08工科本科高数试卷A
- 格式:doc
- 大小:879.50 KB
- 文档页数:3
橡胶密封件项目实施方案一、项目背景和目标项目目标:1.开发生产适用于各行业要求的高品质橡胶密封件产品;2.实施高效的生产流程,优化生产效率和生产成本;3.提高橡胶密封件产品的质量,提升客户满意度;4.提升我司在橡胶密封件行业的竞争力。
二、项目分析1.市场分析:通过市场调研和需求分析,我们了解到橡胶密封件市场需求量大,但市场上的产品质量参差不齐。
目前存在产品品质不稳定、生产过程复杂、生产成本高等问题。
因此,通过提供高品质、高性能、高可靠性的橡胶密封件产品,我们有机会在市场上获得竞争优势。
2.生产分析:为了提高生产效率和降低成本,我们计划引入先进的生产设备和工艺技术。
并通过改进生产流程、优化组织结构、提高生产效率和品质控制等措施,实现高效生产。
3.供应链管理:为保证原材料的供应稳定和品质的可控,我们计划与有信誉度和稳定供货能力的原材料供应商建立长期合作关系,并制定监控措施以确保供应链的可靠性。
4.质量控制:5.市场推广:除了提供高品质的产品,我们计划通过参加行业展览、与客户建立合作关系、提供技术支持等方式,加强市场推广,提高品牌知名度。
三、项目实施计划1.项目启动阶段(1个月):-确定项目目标和实施策略;-成立项目实施团队,明确各岗位责任;-进行市场调研和需求分析;-制定项目计划和预算;-和供应商沟通,确保原材料供应稳定。
2.技术开发阶段(3个月):-进行橡胶密封件产品设计和开发;-寻找并引入先进的生产设备和工艺技术;-制定生产流程和品质控制方案。
3.生产线建设阶段(2个月):-选址、设计和建设橡胶密封件生产线;-采购生产设备和工具;-招聘和培训生产线员工。
4.生产试运营阶段(1个月):-进行试生产,调试设备和工艺;-进行质量控制,确保产品质量符合标准。
5.市场推广阶段(持续):-参加行业展览和交流会,展示产品;-与潜在客户洽谈合作事宜;-制定市场推广计划,推动销售量增长。
6.持续改进阶段(持续):-定期评估和改进生产流程;-改进产品设计和性能;-完善质量控制体系。
08福建高考数学卷(理工农医类)一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)若复数(a 2-3a +2)+(a-1)i 是纯虚数,则实数a 的值为 A.1B.2C.1或2D.-1(2)设集合A={x |1xx -<0},B={x |0<x <3=,那么“m ∈A ”是“m ∈B ”的 A.充分而不必要条件 B.必要而不充分条件 C.充要条件D.既不充分也不必要条件(3)设{a n }是公比为正数的等比数列,若n 1=7,a 5=16,则数列{a n }前7项的和为 A.63B.64C.127D.128(4)函数f (x )=x 3+sin x +1(x ∈R ),若f (a )=2,则f (-a )的值为 A.3B.0C.-1D.-2(5)某一批花生种子,如果每1粒发牙的概率为45,那么播下4粒种子恰有2粒发芽的概率是 A.16625B.96625C. 192625D. 256625(6)如图,在长方体ABCD -A 1B 1C 1D 1中,AB =BC =2,AA 1=1,则BC 1与平面BB 1D 1D 所成角的正弦值为A.63B.265C.155D.105(7)某班级要从4名男生、2名女生中选派4人参加某次社区服务,如果要求至少有1名女生,那么不同的选派方案种数为A.14B.24C.28D.48(8)若实数x 、y 满足 {10,x y -+≤则yx的取值范围是 (9)函数f (x )=cos x (x )(x ∈R )的图象按向量(m,0) 平移后,得到函数y =-f ′(x )的图象,则m 的值可以为A.2πB.πC.-πD.-2π(10)在△ABC 中,角ABC 的对边分别为a 、b 、c ,若(a 2+c 2-b 2)tan B =3ac ,则角B 的值为A. 6π B.3π C.6π或56πD.3π或23π(11)又曲线22221x y ==(a >0,b >0)的两个焦点为F 1、F 2,若P 为其上一点,且|PF 1|=2|PF 2|,则双曲线离心率的取值范围为A.