,k =1或k =2符合题意.即k 的值是1或2.17.解:(1)∵|﹣2﹣0|+|﹣2﹣0|=4,|5﹣0|+|﹣1﹣0|=6,|0﹣0|+|4﹣0|=4, ∴原点O 的“4﹣距点”是点D 、点F .故答案为:D 、F ;(2)①∵点B (0,b ),l 为过点B 平行于x 轴的直线,∴当b =3时,l 为直线y =3,设直线l 上的点A (2,1)的“2﹣距点”的坐标为(x ,3),则有:|2﹣x |+|1﹣3|=2,解得:x =2,∴直线l 上的点A (2,1)的“2﹣距点”的坐标为(2,3);故答案为:(2,3);②由①知当直线l经过点(2,3)时,b=3;∵A(2,1),l为过点B平行于x轴的直线,∴当直线l经过点(2,﹣1)时,b=﹣1,∴若直线l上存在点A的“2﹣距点”,则b的取值范围是﹣1≤b≤3.如图所示:18.解:(1)∵M在y轴负半轴上,∴3|a|﹣9=0,且4﹣2a<0,∴a=±3,且a>2,∴a=3.∴4﹣2a=﹣2,M(0,﹣2);(2)∵a=3,∴(2﹣a)2020+1=(2﹣3)2020+1=1+1=2;(3)∵直线MN∥x轴,M(0,﹣2),∴设N(x,﹣2),又∵线段MN长度为4,∴MN=|x﹣0|=|x|=4,∴x=±4,∴N(4,﹣2)或(﹣4,﹣2).19.(1)证明:∵AB∥CD,∴∠ABO=∠DCO,∵∠DCO+∠CDO=90°;∴∠ABO+∠CDO=90°;(2)∵BM平分∠ABO,DN平分∠CDO,∴∠MBO=∠ABO,∠NDO=∠CDO,∴∠MBO+∠NDO=(∠ABO+∠CDO)=45°,∴∠BMO+∠OND=135°.20.解:(1)由题意得:m﹣1=0,解得:m=1;(2)∵点N(﹣3,2),且直线MN∥y轴,∴m﹣1=﹣3,解得m=﹣2.∴M(﹣3,﹣1),∴MN=2﹣(﹣1)=3.21.解:(1)∵点A(3,3),B(﹣2,﹣1),∴AB==,即A,B两点间的距离是;(2)∵点M,N在平行于y轴的直线上,点M的纵坐标为7,点N的纵坐标为﹣2,∴MN=|﹣2﹣7|=9,即M,N两点间的距离是9;(3)这三点不共线,该三角形为直角三角形.理由:∵一个三角形各顶点的坐标为A(﹣1,),B(,),C(,),∴AB==,AC==,BC==,∵AB2+AC2=()2+()2=()2=BC2,∴△ABC是直角三角形,=AB•AC=××=.∴S△ABC22.解:(1)A,B两点间的距离==4;(2)∵线段MN∥y轴,∴M、N的横坐标相同,设N(2,t),∴|t+1|=4,解得t=3或﹣5,∴N点坐标为(2,3)或(2,﹣5);(3)△DEF为等腰三角形.理由如下:∵D(0,6),E(﹣3,2),F(3,2),∴DE==5,DF==5,EF==6,∴DE=DF,∴△DEF为等腰三角形.23.解:(1)∵AB∥x轴,∴A、B两点的纵坐标相同.∴a+1=4,解得a=3.∴A、B两点间的距离是|(a﹣1)+2|=|3﹣1+2|=4.(2)∵CD⊥x轴,∴C、D两点的横坐标相同.∴D(b﹣2,0).∵CD=1,∴|b|=1,解得b=±1.当b=1时,点C的坐标是(﹣1,1).当b=﹣1时,点C的坐标是(﹣3,﹣1).24.解:(1)∵AB∥x轴,∴A点和B的纵坐标相等,即a+2=4,解得a=2,∴A(﹣2,4),B(﹣1,4),∴A、B两点间的距离为﹣1﹣(﹣2)=1;(2)∵当CD⊥x轴于点D,CD=3,∴|b|=3,解得b=3或b=﹣3,∴当b=3时,b﹣4=﹣1;当b=﹣3时,b﹣4=﹣7,∴C点坐标为(﹣1,3)或(﹣7,﹣3).25.解:(1)AC=4,BC=3,AB==5;(2)结合图形可得:AC=y1﹣y2,BC=x1﹣x2,AB=.(3)若点C在x轴上,设点C的坐标为(x,0),则AC=BC,即=,解得:x=5,即点C的坐标为(5,0);若点C在y轴上,设点C的坐标为(0,y),则AC=BC,即=,解得:y=5,即点C的坐标为(0,5).综上可得点C的坐标为(5,0)或(0,5).故答案为:4,3,5;y1﹣y2,x1﹣x2,A.。
平面直角坐标系1.已知点P(a﹣1,a+2)在平面直角坐标系的第二象限内,则a的取值范围在数轴上可表示为()A.B.C.D.2.如图,所有正方形的中心均在坐标原点,且各边与x轴或y轴平行.从内到外,它们的边长依次为2,4,6,8,…,顶点依次用A1,A2,A3,A4,…表示,则顶点A55的坐标是()A.(13,13)B.(﹣13,﹣13) C.(14,14)D.(﹣14,﹣14)3.坐标平面上,在第二象限内有一点P,且P点到x轴的距离是4,到y轴的距离是5,则P点坐标为何()A.(﹣5,4)B.(﹣4,5)C.(4,5)D.(5,﹣4)4.在平面直角坐标系中,点P(﹣1,3)位于()A.第一象限B.第二象限C.第三象限D.第四象限5.在直角坐标系中,点(2,1)在()A.第一象限B.第二象限C.第三象限D.第四象限6.在平面直角坐标系中,点P的坐标为(﹣2,a2+1),则点P所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限7.在平面直角坐标系中,对于平面内任一点(m,n),规定以下两种变换:①f(m,n)=(m,﹣n),如f(2,1)=(2,﹣1);②g(m,n)=(﹣m,﹣n),如g(2,1)=(﹣2,﹣1).按照以上变换有:f[g(3,4)]=f(﹣3,﹣4)=(﹣3,4),那么g[f(﹣3,2)]等于()A.(3,2)B.(3,﹣2)C.(﹣3,2)D.(﹣3,﹣2)8.在平面直角坐标系中,点P(2,3)在()A.第一象限B.第二象限C.第三象限D.第四象限9.在一次“寻宝”人找到了如图所示的两个标志点A(2,3),B(4,1),A,B两点到“宝藏”点的距离都是,则“宝藏”点的坐标是()A.(1,0)B.(5,4)C.(1,0)或(5,4)D.(0,1)或(4,5)10.如图是小刚的一张脸,他对妹妹说“如果我用(0,2)表示左眼,用(2,2)表示右眼,那么嘴的位置可以表示成()A.(1,0)B.(﹣1,0)C.(﹣1,1)D.(1,﹣1)11.如图,雷达探测器测得六个目标A、B、C、D、E、F出现.按照规定的目标表示方法,目标C、F的位置表示为C(6,120°)、F(5,210°).按照此方法在表示目标A、B、D、E的位置时,其中表示不正确的是()A.A(5,30°)B.B(2,90°)C.D(4,240°)D.E(3,60°)12.以百色汽车总站为坐标原点,向阳路为y轴建立直角坐标系,百色起义纪念馆位置如图所示,则其所覆盖的坐标可能是()A.(﹣5,3)B.(4,3)C.(5,﹣3)D.(﹣5,﹣3)13.如图所示,A(﹣,0)、B(0,1)分别为x轴、y轴上的点,△ABC为等边三=S△ABC,则a的值为()角形,点P(3,a)在第一象限内,且满足2S△ABPA.B.C.D.214.如图,在平面直角坐标系中,以O(0,0),A(1,1),B(3,0)为顶点,构造平行四边形,下列各点中不能作为平行四边形顶点坐标的是()A.(﹣3,1)B.(4,1)C.(﹣2,1)D.(2,﹣1)15.如图,在平面直角坐标系中,点P在第一象限,⊙P与x轴相切于点Q,与y轴交于M(0,2),N(0,8)两点,则点P的坐标是()A.(5,3)B.(3,5)C.(5,4)D.(4,5)16.在平面直角坐标系xOy中,已知点P(2,2),点Q在y轴上,△PQO是等腰三角形,则满足条件的点Q共有()A.5个 B.4个 C.3个 D.2个17.如图,坐标平面内一点A(2,﹣1),O为原点,P是x轴上的一个动点,如果以点P、O、A为顶点的三角形是等腰三角形,那么符合条件的动点P的个数为()A.2 B.3 C.4 D.518.如图在平面直角坐标系中,□MNEF的两条对角线ME,NF交于原点O,点F的坐标是(3,2),则点N的坐标是()A.(﹣3,﹣2)B.(﹣3,2)C.(﹣2,3)D.(2,3)19.如图,在平面直角坐标系中,菱形OABC的顶点C的坐标是(3,4),则顶点A、B 的坐标分别是()A.(4,0)(7,4)B.(4,0)(8,4)C.(5,0)(7,4)D.(5,0)(8,4)20.菱形OABC在平面直角坐标系中的位置如图所示,若OA=2,∠AOC=45°,则B点的坐标是()A.(2+,)B.(2﹣,) C.(﹣2+,)D.(﹣2﹣,)21.如图,在平面直角坐标系中,点A、B、C的坐标分别为(1,4)、(5,4)、(1,﹣2),则△ABC外接圆的圆心坐标是()A.(2,3)B.(3,2)C.(1,3)D.(3,1)22.如图所示,一圆弧过方格的格点A、B、C,试在方格中建立平面直角坐标系,使点A的坐标为(﹣2,4),则该圆弧所在圆的圆心坐标是()A.(﹣1,2)B.(1,﹣1)C.(﹣1,1)D.(2,1)23.在平面直角坐标系中,以点(3,2)为圆心、3为半径的圆,一定()A.与x轴相切,与y轴相切B.与x轴相切,与y轴相交C.与x轴相交,与y轴相切D.与x轴相交,与y轴相交24.如图,⊙O的半径为2,点A的坐标为(2,2),直线AB为⊙O的切线,B为切点.则B点的坐标为()A.(﹣,)B.(﹣,1)C.(﹣,)D.(﹣1,)25.如图,已知A、B两点的坐标分别为(2,0)、(0,2),⊙C的圆心坐标为(﹣1,0),半径为1.若D是⊙C上的一个动点,线段DA与y轴交于点E,则△ABE面积的最小值是()A.2 B.1 C.D.26.在平面直角坐标系中,正方形ABCD的位置如图所示,点A的坐标为(1,0),点D的坐标为(0,2).延长CB交x轴于点A1,作正方形A1B1C1C;延长C1B1交x轴于点A2,作正方形A2B2C2C1…按这样的规律进行下去,第2010个正方形的面积为()A.B. C.D.27.在平面直角坐标系中,点P(a﹣1,a)是第二象限内的点,则a的取值范围是.28.在平面直角坐标系中,点A1(1,1),A2(2,4),A3(3,9),A4(4,16),…,用你发现的规律确定点A9的坐标为.29.如果点P(m﹣1,2﹣m)在第四象限,则m的取值范围是.30.在平面直角坐标系中,点A(2,﹣3)位于第象限.平面直角坐标系参考答案与试题解析1.已知点P(a﹣1,a+2)在平面直角坐标系的第二象限内,则a的取值范围在数轴上可表示为()A.B.C.D.【考点】在数轴上表示不等式的解集;点的坐标.菁优网版权所有【分析】根据第二象限内点的特征,列出不等式组,求得a的取值范围,然后在数轴上分别表示出a的取值范围.【解答】解:∵点P(a﹣1,a+2)在平面直角坐标系的第二象限内,则有解得﹣2<a<1.故选C.【点评】在数轴上表示不等式的解集时,大于向右,小于向左,有等于号的画实心原点,没有等于号的画空心圆圈.第二象限的点横坐标为<0,纵坐标>0.2.