(1,3)B.(]1,3C.(3,+∞)D.[)3,+∞(12)已知函数y =f (x ),y =g (x )的导函数的图象如下图,那么y =f (x ),y =g (x )的图象可能是二、填空题:本大题共4小题,每小题4分,共16分,把答案填在答题卡的相应位置.(13)若(x -2)5=a 3x 5+a 5x 4+a 3x 3+a 2x 2+a 1x +a 0,则a 1+a 2+a 3+a 4+a 5=__________.(用数字作答) x =1+cos θ(14)若直线3x+4y+m=0与圆 y =-2+sin θ(θ为参数)没有公共点,则实数m 的取值范围是 .(153,则其外接球的表面积是 . (16)设P 是一个数集,且至少含有两个数,若对任意a 、b ∈R ,都有a +b 、a -b , ab 、ab∈P (除数b ≠0),则称P 是一个数域.例如有理数集Q 是数域;数集{}2,F a b b Q =+∈也是数域.有下列命题: ①整数集是数域;②若有理数集Q M ⊆,则数集M 必为数域;③数域必为无限集; ④存在无穷多个数域.其中正确的命题的序号是 .(把你认为正确的命题的序号填填上)三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤. (17)(本小题满分12分) 已知向量m =(sin A ,cos A ),n =(3,1)-,m ·n =1,且A 为锐角.(Ⅰ)求角A 的大小;(Ⅱ)求函数()cos 24cos sin ()f x x A x x R =+∈的值域.如图,在四棱锥P-ABCD 中,则面PAD ⊥底面ABCD ,侧棱PA =PD =2,底面ABCD 为直角梯形,其中BC ∥AD ,AB⊥AD ,AD =2AB =2BC =2,O 为AD 中点.(Ⅰ)求证:PO ⊥平面ABCD ;(Ⅱ)求异面直线PD 与CD 所成角的大小;(Ⅲ)线段AD 上是否存在点Q ,使得它到平面PCD 的距离为32?若存在,求出AQQD的值;若不存在,请说明理由.(19)(本小题满分12分) 已知函数321()23f x x x =+-. (Ⅰ)设{a n }是正数组成的数列,前n 项和为S n ,其中a 1=3.若点211(,2)n n n a a a ++-(n ∈N*)在函数y =f ′(x )的图象上,求证:点(n ,S n )也在y =f ′(x )的图象上;(Ⅱ)求函数f (x )在区间(a -1,a )内的极值.(20)(本小题满分12分)某项考试按科目A 、科目B 依次进行,只有当科目A 成绩合格时,才可继续参加科 目B 的考试.已知每个科目只允许有一次补考机会,两个科目成绩均合格方可获得证 书.现某人参加这项考试,科目A 每次考试成绩合格的概率均为23,科目B 每次考试 成绩合格的概率均为12.假设各次考试成绩合格与否均互不影响. (Ⅰ)求他不需要补考就可获得证书的概率;(Ⅱ)在这项考试过程中,假设他不放弃所有的考试机会,记他参加考试的次数为ξ,求ξ的数学期望E ξ.如图、椭圆22221(0)x y ab a b+=的一个焦点是F (1,0),O 为坐标原点.(Ⅰ)已知椭圆短轴的两个三等分点与一个焦点构成正三角形,求椭圆的方程;(Ⅱ)设过点F 的直线l 交椭圆于A 、B 两点.若直线l 绕点F 任意转动,值有222OA OBAB +,求a 的取值范围.(22)(本小题满分14分)已知函数f (x )=ln(1+x )-x 1 (Ⅰ)求f (x )的单调区间;(Ⅱ)记f (x )在区间[]0,π(n ∈N*)上的最小值为b x 令a n =ln(1+n )-b x . (Ⅲ)如果对一切n ,不等式22nn n ca a a ++-恒成立,求实数c 的取值范围; (Ⅳ)求证: 131321122424221 1.n n na a a a a a a a a a a a a -++++-【参考答案】一、选择题:本大题考查基本概念和基本运算.每小题5分,满分60分.(1)B (2)A (3)C (4)B (5)B (6)D (7)A (8)C (9)A (10)D (11)B (12)D 二、填空题:本大题考查基础知识和基本运算.每小题4分,满分16分.(13)31(14)(,0)(10,)-∞⋃+∞(15)9π(16)③④三、解答题:本大题共6小题,共74分,解答应写出文字说明,证明过程或演算步骤.(17)本小题主要考查平面向量的数量积计算、三角函数的基本公式、三角恒等变换、一元二次函数的最值等基本知识,考查运算能力.满分12分. 解:(Ⅰ)由题意得3sin cos 1,m n A A =-=12sin()1,sin().662A A ππ-=-=由A 为锐角得,.663A A πππ-==(Ⅱ)由(Ⅰ)知1cos ,2A =所以2213()cos 22sin 12sin 2sin 2(sin ).22f x x x x s x =+=-+=--+因为x ∈R ,所以[]sin 1,1x ∈-,因此,当1sin 2x =时,f (x )有最大值32.当sin x =-1时,f (x )有最小值-3,所以所求函数f (x )的值域是33,2⎡⎤-⎢⎥⎣⎦.(18)本小题主要考查直线与平面的位置关系、异面直线所成角、点到平面的距离等基本知识,考查空间想象能力、逻辑思维能力和运算能力.满分12分.解法一:(Ⅰ)证明:在△PAD 中PA =PD ,O 为AD 中点,所以PO ⊥AD ,又侧面PAD ⊥底面ABCD ,平面PAD ⋂平面ABCD =AD , PO ⊂平面PAD , 所以PO ⊥平面ABCD .(Ⅱ)连结BO ,在直角梯形ABCD 中、BC ∥AD ,AD =2AB =2BC ,有OD ∥BC 且OD =BC ,所以四边形OBCD 是平行四边形, 所以OB ∥DC .由(Ⅰ)知,PO ⊥OB ,∠PBO 为锐角, 所以∠PBO 是异面直线PB 与CD 所成的角.因为AD =2AB =2BC =2,在Rt △AOB 中,AB =1,AO =1,所以OB =2,在Rt △POA 中,因为AP =2,AO =1,所以OP =1, 在Rt △PBO 中,tan ∠PBO =122,arctan .222PG PBO BC ==∠=所以异面直线PB 与CD 所成的角是2arctan2. (Ⅲ)假设存在点Q ,使得它到平面PCD 的距离为32. 设QD =x ,则12DQC S x ∆=,由(Ⅱ)得CD =OB =2, 在Rt △POC 中, 222,PC OC OP =+=所以PC =CD =DP , 233(2),42PCD S ∆==由V p-DQC =V Q-PCD ,得2,所以存在点Q 满足题意,此时13AQ QD =. 解法二:(Ⅰ)同解法一.(Ⅱ)以O 为坐标原点,OC OD OP 、、的方向分别为x 轴、y 轴、z 轴的正方向,建立空间直角坐标系O-xyz ,依题意,易得A (0,-1,0),B (1,-1,0),C (1,0,0),D (0,1,0), P (0,0,1),所以110111CDPB ---=(,,),=(,,). 所以异面直线PB 与CD 所成的角是arccos63, (Ⅲ)假设存在点Q ,使得它到平面PCD 的距离为32, 由(Ⅱ)知(1,0,1),(1,1,0).CP CD =-=- 设平面PCD 的法向量为n =(x 0,y 0,z 0).则0,0,n CP n CD ⎧=⎪⎨=⎪⎩所以00000,0,x z x y -+=⎧⎨-+=⎩即000x y z ==,取x 0=1,得平面PCD 的一个法向量为n =(1,1,1). 设(0,,0)(11),(1,,0),Q y y CQ y -≤≤=-由32CQ n n=,得13,23y -+=解y =-12或y =52(舍去), 此时13,22AQ QD ==,所以存在点Q 满足题意,此时13AQ QD =.题和解决问题的能力.满分12分.