如图,所有正方形的中心均在坐标原点,且各边与x轴或y轴平行.从内到外,它们的边长依次为2,4,6,8,…,顶点依次用A1,A2,A3,A4,…表示,则顶点A55的坐标是()A.(13,13)B.(﹣13,﹣13) C.(14,14)D.(﹣14,﹣14)【考点】规律型:点的坐标.菁优网版权所有【分析】观察图象,每四个点一圈进行循环,每一圈第一个点在第三象限,根据点的脚标与坐标寻找规律.【解答】解:∵55=4×13+3,∴A55与A3在同一象限,即都在第一象限,根据题中图形中的规律可得:3=4×0+3,A3的坐标为(0+1,0+1),即A3(1,1),7=4×1+3,A7的坐标为(1+1,1+1),A7(2,2),11=4×2+3,A11的坐标为(2+1,2+1),A11(3,3);…55=4×13+3,A55(14,14),A55的坐标为(13+1,13+1);故选C.【点评】本题是一个阅读理解,猜想规律的题目,解答此题的关键是首先确定点所在的大致位置及所在的正方形,然后就可以进一步推得点的坐标.3.坐标平面上,在第二象限内有一点P,且P点到x轴的距离是4,到y轴的距离是5,则P点坐标为何()A.(﹣5,4)B.(﹣4,5)C.(4,5)D.(5,﹣4)【考点】点的坐标.菁优网版权所有【分析】先根据P在第二象限内判断出点P横纵坐标的符号,再根据点到坐标轴距离的意义即可求出点P的坐标.【解答】解:∵点P在第二象限内,∴点P的横坐标小于0,纵坐标大于0;又∵P到x轴的距离是4,到y轴的距离是5,∴点P的纵坐标是4,横坐标是﹣5;故点P的坐标为(﹣5,4),故选A.【点评】本题考查了平面直角坐标系内点的位置的确定,解答此题的关键是熟记平面直角坐标系中各个象限内点的坐标符号,以及明确点到坐标轴距离的含义.4.在平面直角坐标系中,点P(﹣1,3)位于()A.第一象限B.第二象限C.第三象限D.第四象限【考点】点的坐标.菁优网版权所有【分析】应先判断出所求点的横纵坐标的符号,进而判断点所在的象限.【解答】解:因为点P(﹣1,3)的横坐标是负数,纵坐标是正数,所以点P在平面直角坐标系的第二象限.故选B.【点评】解决本题的关键是掌握好四个象限的点的坐标的符号特征:第一象限正正,第二象限负正,第三象限负负,第四象限正负.5.在直角坐标系中,点(2,1)在()A.第一象限B.第二象限C.第三象限D.第四象限【考点】点的坐标.菁优网版权所有【分析】应先判断出所求的点的横纵坐标的符号,进而判断点所在的象限.【解答】解:因为点P(2,1)的横坐标是正数,纵坐标也是正数,所以点在平面直角坐标系的第一象限.故选A.【点评】解决本题的关键是牢记平面直角坐标系中四个象限的点的坐标的符号特征:第一象限正正,第二象限负正,第三象限负负,第四象限正负.6.在平面直角坐标系中,点P的坐标为(﹣2,a2+1),则点P所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限【考点】点的坐标.菁优网版权所有【分析】先判断出点P的纵坐标的符号,再根据各象限内点的符号特征判断点P所在象限即可.【解答】解:∵a2为非负数,∴a2+1为正数,∴点P的符号为(﹣,+)∴点P在第二象限.故选:B.【点评】本题考查了象限内的点的符号特点,注意a2加任意一个正数,结果恒为正数.牢记点在各象限内坐标的符号特征是正确解答此类题目的关键.7.在平面直角坐标系中,对于平面内任一点(m,n),规定以下两种变换:①f(m,n)=(m,﹣n),如f(2,1)=(2,﹣1);②g(m,n)=(﹣m,﹣n),如g(2,1)=(﹣2,﹣1).按照以上变换有:f[g(3,4)]=f(﹣3,﹣4)=(﹣3,4),那么g[f(﹣3,2)]等于()A.(3,2)B.(3,﹣2)C.(﹣3,2)D.(﹣3,﹣2)【考点】点的坐标.菁优网版权所有【专题】压轴题;新定义.【分析】由题意应先进行f方式的运算,再进行g方式的运算,注意运算顺序及坐标的符号变化.【解答】解:∵f(﹣3,2)=(﹣3,﹣2),∴g[f(﹣3,2)]=g(﹣3,﹣2)=(3,2),故选A.【点评】本题考查了一种新型的运算法则,考查了学生的阅读理解能力,此类题的难点是判断先进行哪个运算,关键是明白两种运算改变了哪个坐标的符号.8.在平面直角坐标系中,点P(2,3)在()A.第一象限B.第二象限C.第三象限D.第四象限【考点】点的坐标.菁优网版权所有【分析】点P(2,3)的横、纵坐标均为正,可确定在第一象限.【解答】解:点P(2,3)的横、纵坐标均为正,所以点P在第一象限,故选A.【点评】本题主要考查了平面直角坐标系中第二象限的点的坐标的符号特点.四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).9.在一次“寻宝”人找到了如图所示的两个标志点A(2,3),B(4,1),A,B两点到“宝藏”点的距离都是,则“宝藏”点的坐标是()A.(1,0)B.(5,4)C.(1,0)或(5,4)D.(0,1)或(4,5)【考点】坐标确定位置.菁优网版权所有【专题】压轴题.【分析】根据两点之间的距离公式,d=,将四个选项代入公式中,观察哪一个等于,再作答.【解答】解:设宝藏的坐标点为C(x,y),根据坐标系中两点间距离公式可知,AC=BC,则(x﹣2)2+(y﹣3)2=(x﹣4)2+(y﹣1)2,化简得x﹣y=1;又因为标志点到“宝藏”点的距离是,所以(x﹣2)2+(y﹣3)2=10;把x=1+y代入方程得,y=0或y=4,即x=1或5,所以“宝藏”C点的坐标是(1,0)或(5,4).故选C.【点评】本题考查了坐标的确定及利用两点的坐标确定两点之间的距离公式,是一道中难度题.10.如图是小刚的一张脸,他对妹妹说“如果我用(0,2)表示左眼,用(2,2)表示右眼,那么嘴的位置可以表示成()A.(1,0)B.(﹣1,0)C.(﹣1,1)D.(1,﹣1)【考点】坐标确定位置.菁优网版权所有【分析】由“左眼”位置点的坐标为(0,2),“右眼”点的坐标为(2,2)可以确定平面直角坐标系中x轴与y轴的位置,从而可以确定“嘴”的坐标.【解答】解:根据题意,坐标原点是嘴所在的行和左眼所在的列的位置,所以嘴的坐标是(1,0),故选A.【点评】由已知条件正确确定坐标轴的位置是解决本题的关键.11.如图,雷达探测器测得六个目标A、B、C、D、E、F出现.按照规定的目标表示方法,目标C、F的位置表示为C(6,120°)、F(5,210°).按照此方法在表示目标A、B、D、E的位置时,其中表示不正确的是()A.A(5,30°)B.B(2,90°)C.D(4,240°)D.E(3,60°)【考点】坐标确定位置.菁优网版权所有【分析】按已知可得,表示一个点,横坐标是自内向外的环数,纵坐标是所在列的度数,分别判断各选项即可得解.【解答】解:由题意可知A、B、D、E的坐标可表示为:A(5,30°),故A正确;B(2,90°),故B正确;D(4,240°),故C正确;E(3,300°),故D错误.故选D.【点评】本题考查了学生的阅读理解能力,由已知条件正确确定坐标轴的位置是解决本题的关键.12.以百色汽车总站为坐标原点,向阳路为y轴建立直角坐标系,百色起义纪念馆位置如图所示,则其所覆盖的坐标可能是()A.(﹣5,3)B.(4,3)C.(5,﹣3)D.(﹣5,﹣3)【考点】坐标确定位置.菁优网版权所有【分析】观察图形可知,百色起义纪念馆位置在第四象限,根据第四象限的符号特点进行判断即可.【解答】解:因为第四象限内点的坐标,横坐标为正数,纵坐标为负数,结合各选项符合条件的只有C(5,﹣3).故选C.【点评】本题主要考查了平面直角坐标系中各个象限的点的坐标的符号特点.四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).13.如图所示,A(﹣,0)、B(0,1)分别为x轴、y轴上的点,△ABC为等边三=S△ABC,则a的值为()角形,点P(3,a)在第一象限内,且满足2S△ABPA.B.C.D.2【考点】坐标与图形性质;等边三角形的性质;勾股定理.菁优网版权所有【专题】压轴题.【分析】过P点作PD⊥x轴,垂足为D,根据A(﹣,0)、B(0,1)求OA、OB,=S△AOB+S梯形BODP﹣S△ADP,列方程求a.利用勾股定理求AB,可得△ABC的面积,利用S△ABP【解答】解:过P点作PD⊥x轴,垂足为D,由A(﹣,0)、B(0,1),得OA=,OB=1,∵△ABC为等边三角形,由勾股定理,得AB==2,=×2×=,∴S△ABC=S△AOB+S梯形BODP﹣S△ADP又∵S△ABP=××1+×(1+a)×3﹣×(+3)×a,=,=S△ABC,得=,由2S△ABP∴a=.故选C.【点评】本题考查了点的坐标与线段长的关系,不规则三角形面积的表示方法.14.如图,在平面直角坐标系中,以O(0,0),A(1,1),B(3,0)为顶点,构造平行四边形,下列各点中不能作为平行四边形顶点坐标的是()A.(﹣3,1)B.(4,1)C.(﹣2,1)D.(2,﹣1)【考点】坐标与图形性质;平行四边形的性质.菁优网版权所有【专题】压轴题.【分析】所给点的纵坐标与A的纵坐标相等,说明这两点所在的直线平行于x轴,这两点的距离为:1﹣(﹣3)=4;点O和点B的纵坐标相等,这两点所在的直线平行于x 轴,这两点的距离为:3﹣0,相对的边平行,但不相等,所以A选项的点不可能是行四边形顶点坐标.【解答】解:因为经过三点可构造三个平行四边形,即▱AOBC1、▱ABOC2、▱AOC3B.根据平行四边形的性质,可知B、C、D正好是C1、C2、C3的坐标,故选A.【点评】理解平行四边形的对边平行且相等,是判断本题的关键.15.如图,在平面直角坐标系中,点P在第一象限,⊙P与x轴相切于点Q,与y轴交于M(0,2),N(0,8)两点,则点P的坐标是()A.(5,3)B.(3,5)C.(5,4)D.(4,5)【考点】坐标与图形性质;勾股定理;垂径定理.菁优网版权所有【专题】压轴题.【分析】根据已知条件,纵坐标易求;再根据切割线定理即OQ2=OM•ON求OQ可得横坐标.【解答】解:过点P作PD⊥MN于D,连接PQ.∵⊙P与x轴相切于点Q,与y轴交于M(0,2),N(0,8)两点,∴OM=2,NO=8,∴NM=6,∵PD⊥NM,∴DM=3∴OD=5,∴OQ2=OM•ON=2×8=16,OQ=4.∴PD=4,PQ=OD=3+2=5.即点P的坐标是(4,5).故选D.【点评】本题综合考查了图形的性质和坐标的确定,是综合性较强,难度中等的综合题,关键是根据垂径定理确定点P的纵坐标,利用切割线定理确定横坐标.16.在平面直角坐标系xOy中,已知点P(2,2),点Q在y轴上,△PQO是等腰三角形,则满足条件的点Q共有()A.5个 B.4个 C.3个 D.2个【考点】等腰三角形的判定;坐标与图形性质.