(Ⅰ)证明:因为321()2,3f x x x =+-所以f ′(x )=x 2+2x , 由点211(,2)(N )n n n a a a n +++-∈在函数y =f ′(x )的图象上, 又0(N ),n a n +>∈所以11()(2)0,n n n n a a a a -+---=所以2(1)32=22n n n S n n n -=+⨯+,又因为f ′(n )=n 2+2n ,所以()n S f n '=, 故点(,)n n S 也在函数y=f ′(x )的图象上.(Ⅱ)解:2()2(2)f x x x x x '=+=+, 由()0,f x '=得02x x ==-或.当x 变化时,()f x '﹑()f x 的变化情况如下表: 注意到(1)12a a --=<,从而①当212,21,()(2)3a a a f x f -<-<-<<--=-即时的极大值为,此时()f x 无极小值; ②当10,01,()a a a f x -<<<<即时的极小值为(0)2f =-,此时()f x 无极大值; ③当2101,()a a a f x ≤--≤≤≥或或时既无极大值又无极小值.(20)本小题主要考查概率的基本知识与分类思想,考查运用数学知识分析问题/解愉问题的能力.满分12分. 解:设“科目A 第一次考试合格”为事件A ,“科目A 补考合格”为事件A 2;“科目B 第一次考试合格”为事件B ,“科目B 补考合格”为事件B .(Ⅰ)不需要补考就获得证书的事件为A 1·B 1,注意到A 1与B 1相互独立,则1111211()()()323P A B P A P B =⨯=⨯=. 答:该考生不需要补考就获得证书的概率为13. (Ⅱ)由已知得,ξ=2,3,4,注意到各事件之间的独立性与互斥性,可得1112(2)()()P P A B P A A ξ==+2111114.3233399=⨯+⨯=+= x (-∞,-2)-2 (-2,0) 0 (0,+∞) f ′(x ) + 0 - 0 + f (x )↗极大值↘极小值↗112112122(3)()()()P P A B B P A B B P A A B ξ==++2112111211114,3223223326693=⨯⨯+⨯⨯+⨯⨯=++= 12221212(4)()()P P A A B B P A A B B ξ==+12111211111,3322332218189=⨯⨯⨯+⨯⨯⨯=+= 故4418234.9993E ξ=⨯+⨯+⨯=答:该考生参加考试次数的数学期望为83.(21)本小题主要考查直线与椭圆的位置关系、不等式的解法等基本知识,考查分类与整合思想,考查运算能力和综合解题能力.满分12分.解法一:(Ⅰ)设M ,N 为短轴的两个三等分点,因为△MNF 为正三角形, 所以32OF MN =, 即1=32, 3.23bb 解得= 2214,a b =+=因此,椭圆方程为221.43x y += (Ⅱ)设1122(,),(,).A x y B x y (ⅰ)当直线 AB 与x 轴重合时,2222222222,4(1),.OA OB a AB a a OA OB AB +==>+<因此,恒有(ⅱ)当直线AB 不与x 轴重合时,设直线AB 的方程为:22221,1,x y x my a b=++=代入整理得22222222()20,a b m y b my b a b +++-=所以222212122222222,b m b a b y y y y a b m a b m-+==++ 因为恒有222OA OB AB +<,所以∠AOB 恒为钝角. 即11221212(,)(,)0OA OB x y x y x x y y ==+<恒成立.22222222222222222222222(1)()210.m b a b b m a b m a b m m a b b a b a a b m +-=-+++-+-+=<+又a 2+b 2m 2>0,所以-m 2a 2b 2+b 2-a 2b 2+a 2<0对m ∈R 恒成立,即a 2b 2m 2> a 2 -a 2b 2+b 2对m ∈R 恒成立.