菁优网版权所有【专题】压轴题.【分析】根据题意,画出图形,由等腰三角形的判定找出满足条件的Q点,选择正确答案.【解答】解:如上图:满足条件的点Q共有(0,2)(0,2)(0,﹣2)(0,4).故选B.【点评】本题考查了等腰三角形的判定及坐标与图形的性质;利用等腰三角形的判定来解决特殊的问题,其关键是根据题意,画出符合实际条件的图形,再利用数学知识来求解.17.(2010•荆门)如图,坐标平面内一点A(2,﹣1),O为原点,P是x轴上的一个动点,如果以点P、O、A为顶点的三角形是等腰三角形,那么符合条件的动点P的个数为()A.2 B.3 C.4 D.5【考点】等腰三角形的判定;坐标与图形性质.菁优网版权所有【专题】动点型.【分析】根据题意,结合图形,分两种情况讨论:①OA为等腰三角形底边;②OA为等腰三角形一条腰.【解答】解:如上图:①OA为等腰三角形底边,符合符合条件的动点P有一个;②OA为等腰三角形一条腰,符合符合条件的动点P有三个.综上所述,符合条件的点P的个数共4个.故选C.【点评】本题考查了等腰三角形的判定及坐标与图形的性质;利用等腰三角形的判定来解决实际问题,其关键是根据题意,画出符合实际条件的图形,再利用数学知识来求解.18.如图在平面直角坐标系中,□MNEF的两条对角线ME,NF交于原点O,点F的坐标是(3,2),则点N的坐标是()A.(﹣3,﹣2)B.(﹣3,2)C.(﹣2,3)D.(2,3)【考点】平行四边形的性质;坐标与图形性质.菁优网版权所有【分析】要求点N的坐标,根据平行四边形的性质和关于原点对称的规律写出点N的坐标.【解答】解:在▱MNEF中,点F和N关于原点对称,∵点F的坐标是(3,2),∴点N 的坐标是(﹣3,﹣2).【点评】本题考查的是利用平行四边形的性质结合三角形全等来解决有关线段相等的证明.19.如图,在平面直角坐标系中,菱形OABC的顶点C的坐标是(3,4),则顶点A、B 的坐标分别是()A.(4,0)(7,4)B.(4,0)(8,4)C.(5,0)(7,4)D.(5,0)(8,4)【考点】菱形的性质;坐标与图形性质.菁优网版权所有【分析】过C作CE⊥OA,根据勾股定理求出OC的长度,则A、B两点坐标便不难求出.【解答】解:过C作CE⊥OA于E,∵顶点C的坐标是(3,4),∴OE=3,CE=4,∴OC===5,∴点A的坐标为(5,0),5+3=8,点B的坐标为(8,4).故选D.【点评】根据菱形的性质和点C的坐标,作出辅助线是解决本题的突破口.20.菱形OABC在平面直角坐标系中的位置如图所示,若OA=2,∠AOC=45°,则B点的坐标是()A.(2+,)B.(2﹣,) C.(﹣2+,)D.(﹣2﹣,)【考点】菱形的性质;坐标与图形性质;特殊角的三角函数值.菁优网版权所有【分析】过A作AE⊥CO,根据“OA=2,∠AOC=45°”求出OE、AE的长度,点B的坐标便不难求出.【解答】解:如图,过A作AE⊥CO于E,∵OA=2,∠AOC=45°,∴AE=AOsin45°=,OE=AOcos45°=,∴点B的横坐标为﹣(2+),纵坐标为,∴B点的坐标是(﹣2﹣,).故选D.【点评】通过作辅助线求出点A到坐标轴的距离是解本题的突破口.21.如图,在平面直角坐标系中,点A、B、C的坐标分别为(1,4)、(5,4)、(1,﹣2),则△ABC外接圆的圆心坐标是()A.(2,3)B.(3,2)C.(1,3)D.(3,1)【考点】确定圆的条件;坐标与图形性质.菁优网版权所有【专题】压轴题.【分析】根据垂径定理的推论“弦的垂直平分线必过圆心”,作两条弦的垂直平分线,交点即为圆心.【解答】解:根据垂径定理的推论,则作弦AB、AC的垂直平分线,交点O1即为圆心,且坐标是(3,1).故选D.【点评】此题考查了垂径定理的推论,能够准确确定一个圆的圆心.22.如图所示,一圆弧过方格的格点A、B、C,试在方格中建立平面直角坐标系,使点A的坐标为(﹣2,4),则该圆弧所在圆的圆心坐标是()A.(﹣1,2)B.(1,﹣1)C.(﹣1,1)D.(2,1)【考点】确定圆的条件;坐标与图形性质.菁优网版权所有【专题】压轴题;网格型.【分析】连接AB、AC,作出AB、AC的垂直平分线,其交点即为圆心.【解答】解:如图所示,∵AW=1,WH=3,∴AH==;∵BQ=3,QH=1,∴BH==;∴AH=BH,同理,AD=BD,所以GH为线段AB的垂直平分线,易得EF为线段AC的垂直平分线,H为圆的两条弦的垂直平分线的交点,则BH=AH=HC,H为圆心.于是则该圆弧所在圆的圆心坐标是(﹣1,1).故选C.【点评】根据线段垂直平分线上的点到这条线段两端点的距离相等,找到圆的半径,半径的交点即为圆心.23.在平面直角坐标系中,以点(3,2)为圆心、3为半径的圆,一定()A.与x轴相切,与y轴相切B.与x轴相切,与y轴相交C.与x轴相交,与y轴相切D.与x轴相交,与y轴相交【考点】直线与圆的位置关系;坐标与图形性质.菁优网版权所有【分析】由已知点(3,2)可求该点到x轴,y轴的距离,再与半径比较,确定圆与坐标轴的位置关系.设d为直线与圆的距离,r为圆的半径,则有若d<r,则直线与圆相交;若d=r,则直线于圆相切;若d>r,则直线与圆相离.【解答】解:∵点(3,2)到x轴的距离是2,小于半径,到y轴的距离是3,等于半径,∴圆与x轴相交,与y轴相切.故选C.【点评】本题考查的是直线与圆的位置关系,解决此类问题可通过比较圆心到直线距离d与圆半径大小关系完成判定.24.如图,⊙O的半径为2,点A的坐标为(2,2),直线AB为⊙O的切线,B为切点.则B点的坐标为()A.(﹣,)B.(﹣,1)C.(﹣,)D.(﹣1,)【考点】切线的性质;坐标与图形性质.菁优网版权所有【专题】压轴题.【分析】先利用切线AC求出OC=2=OA,从而∠BOD=∠AOC=60°,则B点的坐标即可求出.【解答】解:过点A作AC⊥x轴于点C,过点B作BD⊥x轴于点D,∵⊙O的半径为2,点A的坐标为(2,2),即OC=2,∴AC是圆的切线.∵点A的坐标为(2,2),∴OA==4,∵BO=2,AO=4,∠ABO=90°,∴∠AOB=60°,∵OA=4,OC=2,∴sin∠OAC=,∴∠OAC=30°,∴∠AOC=60°,∠AOB=∠AOC=60°,∴∠BOD=180°﹣∠AOB﹣∠AOC=60°,∴OD=1,BD=,即B点的坐标为(﹣1,).故选D.【点评】本题综合考查了圆的切线长定理和坐标的确定,是综合性较强的综合题,关键是根据切线长定理求出相关的线段,并求出相对应的角度,利用直角三角形的性质求解.25.如图,已知A、B两点的坐标分别为(2,0)、(0,2),⊙C的圆心坐标为(﹣1,0),半径为1.若D是⊙C上的一个动点,线段DA与y轴交于点E,则△ABE面积的最小值是()A.2 B.1 C.D.【考点】切线的性质;坐标与图形性质;三角形的面积;相似三角形的判定与性质.菁优网版权所有【专题】压轴题;动点型.【分析】由于OA 的长为定值,若△ABE 的面积最小,则BE 的长最短,此时AD 与⊙O 相切;可连接CD ,在Rt △ADC 中,由勾股定理求得AD 的长,即可得到△ADC 的面积;易证得△AEO ∽△ACD ,根据相似三角形的面积比等于相似比的平方,可求出△AOE 的面积,进而可得出△AOB 和△AOE 的面积差,由此得解.【解答】解:若△ABE 的面积最小,则AD 与⊙C 相切,连接CD ,则CD ⊥AD ;Rt △ACD 中,CD=1,AC=OC +OA=3;由勾股定理,得:AD=2;∴S △ACD =AD•CD=; 易证得△AOE ∽△ADC ,∴=()2=()2=,即S △AOE =S △ADC =;∴S △ABE =S △AOB ﹣S △AOE =×2×2﹣=2﹣; 另解:利用相似三角形的对应边的比相等更简单!故选:C .【点评】此题主要考查了切线的性质、相似三角形的性质、三角形面积的求法等知识;能够正确的判断出△BE 面积最小时AD 与⊙C 的位置关系是解答此题的关键.26.在平面直角坐标系中,正方形ABCD 的位置如图所示,点A 的坐标为(1,0),点D 的坐标为(0,2).延长CB 交x 轴于点A 1,作正方形A 1B 1C 1C ;延长C 1B 1交x 轴于点A 2,作正方形A 2B 2C 2C 1…按这样的规律进行下去,第2010个正方形的面积为( )A.B.C.D.【考点】相似三角形的判定与性质;坐标与图形性质;勾股定理;正方形的性质.菁优网版权所有【专题】压轴题;规律型.【分析】根据相似三角形的判定原理,得出△AA1B∽△A1A2B1,继而得知∠BAA1=∠B1A1A2;利用勾股定理计算出正方形的边长;最后利用正方形的面积公式计算三个正方形的面积,从中找出规律,问题也就迎刃而解了.【解答】解:设正方形的面积分别为S1,S2 (2010)根据题意,得:AD∥BC∥C1A2∥C2B2,∴∠BAA1=∠B1A1A2=∠B2A2x(同位角相等).∵∠ABA1=∠A1B1A2=90°,∴△BAA1∽△B1A1A2,在直角△ADO中,根据勾股定理,得:AD=,cot∠DAO==,∵tan∠BAA1==cot∠DAO,∴BA1=AB=,∴CA1=+=×,同理,得:C1A2=××,由正方形的面积公式,得:S1=,S2=×,S3=××,由此,可得S n=×(1+)2n﹣2,∴S2010=5×()2×2010﹣2,=5×()4018.故选:D【点评】本题综合考查了相似三角形的判定、勾股定理、正方形的性质等知识点,另外,在解题过程中,要认真挖掘题中隐藏的规律,这样可以降低解题的难度,提高解题效率.27.在平面直角坐标系中,点P(a﹣1,a)是第二象限内的点,则a的取值范围是0<a<1.【考点】点的坐标.菁优网版权所有【分析】已知点P(a﹣1,a)是第二象限内的点,即可得到横纵坐标的符号,即可求解.【解答】解:∵点P(a﹣1,a)是第二象限内的点,∴a﹣1<0且a>0,解得:0<a<1.故答案填:0<a<1.【点评】本题主要考查了平面直角坐标系中第二象限的点的坐标的符号特点,第二象限(﹣,+).28.在平面直角坐标系中,点A1(1,1),A2(2,4),A3(3,9),A4(4,16),…,用你发现的规律确定点A9的坐标为(9,81).【考点】点的坐标.菁优网版权所有【专题】规律型.【分析】首先观察各点坐标,找出一般规律,然后根据规律确定点A9的坐标.【解答】解:设A n(x,y).∵当n=1时,A1(1,1),即x=1,y=12;当n=2时,A2(2,4),即x=2,y=22;当n=3时,A3(3,9),即x=3,y=32;当n=4时,A1(4,16),即x=4,y=42;∴当n=9时,x=9,y=92,即A9(9,81).故答案填(9,81).【点评】解决本题的关键在于总结规律.对于寻找规律的题,应通过观察,发现哪些部分没有变化,哪些部分发生了变化,变化的规律是什么.29.如果点P(m﹣1,2﹣m)在第四象限,则m的取值范围是m>2.【考点】点的坐标;解一元一次不等式组.菁优网版权所有【分析】点在第四象限的条件是:横坐标是正数,纵坐标是负数.【解答】解:∵点P(m﹣1,2﹣m)在第四象限,∴,解得m>2,故m的取值范围是m>2.【点评】本题考查象限点的坐标的符号特征以及解不等式,记住各象限内点的坐标的符号是解决的关键.30.在平面直角坐标系中,点A(2,﹣3)位于第四象限.【考点】点的坐标.菁优网版权所有【分析】应先判断出所求的点的横纵坐标的符号,进而判断其所在的象限.【解答】解:因为点A(2,﹣3)的横坐标是正数,纵坐标是负数,所以点A在平面直角坐标系的第四象限.故答案为:四.【点评】解决本题的关键是掌握好四个象限的点的坐标的特征:第一象限正正,第二象限负正,第三象限负负,第四象限正负.。
平面直角坐标系答题及答案一、选择题(共5题,每题4分,共20分)1.直线y = 3x + 2与y轴的交点的坐标为: A. (0, 3) B. (3, 0) C. (0, 2) D. (-2, 0)答案:C. (0, 2)2.已知点A(2, 3)和B(7, 8),则直线AB的斜率为: A. 2 B. 3 C. 5/2 D.1/2答案:C. 5/23.在平面直角坐标系中,点P(4, -3)关于x轴的对称点为: A. (4, 3) B. (-4, 3) C. (-4, -3) D. (-4, -6)答案:C. (-4, -3)4.已知线段AB的中点坐标为(2, 5),且点A(-1, 3),则点B的坐标为:A. (5, 2)B. (3, 7)C. (-2, 5)D. (2, 7)答案:B. (3, 7)5.线段PQ的中点坐标为(1, -2),且点P(3, 1),则点Q的坐标为: A. (2, -5) B. (1, -4) C. (-1, -5) D. (2, -1)答案:C. (-1, -5)二、填空题(共3题,每题4分,共12分)1.直线y = -4x + 3与x轴的交点的坐标为(,)。
答案:(3/4, 0)2.在平面直角坐标系中,点A(5, -2)关于y轴的对称点为(,)。
答案:(-5, -2)3.已知点P(4, -3)和点Q(7, 1),则线段PQ的中点坐标为(,)。
答案:(5.5, -1)三、解答题(共2题,每题20分,共40分)1.根据平面直角坐标系,解答以下问题:(a)坐标轴上的点有哪些?答案:坐标轴上的点有无数个,如(0, 0)、(1, 0)、(0, 2)等。
(b)如何计算两点之间的距离?答案:计算两点之间的距离可以使用勾股定理,即距离等于两点间横坐标差的平方与纵坐标差的平方的和再开根号。
(c)如何判断两条直线的关系?答案:两条直线的关系可以通过斜率来判断。
如果斜率相等,且截距也相等,则两条直线重合;如果斜率相等,但截距不相等,则两条直线平行;如果斜率不相等,则两条直线相交。
平面直角坐标系(易错必刷30题6种题型专项训练)➢平面直角坐标系➢点的坐标➢用坐标表示地理位置➢点的坐标变化规律➢图形平移规律➢求图形面积一.平面直角坐标系(共3小题)1.(2024·山东临沂·模拟预测)已知a +b <0,ab >0,则在如图所示的平面直角坐标系中,小手盖住的点的坐标可能是( )A .(a,b )B .(―a,b )C .(―a,―b )D .(a,―b )2.(2024八年级上·全国·专题练习)如下所示的图形中,平面直角坐标系的画法正确的有( ).3.(22-23八年级下·山西临汾·期末)笛卡尔是法国著名数学家,他于1637年发明了现代数学的基础工具——平面直角坐标系.平面直角坐标系的引入,使得我们可以用代数的方法研究几何问题,又可以用几何的方法研究代数问题.这种研究方法体现的数学思想是( )A .类比思想B .分类讨论思想C .建模思想D .数形结合思想二.点的坐标(共8小题)4.(23-24七年级下·全国·单元测试)在平面直角坐标系中,点P (―3,2)位于( )A .第一象限B .第二象限C .第三象限D .第四象限5.(23-24七年级下·全国·期中)已知点(),N a b 位于第四象限,则点M (b,a )位于( )A .第一象限B .第二象限C .第三象限D .第四象限6.(23-24八年级下·云南昆明·阶段练习)已知两点A (3,5),()1,B b -且直线AB ∥x 轴,则( )A .1b =-B .b 可取任意实数C .b =5D .b ≠57.(22-23八年级下·山东青岛·开学考试)在平面直角坐标系中,第一象限内的点P (a +3,a )到y 轴的距离是5,则a 的值为( )A .―4B .2或―8C .2D .88.(23-24八年级上·广东佛山·期中)已知A 点的坐标为(3,a +3),B 点的坐标为(a,a ―4),AB ∥y 轴,则线段AB = .9.(23-24七年级下·广东汕头·期末)已知点A(m,n)在第二象限, 则点(2,)--+在第象限.B n m n m10.(24-25八年级上·湖南长沙·开学考试)己知平面直角坐标系中有一点M(3―2m,3m+2).(1)存在点N(2,―3),当MN平行于y轴时,求点M的坐标:(2)当点M在x轴下方,且到x轴的距离是到y轴距离的两倍时,求点M的坐标.11.(22-23七年级下·山东临沂·期中)在平面直角坐标系中,已知点P(6―3m,m+1).(1)若P到y轴的距离为2,求m的值;(2)若点P的横纵坐标相等,求点P的坐标;(3)在(2)的条件下,在第二象限内有一点Q,使PQ//x轴,且PQ=3,求点Q的坐标.三.用坐标表示地理位置(共412.(23-24七年级下·贵州黔东南·期中)如图是某学校的平面示意图,已知旗杆的位置是(―2,2),实验室的位置是(1,3).(1)根据所给条件在图中建立适当的平面直角坐标系;(2)用坐标表示位置:食堂是______,图书馆是______;(3)已知办公楼的位置是(0,2),教学楼的位置是(2,1),在图中标出办公楼和教学楼的位置;(4)如果1个单位长度表示30m,那么宿舍楼到教学楼的实际距离为______m.13.(2024七年级上·全国·专题练习)如图,一只甲虫在5×5的方格(每小格边长为1)上沿着网格线运动,它从A处出发去看望B、C、D处的其它甲虫,规定:向上向右走为正,向下向左走为负.例如从A到B记为A→B(+1,+4),从D到C记为:D→C(―1,+2),其中第一个数表示左右方向,第二个数表示上下方向.(1)图中A→C(,),B C®(,),D→(―4,―2);(2)若这只甲虫从A处去P处的行走路线依次为+2,+2,+2,―1,―2,+3,―1,―2,请在图中标出P的位置;(3)若这只甲虫的行走路线为A→B→C→D,请计算该甲虫走过的路程.14.(23-24七年级下·浙江台州·期末)如图1是路桥区地图的一部分,其示意图如图2.分别以正东、正北方向为x轴、y轴的正方向建立平面直角坐标系,已知黄石公园A的坐标为(2,1).(1)分别写出路桥区政府B,街心公园C的坐标;(2)连接AC,平移线段AC,使点A和点B重合,在图2中画出点C的对应点D,并写出点D的坐标.15.(23-24七年级下·云南玉溪·期末)平面直角坐标系是数轴的拓展,是沟通几何与代数的桥梁,为发展大家的几何直观,感悟数形结合的思想,数学社团的同学们对校园进行了实地调查,作出了如图的平面示意图,已知旗杆的位置是(―2,3),实验室的位置是(1,4).(1)作出校园平面示意图所在的坐标系;(2)写出宿舍楼、食堂、图书馆的坐标.四.点的坐标变化规律(共5小题)16.(22-23七年级下·云南怒江·期中)将点A (―3,―2)向右平移5个单位长度,得到点A 1,再把点A 1向上平移4个单位长度得到点2A ,则点2A 的坐标为( )A .(―2,―2)B .(2,2)C .(―3,2)D .(3,2)17.(22-23七年级下·河北石家庄·期中)若m <0,在平面直角坐标系中,将点(m,―3)分别向左、向上平移5个单位,可以得到的对应点的位置在( )A .第一象限B .第二象限C .第三象限D .第四象限18.(2024·海南·中考真题)平面直角坐标系中,将点A 向右平移3个单位长度得到点A ′(2,1),则点A 的坐标是( )A .(5,1)B .(2,4)C .(1,1)-D .(2,―2)19.(23-24七年级上·四川南充·期中)将点P (m +2,3)向左平移4个单位长度到P ′,且P ′在y 轴上,那m 的值为 .20.(23-24八年级下·广东茂名·单元测试)已知点M (3a ―9,1―a ),将M 点向左平移6个单位长度后落在y 轴上,则M 的坐标是 .五.图形平移规律(共6小题)21.(24-25八年级上·福建福州·开学考试)△ABC 在平面直角坐标系中的位置如图所示.(1)点C的坐标是__________;(2)将△ABC先向左平移4个单位,再向下平移2个单位,得到△A′B′C′,画出平移后的△A′B′C′;(3)若△ABC内一点P经过上述平移后的对应点为Q(m,n),直接写出点P的坐标__________:(用含m,n的式子表示)22.(23-24七年级下·全国·单元测试)已知:如图,把△ABC向上平移3个单位长度,再向右平移2个单位长度,得到△A′B′C′.(1)写出A′(,)、B′(,)、C′(,)的坐标;(2)求出△ABC的面积= ;(3)点P在y轴上,且△BCP是△ABC的面积的2倍,求点P的坐标.23.(23-24八年级下·全国·期末)在平面直角坐标系中,A、B、C三点的坐标分别为(―6,7)、(―3,0)、(0,3).(1)画出△ABC;(2)在△ABC中,点C经过平移后的对应点为C′(5,4),将△ABC作同样的平移得到△A′B′C′,画出平移后的¢¢的坐标;△A′B′C′,并写出点,A B(3)P(―3,m)为△ABC中一点,将点P向右平移4个单位后,再向下平移6个单位得到点Q(n,―3),则m=,n=______.24.(24-25八年级上·全国·单元测试)三角形ABC与三角形A′B′C′在平面直角坐标系中的位置如图所示,三角形A′B′C′是由三角形ABC平移得到的.(1)分别写出点A′、B′、C′的坐标;(2)说明三角形A′B′C′是由三角形ABC经过怎样的平移得到的?(3)若点P a,b是三角形ABC内的一点,则平移后三角形A′B′C′内的对应点为P′,写出点P′的坐标.25.(23-24八年级上·江苏镇江·期末)如图,在平面直角坐标系中,已知△ABC的三个顶点坐标分别是A (2,―1)、B(1,―2)、C(3,―3)(1)将△ABC向上平移4个单位长度得到△A1B1C1,请画出△A1B1C1;(2)请画出与△ABC关于y轴对称的△A2B2C2;(3)点A1的坐标为,点2A的坐标为;(4)若P(a,―b)是△ABC内一点,按照(1)(2)操作后点P1的坐标为,点P2的坐标为.26.