当m ∈R 时,a 2b 2m 2最小值为0,所以a 2- a 2b 2+b 2<0. a 2<a 2b 2- b 2, a 2<( a 2-1)b 2= b 4,因为a >0,b >0,所以a <b 2,即a 2-a -1>0, 解得a 15+或a 15-(舍去),即a 15+, 综合(i )(ii),a 的取值范围为(152+,+∞). 解法二:(Ⅰ)同解法一, (Ⅱ)解:(i )当直线l 垂直于x 轴时,x =1代入22222221(1)1,A y b a y a b a -+===1.因为恒有|OA |2+|OB |2<|AB |2,2(1+y A 2)<4 y A 2,y A 2>1,即21a a->1,解得a 15+或a 15-(舍去),即a 15+. (ii )当直线l 不垂直于x 轴时,设A (x 1,y 1), B (x 2,y 2).设直线AB 的方程为y =k (x -1)代入22221,x y a b+=得(b 2+a 2k 2)x 2-2a 2k 2x + a 2k 2- a 2b 2=0,故x 1+x 2=222222222222222,.a k a k a b x x b a k b a k -=++因为恒有|OA |2+|OB |2<|AB |2, 所以x 21+y 21+ x 22+ y 22<( x 2-x 1)2+(y 2-y 1)2, 得x 1x 2+ y 1y 2<0恒成立.x 1x 2+ y 1y 2= x 1x 2+k 2(x 1-1) (x 2-1)=(1+k 2) x 1x 2-k 2(x 1+x 2)+ k 2=(1+k 2)2222222222222222222222222()a k a b a k a a b b k a b k k b a k b a k b a k--+--+=+++. 由题意得(a 2- a 2 b 2+b 2)k 2- a 2 b 2<0对k ∈R 恒成立.②当a 2- a 2b 2+b 2=0时,a =152+; ③当a 2- a 2b 2+b 2<0时,a 2- a 2(a 2-1)+ (a 2-1)<0,a 4- 3a 2+1>0, 解得a 235+a 235-,a >152,因此a ≥152+. 综合(i )(ii ),a 的取值范围为(152+,+∞). (22)本小题主要考查函数的单调性、最值、不等式、数列等基本知识,考查运用导数研究函数性质的方法,考查分析问题和解决问题的能力,满分14分. 解法一:(I )因为f(x)=ln(1+x )-x ,所以函数定义域为(-1,+∞),且f 〃(x)=11x +-1=1x x-+. 由f 〃(x )>0得-1<x <0,f (x )的单调递增区间为(-1,0); 由f 〃(x )<0得x >0,f (x )的单调递增区间为(0,+∞). (II)因为f (x )在[0,n]上是减函数,所以b n =f (n )=ln(1+n )-n , 则a n =ln(1+n )-b n =ln(1+n )-ln(1+n )+n =n . (i)222(2(2)22n n n a a a n n n n n n++=++=+++221.22n n n +=+++又2(2)12112x n n n n ++==+-+,因此c <1,即实数c 的取值范围是(-∞,1). (II )由(i 212 1.21n n n <+-+因为[135(21)246(2)n n ⋅⋅⋅⋅-⋅⋅⋅⋅⋅]2=3222133557(21)(21)11,246(2)2121n n n n n ⋅⋅⋅-+=⋅⋅⋅⋅⋅++< 所以135(21)246(2)21n n n -+<2121n n -(n ∈N *),则113135(21)224246(2)n n -+++<1313211222423153212121 1.n nna n n a a a a a a a a a a a a -++-=++++即<211(n a n +∈N *)解法二:(Ⅰ)同解法一.