(21-22七年级下·吉林松原·阶段练习)在平面直角坐标系中,点P的坐标为(2m+5,3m+3).(1)若点P在x轴上时,求点P的坐标;(2)若点P在过点A(―5,1)且与y轴平行的直线上时,求点P的坐标;(3)将点P向右平移2个单位,再向上平移3个单位后得到点M,若点M在第三象限,且点M到y轴的距离为7,求点M的坐标.六.求图形面积(共4小题)27.(22-23七年级下·全国·期末)如图,在平面直角坐标系xOy中,点A的坐标为(0,4),点B的坐标为(4,0),过点C(3,0)作直线CD x^轴,垂足为C,交线段AB于点D,过点A作AE⊥CD,垂足为E,连接BE.(1)求△ABE的面积;(2)点P为直线CD上一动点,当S△PAB=S△AOB时,求点P的坐标.28.(22-23七年级上·甘肃定西·开学考试)已知:在平面直角坐标系中,A(0,1),B(2,0),C(4,3).(1)求△ABC的面积;(2)设点P在x轴上,且△ABP与△ABC的面积相等,求点P的坐标.29.(23-24八年级上·江苏徐州·阶段练习)如图,长方形OABC在平面直角坐标系中,其中A(4,0),C(0,3),---运动,最终到达点E.若点P运动的点E是BC的中点,动点P从O点出发,以每秒1cm的速度沿O A B E时间为x秒,(1)当x=2秒时,求△OPE的面积;(2)当△OPE的面积等于25cm时,求P点坐标.30.(23-24七年级下·辽宁盘锦·期中)如图,已知A(―4,0),B(4,0),C(3,2),D(―2,4).(1)求四边形ABCD的面积;(2)在y轴上存在一点P,使三角形APB的面积等于四边形ABCD面积的一半,求P点的坐标.。
一.选择题1.在平面直角坐标系中,点M (﹣2,1)在()A .第一象限B .第二象限C .第三象限D .第四象限2.已知点M 到x 轴的距离为1,到y 轴的距离为2,则M 点的坐标为()A .(1,2)B .(﹣1,﹣2)C .(1,﹣2)D .(2,1),(2,﹣1),(﹣2,1),(﹣2,﹣1)3.已知点M (3,﹣2)与点M ʹ(x ,y )在同一条平行于x 轴的直线上,且M ʹ到y 轴的距离等于4,那么点M ʹ的坐标是()A .(4,2)或(﹣4,2)B .(4,﹣2)或(﹣4,﹣2)C .(4,﹣2)或(﹣5,﹣2)D .(4,﹣2)或(﹣1,﹣2)4.在平面直角坐标系中,对于平面内任意一点(x ,y ),若规定以下两种变换:①f (x ,y )=(y ,x ).如f (2,3)=(3,2);②g (x ,y )=(﹣x ,﹣y ),如g (2,3)=(﹣2,﹣3).按照以上变换有:f (g (2,3))=f (﹣2,﹣3)=(﹣3,﹣2),那么g (f (﹣6,7))等于()A .(7,6)B .(7,﹣6)C .(﹣7,6)D .(﹣7,﹣6)5.定义:直线l 1与l 2相交于点O ,对于平面内任意一点M ,点M 到直线l 1、l 2的距离分别为p 、q ,则称有序非负实数对(p ,q )是点M 的“距离坐标”.根据上述定义,“距离坐标”是(1,2)的点的个数是()A .1B .2C .3D .46.如图,若在象棋盘上建立直角坐标系,使“帅”位于点(﹣1,﹣2).“馬”位于点(2,﹣2),则“兵”位于点()A .(﹣1,1)B .(﹣2,﹣1)C .(﹣3,1)D .(1,﹣2)7.点M (﹣3,4)离原点的距离是多少单位长度()A .3B .4C .5D .78.如图,点M (﹣3,4)到原点的距离是()A.3B.4C.5D.79.在直角坐标中,点P(6,8)到原点的距离为()A.10B.﹣10C.±10D.1210.在平面直角坐标系中,点P(,﹣1)到原点的距离是()A.1B.C.4D.211.对于直角坐标平面内的任意两点A(x1,y1),B(x2,y2),定义它们之间的一种“距离”:||AB||=|x2﹣x1|+|y2﹣y1|.给出下列三个命题:①若点C在线段AB上,则||AC||+||CB||=||AB||;②在△ABC中,若∠C=90°,则||AC||2+||CB||2=||AB||2;③在△ABC中,||AC||+||CB||>||AB||.其中真命题的个数为()A.0B.1C.2D.312.如图,直线y=﹣2x+4与x轴,y轴分别相交于A,B两点,C为OB上一点,且∠1=∠2,则S△ABC=()A.1B.2C.3D.413.如图,点A的坐标为(1,0),点B在直线y=﹣x上运动,当线段AB最短时,点B的坐标为()A.(0,0)B.(,﹣)C.(,﹣)D.(﹣,)14.设P是函数在第一象限的图象上任意一点,点P关于原点的对称点为Pʹ,过P作PA平行于y轴,过Pʹ作PʹA平行于x轴,PA与PʹA交于A点,则△PAPʹ的面积()A.等于2B.等于4C.等于8D.随P点的变化而变化15.在平面直角坐标系内存在⊙A,A(b,0),⊙A交x轴于O(0,0)、B(2b,0),在y 轴上存在一动点C(C不与原点O重合),直线l始终过A、C,直线l交⊙A于E、F,在半圆EF上存在一点动点D且D不与E、F重合,则S△DEA 的最大值为()A.B.C.D.无法判断16.已知直线y=mx﹣1上有一点B(1,n),它到原点的距离是,则此直线与两坐标轴围成的三角形的面积为()A.B.或C.或D.或17.如图,平面直角坐标系中,直线AB与x轴的夹角为60°,且点A的坐标为(﹣2,0),点B在x轴的上方,设AB=a,那么点B的坐标为()A.B.C.D.18.如果mn<0,且m>0,那么点P(m2,m﹣n)在()A.第一象限B.第二象限C.第三象限D.第四象限19.在一次“寻宝”人找到了如图所示的两个标志点A(2,3),B(4,1),A,B两点到“宝藏”点的距离都是,则“宝藏”点的坐标是()A.(1,0)B.(5,4)C.(1,0)或(5,4)D.(0,1)或(4,5)20.如图是小刚的一张脸,他对妹妹说“如果我用(0,2)表示左眼,用(2,2)表示右眼,那么嘴的位置可以表示成()A.(1,0)B.(﹣1,0)C.(﹣1,1)D.(1,﹣1)21.电影院里的座位按“×排×号”编排,小明的座位简记为(8,6),小菲的位置简记为(8,12),则小明与小菲应坐在()的位置上.A.同一排B.前后同一条直线上C.中间隔六个人D.前后隔六排22.如图,已知校门的坐标是(1,1),那么下列对于实验楼位置的叙述正确的个数为()①实验楼的坐标是3;②实验楼的坐标是(3,3);③实验楼的坐标为(4,4);④实验楼在校门的东北方向上,距校门200米.A.1个B.2个C.3个D.4个23.若点P(a,b)在第二、四象限的角平分线上,则a与b的关系为()A.a>b B.a=b C.a<b D.a+b=024.如图,在平面直角坐标系中,OABC是正方形,点A的坐标是(4,0),点P为边AB 上一点,∠CPB=60°,沿CP折叠正方形,折叠后,点B落在平面内点Bʹ处,则Bʹ点的坐标为()A.(2,2)B.(,)C.(2,)D.(,)25.如图,若将直角坐标系中“鱼”的每个“顶点”的横坐标保持不变,纵坐标分别变为原来的,则点A的对应点的坐标是()A.(﹣4,3)B.(4,3)C.(﹣2,6)D.(﹣2,3)26.在平面直角坐标系中,孔明做走棋的游戏,其走法是:棋子从原点出发,第1步向右走1个单位,第2步向右走2个单位,第3步向上走1个单位,第4步向右走1个单位…依此类推,第n步的走法是:当n能被3整除时,则向上走1个单位;当n被3除,余数为1时,则向右走1个单位;当n被3除,余数为2时,则向右走2个单位,当走完第100步时,棋子所处位置的坐标是()A.(66,34)B.(67,33)C.(100,33)D.(99,34)27.在直角坐标系中,⊙P、⊙Q的位置如图所示.下列四个点中,在⊙P外部且在⊙Q内部的是()A.(1,2)B.(2,1)C.(2,﹣1)D.(3,1)28.在平面直角坐标系中有两点A(﹣2,2),B(3,2),C是坐标轴上的一点,若△ABC 是直角三角形,则满足条件的点共有()A.1个B.2个C.4个D.6个29.已知点A(m,2m)和点B(3,m2﹣3),直线AB平行于x轴,则m等于()A.﹣1B.1C.﹣1或3D.330.如图,矩形BCDE的各边分别平行于x轴或y轴,物体甲和物体乙分别由点A(2,0)同时出发,沿矩形BCDE的边作环绕运动,物体甲按逆时针方向以1个单位/秒匀速运动,物体乙按顺时针方向以2个单位/秒匀速运动,则两个物体运动后的第2012次相遇地点的坐标是()A.(2,0)B.(﹣1,1)C.(﹣2,1)D.(﹣1,﹣1)31.我校“心动数学”社团活动小组,在网格纸上为学校的一块空地设计植树方案如下:第k棵树种植在点第x k行y k列处,其中x1=1,y1=1,当k≥2时,,[a]表示非负数a的整数部分,例如[2.6]=2,[0.2]=0.按此方案,第2009棵树种植点所在的行数是4,则所在的列数是()A.401B.402C.2009D.201032.某校数学课外小组,在坐标纸上为学校的一块空地设计植树方案如下:第k棵树种植在点P k(x k,y k)处,其中x1=1,y1=1,当k≥2时,,[a]表示非负实数a的整数部分,例如[2.6]=2,[0.2]=0.按此方案,第2009棵树种植点的坐标为()A.(5,2009)B.(6,2010)C.(3,401)D.(4,402)33.如图,雷达探测器测得六个目标A、B、C、D、E、F出现.按照规定的目标表示方法,目标C、F的位置表示为C(6,120°)、F(5,210°).按照此方法在表示目标A、B、D、E 的位置时,其中表示不正确的是()A.A(5,30°)B.B(2,90°)C.D(4,240°)D.E(3,60°)二.填空题34.在平面直角坐标系中,若点M(1,3)与点N(x,3)之间的距离是5,则x的值是.35.在平面直角坐标系中,点A的坐标为(1,1),点B的坐标为(11,1),点C到直线AB的距离为4,且△ABC是直角三角形,则满足条件的点C有个.36.如图,连接△ABC的各边中点得到一个新的△A1B1C1,又连接△A1B1C1的各边中点得到△A2B2C2,如此无限继续下去,得到一系列三角形:△ABC,△A1B1C1,△A2B2C2,…这一系列三角形趋向于一个点M.已知A(0,0),B(3,0),C(2,2),则点M的坐标是.37.如图,点O(0,0)、B(0,1)是正方形OBB1C的两个顶点,以对角线OB1为一边作正方形OB1B2C1,再以正方形OB1B2C1的对角线OB2为一边作正方形OB2B3C2,…,依次下去,则点B6的坐标是.38.如图,在平面直角坐标系中,将矩形OABC沿OB对折,使点A落在点A1处,已知OA=,AB=1,则点A1的坐标是.39.如图,把一个矩形纸片OABC放入平面直角坐标系中,使OA、OC分别落在x轴、y 轴上,连接OB,将纸片OABC沿OB折叠,使点A落在Aʹ的位置上.若OB=,,求点Aʹ的坐标为.40.点A(﹣6,8)到x轴的距离为,到y轴的距离为,到原点的距离为.41.在某地震多发地区有互相垂直的两条交通主干线,以这两条主干线为轴建立直角坐标系,长度单位为100km.地震监测部门预报该地区将有一次地震发生,震中位置为(﹣1,2),影响范围的半径为300km,则下列主干线沿线的6个城市在地震影响范围内有个.主干线沿线的6个城市为:A(0,﹣1),B(0,2.5),C(1.24,0),D(﹣0.5,0),E(1.2,0),F(﹣3.22,0)参考数据:.42.如图,在平面直角坐标系中,一动点从原点O出发,按向上,向右,向下,向右的方向不断地移动,每次移动一个单位,得到点A1(0,1),A2(1,1),A3(1,0),A4(2,0),…那么点A4n+1(n为自然数)的坐标为(用n表示).43.如图,在平面内,两条直线l1,l2相交于点O,对于平面内任意一点M,若p,q分别是点M到直线l1,l2的距离,则称(p,q)为点M的“距离坐标”.根据上述规定,“距离坐标”是(2,1)的点共有个.44.如图,所有正三角形的一边平行于x轴,一顶点在y轴上.从内到外,它们的边长依次为2,4,6,8,…,顶点依次用A1、A2、A3、A4…表示,其中A1A2与x轴、底边A1A2与A4A5、A4A5与A7A8、…均相距一个单位,则顶点A3的坐标是,A92的坐标是.45.将正方形ABCD的各边按如图所示延长,从射线AB开始,分别在各射线上标记点A1、A2、A3、…,按此规律,点A2012在射线上.46.如图,在平面直角坐标系中,线段OA1=1,OA1与x轴的夹角为30°,线段A1A2=1,A2A1⊥OA1,垂足为A1;线段A2A3=1,A3A2⊥A1A2,垂足为A2;线段A3A4=1,A4A3⊥A2A3,垂足为A3;…按此规律,点A2012的坐标为.47.将杨辉三角中的每一个数都换成分数,得到一个如图所示的分数三角形,称莱布尼茨三角形.若用有序实数对(m,n)表示第m行,从左到右第n个数,如(4,3)表示分数.那么(9,2)表示的分数是.48.将正整数按如图所示的规律排列下去,若有序实数对(n,m)表示第n排,从左到右第m个数,如(4,2)表示实数9,则表示实数17的有序实数对是.49.如图,已知A1(0,1),,,A4(0,2),,,A7(0,3),A8(,﹣),…则点A2010的坐标是.三.解答题50.已知如图,在平面直角坐标系中有四点,坐标分别为A(﹣4,3)、B(4,3)、M(0,1)、Q(1,2),动点P在线段AB上,从点A出发向点B以每秒1个单位运动.连接PM、PQ并延长分别交x轴于C、D两点(如图).(1)在点P移动的过程中,若点M、C、D、Q能围成四边形,则t的取值范围是,并写出当t=2时,点C的坐标.(2)在点P移动的过程中,△PMQ可能是轴对称图形吗?若能,请求出符合条件的点P的坐标;若不能,请说明理由.(3)在点P移动的过程中,求四边形MCDQ的面积S的范围.一.选择题1.在平面直角坐标系中,点M (﹣2,1)在()A .第一象限B .第二象限C .第三象限D .第四象限考点:点的坐标.分析:根据各象限内点的坐标特征解答.解答:解:点M (﹣2,1)在第二象限.故选:B .点评:本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).2.已知点M 到x 轴的距离为1,到y 轴的距离为2,则M 点的坐标为()A .(1,2)B .(﹣1,﹣2)C .(1,﹣2)D .(2,1),(2,﹣1),(﹣2,1),(﹣2,﹣1)考点:点的坐标.分析:根据点到x 轴的距离等于纵坐标的长度,到y 轴的距离等于横坐标的长度,解答即可.解答:解:∵点M 到x 轴的距离为1,到y 轴的距离为2,∴点M 的横坐标为2或﹣2,纵坐标是1或﹣1,∴点M 的坐标为(2,1),(2,﹣1),(﹣2,1),(﹣2,﹣1).故选D .点评:本题考查了点的坐标,熟记点到x 轴的距离等于纵坐标的长度,到y 轴的距离等于横坐标的长度是解题的关键.3.已知点M (3,﹣2)与点M ʹ(x ,y )在同一条平行于x 轴的直线上,且M ʹ到y 轴的距离等于4,那么点M ʹ的坐标是()A .(4,2)或(﹣4,2)B .(4,﹣2)或(﹣4,﹣2)C .(4,﹣2)或(﹣5,﹣2)D .(4,﹣2)或(﹣1,﹣2)考点:坐标与图形性质.分析:由点M 和M ʹ在同一条平行于x 轴的直线上,可得点M ʹ的纵坐标;由“M ʹ到y 轴的距离等于4”可得,M ʹ的横坐标为4或﹣4,即可确定M ʹ的坐标.解答:解:∵M (3,﹣2)与点M ʹ(x ,y )在同一条平行于x 轴的直线上,∴M ʹ的纵坐标y=﹣2,∵“M ʹ到y 轴的距离等于4”,∴M ʹ的横坐标为4或﹣4.所以点M ʹ的坐标为(4,﹣2)或(﹣4,﹣2),故选B .点评:本题考查了点的坐标的确定,注意:由于没具体说出M ʹ所在的象限,所以其坐标有两解,注意不要漏解.4.在平面直角坐标系中,对于平面内任意一点(x ,y ),若规定以下两种变换:①f (x ,y )=(y ,x ).如f (2,3)=(3,2);②g(x,y)=(﹣x,﹣y),如g(2,3)=(﹣2,﹣3).按照以上变换有:f(g(2,3))=f(﹣2,﹣3)=(﹣3,﹣2),那么g(f(﹣6,7))等于()A.(7,6)B.(7,﹣6)C.(﹣7,6)D.(﹣7,﹣6)考点:点的坐标.专题:压轴题;新定义.分析:由题意应先进行f方式的变换,再进行g方式的变换,注意运算顺序及坐标的符号变化.解答:解:∵f(﹣6,7)=(7,﹣6),∴g(f(﹣6,7))=g(7,﹣6)=(﹣7,6).故选C.点评:本题考查了一种新型的运算法则,考查了学生的阅读理解能力,此类题的难点是判断先进行哪个运算,关键是明白两种运算改变了什么.5.定义:直线l1与l2相交于点O,对于平面内任意一点M,点M到直线l1、l2的距离分别为p、q,则称有序非负实数对(p,q)是点M的“距离坐标”.根据上述定义,“距离坐标”是(1,2)的点的个数是()A.1B.2C.3D.4考点:点的坐标.专题:压轴题;新定义.分析:若p,q分别是M到直线l1和l2的距离,则称有序非负实数对(p,q)是点M的“距离坐标”,根据定义,“距离坐标”是(1,2)的点,说明M到直线l1和l2的距离分别是1和2,这样的点在平面被直线l1和l2的四个区域,各有一个点,即可求出答案.解答:解:因为平面中两条直线l1和l2相交于点O,对于平面上任意一点M,若p,q分别是M到直线l1和l2的距离,则称有序非负实数对(p,q)是点M的“距离坐标”,根据上述定义,“距离坐标”是(1,2)的点可以在两条直线相交所成的四个区域内各找到一个,所以满足条件的点的个数是4个.故选D.点评:此题考查了坐标确定位置;解题的关键是要注意两条直线相交时有四个区域,本题是一个好题目,有创新性,但是难度较小,理解题意不难解答,考查学生的逻辑思维能力.6.如图,若在象棋盘上建立直角坐标系,使“帅”位于点(﹣1,﹣2).“馬”位于点(2,﹣2),则“兵”位于点()A.(﹣1,1)B.(﹣2,﹣1)C.(﹣3,1)D.(1,﹣2)考点:坐标确定位置.专题:压轴题.分析:根据“帅”位于点(﹣1,﹣2).“馬”位于点(2,﹣2),得出原点的位置即可得出答案.解答:解:∵在象棋盘上建立直角坐标系,使“帅”位于点(﹣1,﹣2).“馬”位于点(2,﹣2),∴可得出原点位置在棋子炮的位置,∴“兵”位于点:(﹣3,1),故选:C.点评:此题主要考查了直角坐标系的建立以及点的坐标确定,此类题型是个重点也是难点,需要掌握确定原点的方法是解决问题的关键.7.点M(﹣3,4)离原点的距离是多少单位长度()A.3B.4C.5D.7考点:两点间的距离公式.专题:计算题.分析:根据两点间的距离公式即可直接求解.解答:解:设原点为O(0,0),根据两点间的距离公式,∴MO===5,故选C.点评:本题考查了两点间的距离公式,属于基础题,关键是掌握设有两点A(x1,y1),B(x2,y2),则这两点间的距离为AB=.8.如图,点M(﹣3,4)到原点的距离是()A.3B.4C.5D.7考点:两点间的距离公式.分析:根据点在平面直角坐标系中的坐标的几何意义,及两点间的距离公式便可解答.解答:解:∵点M的坐标为(﹣3,4),∴点M离原点的距离是=5.故选C.点评:本题主要考查了坐标到原点的距离与横纵坐标之间的关系及两点间的距离公式.9.在直角坐标中,点P(6,8)到原点的距离为()A.10B.﹣10C.±10D.12考点:两点间的距离公式.分析:点的横纵坐标的绝对值和这点到原点的距离组成一个直角三角形,利用勾股定理求解即可.解答:解:点P(6,8)到原点的距离为:=10,故选A.点评:本题考查了两点间的距离公式,用到的知识点为:点到原点的距离是此点的横纵坐标的绝对值为两直角边的直角三角形的斜边.10.在平面直角坐标系中,点P(,﹣1)到原点的距离是()A.1B.C.4D.2考点:两点间的距离公式.分析:点到原点的距离为点横坐标与纵坐标的平方和的平方根.解答:解:∵()2+(﹣1)2=4∴点P到原点的距离为=2.故选D.点评:本题考查点的特征,关键是牢记点到原点距离的计算公式.11.对于直角坐标平面内的任意两点A(x1,y1),B(x2,y2),定义它们之间的一种“距离”:||AB||=|x2﹣x1|+|y2﹣y1|.给出下列三个命题:①若点C在线段AB上,则||AC||+||CB||=||AB||;②在△ABC中,若∠C=90°,则||AC||2+||CB||2=||AB||2;③在△ABC中,||AC||+||CB||>||AB||.其中真命题的个数为()A.0B.1C.2D.3考点:两点间的距离公式.专题:压轴题;新定义.分析:对于①若点C在线段AB上,设C点坐标为(x0,y0)然后代入验证显然|AC|+|CB|=|AB|成立.成立故正确.对于②平方后不能消除x0,y0,命题不成立;对于③在△ABC中,用坐标表示|AC|+|CB|然后根据绝对值不等式可得到大于|AB|不成立,故可得到答案.解答:解:对于直角坐标平面内的任意两点A(x1,y1),B(x2,y2),定义它们之间的一种“距离”:|AB|=|x2﹣x1|+|y2﹣y1|.对于①若点C在线段AB上,设C点坐标为(x0,y0),x0在x1、x2之间,y0在y1、y2之间,则|AC|+|CB|=|x0﹣x1|+|y0﹣y1|+|x2﹣x0|+|y2﹣y0|=|x2﹣x1|+|y2﹣y1|=|AB|成立,故①正确.