(Ⅱ)因为f (x )在[]0,n 上是减函数,所以()ln(1),n b f n n n ==+- 则ln(1)ln(1)ln(1).n n a n b n n n n =+-=+-++= (i 22n n n a a a ++-n ∈N*恒成立.22n n n +-+n ∈N*恒成立.则222cn n n +-+n ∈N*恒成立.设2()22,g n n n n =++ n ∈N*,则c <g (n )对n ∈N*恒成立. 考虑[)2()22,1,.g x x x x x =++∈+∞因为122211()1(2)?(22)11212x g x x x x x x x-+=-++=-++′=0, 所以[)()1,g x +∞在内是减函数;则当n ∈N*时,g (n )随n 的增大而减小,又因为2242lim ()lim(22)limlim222211x x x x ng n n n n n n nn n→∞→∞→∞→∞+=+-+==++++++ 1.所以对一切*N ,() 1.n g n ∈>因此c ≤1,即实数c 的取值范围是(-∞,1]. (ⅱ) 由(ⅰ)212 1.21n n n <+-+ 下面用数学归纳法证明不等式135(21)N ).246(2)21n n n n +-<∈+①当n =1时,左边=123,左边<右边.不等式成立. ②假设当n=k 时,不等式成立.即135(21)k -<当n=k +1时,32122321222122212121)22(2642)12(12531++++=++=++++⋯+⋯••••••k k k k k k k k k k k k k <)()-(=,1)1(2132132148243824++=++++++•k k k k k k k <即n =k +1时,不等式成立综合①、②得,不等式*)N (121)2(642)12(531∈+⋯-⋯••••••••n n n n <成立.所以1212)2(642)12(531--+⋯-⋯••••••••n n n n <)2(642)12(531423121n n ••••••••••⋯-⋯⋯+++.112123513-+=-⋯n n +=-+-< 即*)N (1212421231423121∈-⋯⋯⋯+++-n a a a a a a a a a a a a a n nn <+.08福建高考数学试卷(文史类)第Ⅰ卷(选择题共60分)一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)若集合A ={x |x 2-x <0},B={x |0<x <3},则A ∩B 等于 A.{x |0<x <1} B.{x |0<x <3} C.{x |1<x <3} D.¢ (2)“a=1”是“直线x+y =0和直线x-ay =0互相垂直”的A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件 (3)设|a n |是等左数列,若a 2=3,a 1=13,则数列{a n }前8项的和为 A.128 B.80 C.64 D.56(4)函数f (x )=x 3+sin x +1(x ∈R),若f (a )=2,则f (-a )的值为 A.3 B.0 C.-1 D.-2 (5)某一批花生种子,如果每1粒发芽的概率为45,那么播下3粒种子恰有2粒发芽的概率是 A.12125 B.16125 C.48125 D.96125(6)如图,在长方体ABCD -A 1B 1C 1D 1中,AB=BC =2,AA 1=1,则AC 1与平面A 1B 1C 1D 1所成角的正弦值为A.22 B.2 C.2 D.1(7)函数y =cos x (x ∈R)的图象向左平移2π个单位后,得到函数y=g(x )的图象,则g(x )的解析式为 A.-sin x B.sin x C.