对于②平方后不能消除x0,y0,命题不成立;对于③在△ABC中,|AC|+|CB|=|x0﹣x1|+|y0﹣y1|+|x2﹣x0|+|y2﹣y0|≥|(x0﹣x1)+(x2﹣x0)|+|(y0﹣y1)+(y2﹣y0)|=|x2﹣x1|+|y2﹣y1|=|AB|.③不一定成立∴命题①成立,故选:B.点评:此题主要考查新定义的问题,对于此类型的题目需要认真分析题目的定义再求解,切记不可脱离题目要求.属于中档题目.本题的易错点在于不等式:|a|+|b|≥|a+b|忘记等号也可以成立.12.如图,直线y=﹣2x+4与x轴,y轴分别相交于A,B两点,C为OB上一点,且∠1=∠2,=()则S△ABCA.1B.2C.3D.4考点:坐标与图形性质;一次函数图象上点的坐标特征;相似三角形的判定与性质.专题:压轴题;数形结合.分析:本题可先根据直线的方程求出A、B两点的坐标,再根据角相等可得出三角形相似,的大小.最后通过相似比即可得出S△ABC解答:解:∵直线y=﹣2x+4与x轴,y轴分别相交于A,B两点∴OA=2,OB=4又∵∠1=∠2∴∠BAO=∠OCA∴△OAC∽△OAB则OC:OA=OA:OB=1:2∴OC=1,BC=3,=×2×3=3∴S△ABC故选C.点评:主要考查了一次函数图象上点的特征和点的坐标的意义以及与相似三角形相结合的具体运用.要把点的坐标有机地和图形结合起来求解.13.如图,点A的坐标为(1,0),点B在直线y=﹣x上运动,当线段AB最短时,点B的坐标为()A.(0,0)B.(,﹣)C.(,﹣)D.(﹣,)考点:坐标与图形性质;垂线段最短;等腰直角三角形.专题:计算题.分析:线段AB最短,说明AB此时为点A到y=﹣x的距离.过A点作垂直于直线y=﹣x 的垂线AB,由题意可知:△AOB为等腰直角三角形,过B作BC垂直x轴垂足为C,则点C为OA的中点,有OC=BC=,故可确定出点B的坐标.解答:解:过A点作垂直于直线y=﹣x的垂线AB,∵点B在直线y=﹣x上运动,∴∠AOB=45°,∴△AOB为等腰直角三角形,过B作BC垂直x轴垂足为C,则点C为OA的中点,则OC=BC=.作图可知B在x轴下方,y轴的右方.∴横坐标为正,纵坐标为负.所以当线段AB最短时,点B的坐标为(,﹣).故选:B.点评:动手操作很关键.本题用到的知识点为:垂线段最短.14.设P是函数在第一象限的图象上任意一点,点P关于原点的对称点为Pʹ,过P作PA平行于y轴,过Pʹ作PʹA平行于x轴,PA与PʹA交于A点,则△PAPʹ的面积()A.等于2B.等于4C.等于8D.随P点的变化而变化考点:坐标与图形性质;反比例函数系数k的几何意义;关于原点对称的点的坐标.分析:设P的坐标为(m,n),因为点P关于原点的对称点为Pʹ,Pʹ的坐标为(﹣m,﹣n);因为P与A关于x轴对称,故A的坐标为(m,﹣n);而mn=4,则△PAPʹ的面积为•PA•PʹA=2mn=8.解答:解:设P的坐标为(m,n),∵P是函数在第一象限的图象上任意一点,∴n=,∴m•n=4.∵点P关于原点的对称点为Pʹ,∴P'的坐标为(﹣m,﹣n);∵P与A关于x轴对称,∴A的坐标为(m,﹣n);∴△PAP'的面积=•PA•PʹA=2mn=8.故选C.点评:本题结合反比例函数的性质考查了关于原点对称的点的坐标变化规律和关于x、y轴对称的点的性质,要注意二者的区别.15.在平面直角坐标系内存在⊙A,A(b,0),⊙A交x轴于O(0,0)、B(2b,0),在y 轴上存在一动点C(C不与原点O重合),直线l始终过A、C,直线l交⊙A于E、F,在半圆EF上存在一点动点D且D不与E、F重合,则S△DEA 的最大值为()A.B.C.D.无法判断考点:坐标与图形性质;圆的认识.专题:动点型.分析:计算△DEA的面积,关键是确定底和高,在△DEA中,EA是半径,EA=|b|,点D在半圆EF上运动,点D与AE的距离最大值是|b|,故S△DEA的最大值为:×|b|×|b|=.解答:解:∵在△DEA中,当D运动于DA⊥AE时,此时DA作为高是最大的,DA=|b|∵EA=|b|,∴S△DEA的最大值为:×|b|×|b|=.故选A点评:本题考查了三角形面积的求法,要合理地确定底和高,底一定时,高最大,面积就最大.16.已知直线y=mx﹣1上有一点B(1,n),它到原点的距离是,则此直线与两坐标轴围成的三角形的面积为()A.B.或C.或D.或考点:坐标与图形性质;待定系数法求一次函数解析式.专题:计算题.分析:求出直线解析式后再求与坐标轴交点坐标,进一步求解.解答:解:∵点B(1,n)到原点的距离是,∴n2+1=10,即n=±3.则B(1,±3),代入一次函数解析式得y=4x﹣1或y=﹣2x﹣1.(1)y=4x﹣1与两坐标轴围成的三角形的面积为:××1=;(2)y=﹣2x﹣1与两坐标轴围成的三角形的面积为:××1=.故选C.点评:主要考查了待定系数法求一次函数的解析式和三角形面积公式的运用,要会根据点的坐标求出所需要的线段的长度,灵活运用勾股定理和面积公式求解.17.如图,平面直角坐标系中,直线AB与x轴的夹角为60°,且点A的坐标为(﹣2,0),点B在x轴的上方,设AB=a,那么点B的坐标为()A.B.C.D.考点:坐标与图形性质;解直角三角形.分析:本题本题可先根据三角函数求出AC和BC的值,由此即可得出B点的坐标.解答:解:∵∠BAC=60°,∠BCA=90°,AB=a,则AC=AB×cos60°=a,BC=AB×sin60°=a,∴点B的横坐标为a﹣2,纵坐标为a.故选D.点评:本题主要考查了三角函数的应用.18.如果mn<0,且m>0,那么点P(m2,m﹣n)在()A.第一象限B.第二象限C.第三象限D.第四象限考点:坐标确定位置.分析:因为m2>0,m﹣n>0,所以根据平面坐标系中点的坐标特点即可确定点在第一象限.解答:解:∵mn<0,m>0,∴n<0,∵m2>0,m﹣n>0,∴点P位于第一象限,故选A.点评:此题考查了坐标系中各象限中点的坐标特点,准确记忆是关键.19.在一次“寻宝”人找到了如图所示的两个标志点A(2,3),B(4,1),A,B两点到“宝藏”点的距离都是,则“宝藏”点的坐标是()A.(1,0)B.(5,4)C.(1,0)或(5,4)D.(0,1)或(4,5)考点:坐标确定位置.专题:压轴题.分析:根据两点之间的距离公式,d=,将四个选项代入公式中,观察哪一个等于,再作答.解答:解:设宝藏的坐标点为C(x,y),根据坐标系中两点间距离公式可知,AC=BC,则(x﹣2)2+(y﹣3)2=(x﹣4)2+(y﹣1)2,化简得x﹣y=1;又因为标志点到“宝藏”点的距离是,所以(x﹣2)2+(y﹣3)2=10;把x=1+y代入方程得,y=0或y=4,即x=1或5,所以“宝藏”C点的坐标是(1,0)或(5,4).故选C.点评:本题考查了坐标的确定及利用两点的坐标确定两点之间的距离公式,是一道中难度题.20.如图是小刚的一张脸,他对妹妹说“如果我用(0,2)表示左眼,用(2,2)表示右眼,那么嘴的位置可以表示成()A.(1,0)B.(﹣1,0)C.(﹣1,1)D.(1,﹣1)考点:坐标确定位置.分析:由“左眼”位置点的坐标为(0,2),“右眼”点的坐标为(2,2)可以确定平面直角坐标系中x轴与y轴的位置,从而可以确定“嘴”的坐标.解答:解:根据题意,坐标原点是嘴所在的行和左眼所在的列的位置,所以嘴的坐标是(1,0),故选A.点评:由已知条件正确确定坐标轴的位置是解决本题的关键.21.电影院里的座位按“×排×号”编排,小明的座位简记为(8,6),小菲的位置简记为(8,12),则小明与小菲应坐在()的位置上.A.同一排B.前后同一条直线上C.中间隔六个人D.前后隔六排考点:坐标确定位置.分析:根据题目信息,有序数对的第一个数表示排数,第二个数表示号数,以及电影院的座位排列规则解答.解答:解:∵座位按“×排×号”编排,∴小明在8排6号,小菲在8排12号,∴小明与小菲都在第8排,是同一排,中间有8号、10号间隔两人.故选A.点评:本题考查了坐标位置的确定,明确有序数对的实际意义是解题的关键,另外,还要了解电影院的座位,同一排的偶数号与偶数号相邻,奇数号与奇数号相邻.22.如图,已知校门的坐标是(1,1),那么下列对于实验楼位置的叙述正确的个数为()①实验楼的坐标是3;②实验楼的坐标是(3,3);③实验楼的坐标为(4,4);④实验楼在校门的东北方向上,距校门200米.A.1个B.2个C.3个D.4个考点:坐标确定位置.分析:根据图形明确所建的平面直角坐标系,然后判断各点的位置.解答:解:①实验楼的坐标是(3,3),原描述错误;②实验楼的坐标是(3,3),正确;③实验楼的坐标为(4,4),坐标位置错误;④实验楼在校门的东北方向上,距校门200米,正确.有两个说法正确,故选B.点评:本题考查类比点的坐标及学生解决实际问题的能力和阅读理解能力,解决此类问题需要先确定原点的位置,再求未知点的位置,或者直接利用坐标系中的移动法则“右加左减,上加下减”来确定坐标.23.若点P(a,b)在第二、四象限的角平分线上,则a与b的关系为()A.a>b B.a=b C.a<b D.a+b=0考点:坐标与图形性质.分析:根据角平分线上的点到角的两边的距离相等可得第二四象限角平分线上的点的横坐标与纵坐标互为相反数,再根据相反数的定义解答.解答:解:∵点P(a,b)在第二、四象限的角平分线上,∴a、b互为相反数,∴a+b=0.故选D.点评:本题考查了坐标与图形性质,熟记平面直角坐标系的特征是解题的关键.24.如图,在平面直角坐标系中,OABC是正方形,点A的坐标是(4,0),点P为边AB 上一点,∠CPB=60°,沿CP折叠正方形,折叠后,点B落在平面内点Bʹ处,则Bʹ点的坐标为()A.(2,2)B.(,)C.(2,)D.(,)考点:坐标与图形性质;勾股定理;正方形的性质;翻折变换(折叠问题).专题:压轴题.分析:过点Bʹ作BʹD⊥OC,因为∠CPB=60°,CBʹ=OC=OA=4,所以∠BʹCD=30°,BʹD=2,根据勾股定理得DC=2,故OD=4﹣2,即Bʹ点的坐标为(2,).解答:解:过点Bʹ作BʹD⊥OC∵∠CPB=60°,CBʹ=OC=OA=4∴∠BʹCD=30°,BʹD=2根据勾股定理得DC=2∴OD=4﹣2,即Bʹ点的坐标为(2,)故选C.点评:主要考查了图形的翻折变换和正方形的性质,要会根据点的坐标求出所需要的线段的长度,灵活运用勾股定理.25.如图,若将直角坐标系中“鱼”的每个“顶点”的横坐标保持不变,纵坐标分别变为原来的,则点A的对应点的坐标是()A.(﹣4,3)B.(4,3)C.(﹣2,6)D.(﹣2,3)考点:坐标与图形性质.分析:先写出点A的坐标为(﹣4,6),横坐标保持不变,纵坐标分别变为原来的,即可判断出答案.解答:解:点A变化前的坐标为(﹣4,6),将横坐标保持不变,纵坐标分别变为原来的,则点A的对应点的坐标是(﹣4,3).故选A.点评:本题考查了坐标与图形性质的知识,属于基础题,比较简单.26.在平面直角坐标系中,孔明做走棋的游戏,其走法是:棋子从原点出发,第1步向右走1个单位,第2步向右走2个单位,第3步向上走1个单位,第4步向右走1个单位…依此类推,第n步的走法是:当n能被3整除时,则向上走1个单位;当n被3除,余数为1时,则向右走1个单位;当n被3除,余数为2时,则向右走2个单位,当走完第100步时,棋子所处位置的坐标是()A.(66,34)B.(67,33)C.(100,33)D.(99,34)考点:坐标确定位置;规律型:点的坐标.专题:规律型.分析:根据走法,每3步为一个循环组依次循环,且一个循环组内向右3个单位,向上1个单位,用100除以3,然后根据商和余数的情况确定出所处位置的横坐标与纵坐标即可.解答:解:由题意得,每3步为一个循环组依次循环,且一个循环组内向右3个单位,向上1个单位,∵100÷3=33余1,∴走完第100步,为第34个循环组的第1步,所处位置的横坐标为33×3+1=100,纵坐标为33×1=33,∴棋子所处位置的坐标是(100,33).故选:C.点评:本题考查了坐标确定位置,点的坐标位置的规律变化,读懂题目信息并理解每3步为一个循环组依次循环是解题的关键.27.在直角坐标系中,⊙P、⊙Q的位置如图所示.下列四个点中,在⊙P外部且在⊙Q内部的是()。
平面直角坐标系典型例题分析题型一:坐标轴上点的特征1、x 轴上点,纵坐标为0;y 轴上点,横坐标为0。
2、已知点A (x ,y ),且xy=0,则点A 在 ( )。
A.原点B.x 轴上C.y 轴上D.x 轴或y 轴上。
3、已知点P (x ,y ),且x y 0+=,则点B 在 ( )。
A.原点B.x 轴的正半轴或负半轴C.y 轴的正半轴或负半轴上D.在坐标轴上,但不在原点。
4、已知点A (-3,2m+3)在x 轴上,点B (n-4,4)在y 轴上,则点C (m ,n )在 ( )A.第一象限B.第二象限C.第三象限D.第四象限5、如果点B (x -1,x +3)在y 轴上,那么x= ( )A.1B.-1C.3D.-36、点P (m +3, m +1)在直角坐标系的x 轴上,则点P 坐标为 ( )A .(0,-2)B .( 2,0)C .( 4,0)D .(0,-4) 题型二:各个象限内点的特征各象限中的点的坐标特征:平面内一点P (x ,y ),如位于第一象限,则x>0,y>0;如位于第二象限,则x<0,y>0;如位于第三象限,则x<0,y<0;如位于第四象限,则x>0,y<0。
1、已知点P (a,b ),ab >0,a +b <0,则点P 在( )A .第一象限B .第二象限C .第三象限D .第四象限2、若点P (a ,b )在第四象限,则点M (b -a ,a -b )在_______。
3、已知点A (-3,2m -1)在x 轴上,点B (n +1,4)在y 轴上,则点C (m ,n )在 ( )A.第一象限B.第二象限C.第三象限D.第四象限4、已知03)2(2=++-b a ,则),(b a P --的坐标为 ( )A 、 )3,2(B 、 )3,2(-C 、 )3,2(-D 、 )3,2(--5、若点),(n m P 在第三象限,则点),(n m Q --在 ( )A、第一象限 B、第二象限 C、第三象限 D、第四象限6、已知平面直角坐标系内点),(y x 的纵、横坐标满足2x y =,则点),(y x 位于( )A 、x 轴上方(含x 轴)B 、x 轴下方(含x 轴)C 、y 轴的右方(含y 轴)D 、y 轴的左方(含y 轴)7、已知点P (a,b ),ab >0,a +b >0,则点P 在( )8、已知点P(x, x),则点P一定()A.在第一象限 B.在第一或第四象限C.在x轴上方 D.不在x轴下方9、已知P(0,a)在y轴的负半轴上,则Q(21,1a a---+)在( )A、y轴的左边,x轴的上方B、y轴的右边,x轴的上方C、y轴的左边,x轴的下方D、y轴的右边,x轴的下方题型三平行于坐标轴的直线的点的坐标特点平行于x轴(或横轴)的直线上的点的纵坐标相同;平行于y轴(或纵轴)的直线上的点的横坐标相同。
中考平面直角坐标系试题集锦
江苏 文页
一、选择题
1, ______________________________ (芜湖市)点A (-2,1)在第 象限 2, (湖州)在平面直角坐标系中,点( 3, - 5)在第
象限.
3, (上海)已知a v b v 0,则点A (a — b , b )在 ______ 象限.
4, _____________________________________________________________ (金华)△ ABO 中,OA=OB=5, OA 边上的高线长为 4,将厶ABO 放在平面直角坐标 系中,使点O 与原点重合,点 A 在x 轴的正半轴上,那么点 B 的坐标是 _______________________________ .
5, ______ (天津)已知点 P 在第二象限,且到 x 轴的距离是2,到y 轴的距离是3,则点P 的 坐标为 _______ .
6,
(南充)菱形的四个顶点都在坐标轴上, 已知其中
两个顶点的坐标分别是
(3,0) , (0,4),
则另两个顶点的坐标是 _______ .
7,
(青岛)观察下列图象,与图 1中的鱼相比,图2中的鱼
发生了一些变化•若图1中
鱼上点P 的坐标为(4,3.2),则这个点在图 2中的对应点P 1的坐标为 ___________ (图中的方格 是 1X 1).
8,(苏州市)如图3,直角坐标系中一条圆弧经过网格点 A 、B 、C,其中,B 点坐标为
(4,4),
则该圆弧所在圆的圆心坐标为 ________ . (2,0)
9,(泰州市)如图4,机器人从 A 点,沿着西南方向,行了个 4 一 2单位,到达B 点后观 察到原点0在它的南偏东60 °的方向上,则原来 A 的坐标为 .(0,4 + 4、3)
3
(结果保留根号)•
10,(青岛市)如图5,如果
① 所在位置的坐标为(-1,-2),(相 所在位置的坐标为
图5
y
A - ■■■■
-r
A
B
、
\
C
O
x
X
X
A (m 、n )在第四象限,那么点
B (n 、m )在()
C ,第三象限
D ,第四象限
二、选择题(每题分,共分) 1,(哈尔滨)已知坐标平面内点 A ,第一象限 B ,第二象限
2,
A,
3,
A,
4,
A,
5,
(河北)已知点M (1 —a , a +2)在第二象限,贝U a的取值范围是
() a>—2
(曲靖)点
(0 , —2)
(扬州)若
第一象限
B, —2 v a v 1 C, a v —2
P ( m +3, m +1 )在直角坐标系的
B, ( 2, 0) C, (0, 2)
0v m v2,则点P ( m—2, m)在
B,第二象限C,第三象限
D, a > 1
x轴上,则P点坐标为()
D , (0,—4)
()
D,第四象限
(淮安)在直角坐标系xOy中,已知A
等腰三角形,则符合条件的点
A , 2个
B , 3个
P共有()
C, 4个
6,(潍坊市)如图,在直角坐标系中,将矩形
已知OA 3, AB 1,则点A的坐标是(
•(昌,3) C.
2
7, (荆门
市)
如果代数式
位置在)
A.第一象限
8,(大连市)
点,则A与A '的关系是(
A.关于x轴对称;
C.关于原点对称;
(2, —2),在y轴上确定点
OABC沿0B对折,使点
)•
H _ 1
..m ----------- 有意义,那么,直角坐标系中点
£mn
B.第二象限
在直角坐标系中,
)
B.关于
A落在点A处,
P (m, n)的
C•第三象限 D.第四象限
A (1 , 2)点的横坐标乘以—1,纵坐标不变,得到A'
y轴对称;
D.将A点向x轴负方向平移一个单位
图圉
3
9, (泸州市)如
图上,则炮位于点
A,
10,
A,
11,
A,
12,
(—1 ,
1)(山
东)若4
或—2
(安徽)
点
x轴正半轴上
点A (m
1
A. m
2
三、解答题
6所示的象棋盘上,
)
B, (—1, 2)
A (a, 6),
B (2, a),
B , 4或—1
C ,
P (m ,
B ,
4, 1
B. m
3,—2)
C , (—2 , 1)
C (0 , 2)三点在同一条直线上,贝U a的值为()
—4 或1 D, —4 或2
D, (- 2, 2)
1)在第二象限内,则点Q (—m , 0)在()x轴负半轴上C , y
轴正半轴上 D , y轴负半轴上
2m )在第三象限,贝U m的取值范围是()
1 ’
C. m 4
2
D. m 4
4
23,(大连市)如图 7,把矩形 OABC 放置在直角坐标系中, OA = 6, OC = 8,若将矩
形折叠,使点B 与0重合,得到折痕 EF.
(1 )可以通过 ______ 办法,使四边形 AEFO 变到四边形 BEFC 的位置(填“平移”、 “旋转”或“翻转”);
(2) 求点E 的坐标; (3)
若直线I 把矩形OABC 的面积分成相等的两部分, 则直线I 必经过点的坐标是 _________ 24,(绍兴市)如图8,在平面直角坐标系中,已知点为
A (- 2, 0),
B ( 2, 0).
(1)画出等腰三角形 ABC (画出一个即可); ⑵写出(1 )中画出的ABC 的顶点C 的坐标.
25,(南京市)如果将点 P 绕定点M 旋转180°后与点Q 重合,那么称点 P 与点Q 关 于点M 对称,定点 M 叫做对称中心•此时,M 是线段PQ 的中点.如图9,在直角坐标系中, △ ABO 的顶点A 、B 、0的坐标分别为(1 , 0)、(0, 1)、(0, 0) •点列P 1、P 2、P 3、…中的 相邻两点都关于厶ABO 的一个顶点对称:点 P 1与点P 2关于点A 对称,点P 2与点P 3关于点 B 对称,点P 3与P 4关于点O 对称,点P 4与点P 5关于点A 对称,点P 5与点P 6关于点B 对 称,点P 6与点P 7关于点O 对称,……•对称中心分别是 A 、B , O , A , B , O ,…,且这些 对称中心依次循环•已知点P 1的坐标是(1 , 1),试求出点P 2、P 7、P 100的坐标•
参考答案:
一、 1, 二; 2,四;3,三;4, ( 3,4)或(3,- 4); 5, (- 3, 2); 6, (- 3,0), (0, —4) ; 7, P 1 (4,2.2);
二、 1, B ; 2, D ; 3, B ; 4, B ; 5, C ; 6, A ; 7, C ; 8, B ; 9, C ; 10, A ; 11, A ; 12, C.
三、 23, (1)旋转,(2) (6, -), (3) (3, 4); 24,略;25, P 2(1 , - 1) , P 7(1, 1),
P 100(1, -
3).。