-cos x D.cos x (8)在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,若a 2+c 2-b 23ac ,则角B 的值为A.6π B.3π C.6π或56π D.3π或23π(9)某班级要从4名男士、2名女生中选派4人参加某次社区服务,如果要求至少有1名女生,那么不同的选派方案种数为A.14B.24C.28D.48(10)若实数x 、y 满足10,0,2,x y x x -+≤⎧⎪⎨⎪≤⎩则y x 的取值范围是A.(0,2)B.(0,2)C.(2,+∞)D.[2,+∞) (11)如果函数y=f (x )的图象如右图,那么导函数y=f (x )的图象可能是(12)双曲线22221x y a b-=(a >0,b >0)的两个焦点为F 1、F 2,若P 为其上一点,且|PF 1|=2|PE 2|,则双曲线离心率的取值范围为A.(1,3)B.(1,3)C.(3,+∞)D. [3,+∞]第Ⅱ卷(非选择题共90分)二、填空题:本大题共4小题,每小题4分,共16分,把答案填在答题卡的相应位置. (13)(x +1x)9展开式中x 2的系数是 .(用数字作答) (14)若直线3x+4y +m =0与圆x 2+y 2-2x +4y +4=0没有公共点,则实数m 的取值范围是 . (15)若三棱锥的三条侧棱两两垂直,且侧棱长均为3,则其外接球的表面积是 . (16)设P 是一个数集,且至少含有两个数,若对任意a 、b ∈P ,都有a+b 、a-b 、ab 、ab∈P (除数b ≠0)则称P 是一个数域,例如有理数集Q 是数域,有下列命题: ①数域必含有0,1两个数; ②整数集是数域;③若有理数集Q ⊆M ,则数集M 必为数域;④数域必为无限集.其中正确的命题的序号是 .(把你认为正确的命题的序号都填上)三、解答题:本大题共6小题,共74分,解答应写出文字说明,证明过程或演算步骤. (17)(本小题满分12分) 已知向量(sin ,cos ),(1,2)m A A n ==-,且0.m n = (Ⅰ)求tan A 的值;(Ⅱ)求函数()cos 2tan sin (f x x A x x =+∈R )的值域.(18)(本小题满分12分)三人独立破译同一份密码.已知三人各自破译出密码的概率分别为111,,,543且他们是否破译出密码互不影响. (Ⅰ)求恰有二人破译出密码的概率;(Ⅱ)“密码被破译”与“密码未被破译”的概率哪个大?说明理由.(19)(本小题满分12分) 如图,在四棱锥P —ABCD 中,侧面PAD ⊥底面ABCD ,侧棱PA =PD 2,底面ABCD 为直角梯形,其中BC ∥AD ,AB ⊥AD ,AD =2AB =2BC=2,O 为AD 中点. (Ⅰ)求证:PO ⊥平面ABCD ;(Ⅱ)求异面直线PB 与CD 所成角的余弦值; (Ⅲ)求点A 到平面PCD 的距离.(20)(本小题满分12分)已知{a n }是正数组成的数列,a 1=11,n n a a +)(n ∈N *)在函数y =x 2+1的图象上.(Ⅰ)求数列{a n }的通项公式;(Ⅱ)若列数{b n }满足b 1=1,b n +1=b n +2n a,求证:b n ·b n +2<b 2n +1.(21)(本小题满分12分)已知函数32()2f x x mx nx =++-的图象过点(-1,-6),且函数()()6g x f x x '=+的图象关于y 轴对称. (Ⅰ)求m 、n 的值及函数y =f (x )的单调区间;(Ⅱ)若a >0,求函数y =f (x )在区间(a -1,a +1)内的极值.(22)(本小题满分14分)如图,椭圆2222:1x y C a b+=(a >b >0)的一个焦点为F (1,0),且过点(2,0).(Ⅰ)求椭圆C 的方程;(Ⅱ)若AB 为垂直于x 轴的动弦,直线l :x =4与x 轴交于点N , 直线AF 与BN 交于点M . (ⅰ)求证:点M 恒在椭圆C 上; (ⅱ)求△AMN 面积的最大值.【数学试题(文史类)参考答案】一、选择题:本大题考查基本概念和基本运算.每小题5分,满分60分. (1)A (2)C (3)C (4)B (5)C (6)D (7)A (8)A (9)A (10)D (11)A (12)B 二、填空题:本大题考查基础知识和基本运算,每小题4分,满分16分. (13)84(14)(,0)(10,)-∞⋃+∞ (15)9π (16)①④三、解答题:本大题共6小题,共74分,解答应写出文字说明,证明过程或演算步骤.(17)本小题主要考查平面向量的数量积计算、三角函数的基本公式、三角恒等变换、一元二次函数的最值等基本知识,考查运算能力,满分12分. 解:(Ⅰ)由题意得 m ·n =sin A -2cos A =0,因为cos A ≠0,所以tan A =2. (Ⅱ)由(Ⅰ)知tan A =2得2213()cos 22sin 12sin 2sin 2(sin ).22f x x x x x x =+=-+=--+因为x ∈R,所以[]sin 1,1x ∈-. 当1sin 2x =时,f (x )有最大值32, 当sin x =-1时,f (x )有最小值-3, 所以所求函数f (x )的值域是33,.2⎡⎤-⎢⎥⎣⎦(18)本小题主要考查概率的基本知识与分类思想,考查运用数学知识分析问题、解决问题的能力.满分12分. 解:记“第i 个人破译出密码”为事件A 1(i =1,2,3),依题意有123111(),(),(),54.3P A P A P A ===且A 1,A 2,A 3相互独立.(Ⅰ)设“恰好二人破译出密码”为事件B ,则有B =A 1·A 2·3A ·A 1·2A ·A 3+1A ·A 2·A 3且A 1·A 2·3A ,A 1·2A ·A 3,1A ·A 2·A 3彼此互斥于是P (B )=P (A 1·A 2·3A )+P (A 1·2A ·A 3)+P (1A ·A 2·A 3)=314154314351324151⨯⨯+⨯⨯+⨯⨯ =203.答:恰好二人破译出密码的概率为203.(Ⅱ)设“密码被破译”为事件C ,“密码未被破译”为事件D .D =1A ·2A ·3A ,且1A ,2A ,3A 互相独立,则有 P (D )=P (1A )·P (2A )·P (3A )=324354⨯⨯=52.而P (C )=1-P (D )=53,故P (C )>P (D ). 答:密码被破译的概率比密码未被破译的概率大.(19)本小题主要考查直线与平面的位置关系、异面直线所成角、点到平面的距离等基本知识,考查空间想象能力,逻辑思维能力和运算能力.满分12分. 解法一:(Ⅰ)证明:在△PAD 卡中PA =PD ,O 为AD 中点,所以PO ⊥AD . 又侧面PAD ⊥底面ABCD ,平面PAD ∩平面ABCD =AD ,PO ⊂平面PAD , 所以PO ⊥平面ABCD.(Ⅱ)连结BO ,在直角梯形ABCD 中,BC ∥AD ,AD =2AB =2BC , 有OD ∥BC 且OD =BC ,所以四边形OBCD 是平行四边形, 所以OB ∥DC.由(Ⅰ)知PO ⊥OB ,∠PBO 为锐角,所以∠PBO 是异面直线PB 与CD 所成的角.因为AD =2AB =2BC =2,在Rt △AOB 中,AB =1,AO =1,所以OB =2, 在Rt △POA 中,因为AP =2,AO =1,所以OP =1, 在Rt △PBO 中,PB =322=+OB OP , cos ∠PBO =3632==PB OB , 所以异面直线PB 与CD 所成的角的余弦值为36. (Ⅲ)由(Ⅱ)得CD =OB =2, 在Rt △POC 中,PC =222=+OP OC ,所以PC =CD =DP ,S △PCD =43·2=23. 又S △=,121=•AB AD 设点A 到平面PCD 的距离h , 由V P-ACD =V A-PCD , 得31S △ACD ·OP =31S △PCD ·h , 即31×1×1=31×23×h ,解得h =332.(Ⅱ)以O 为坐标原点,OP OD OC 、、的方向分别为x 轴、y 轴、z 轴的正方向,建立空间直角坐标系O -xyz . 则A (0,-1,0),B (1,-1,0),C (1,0,0),D (0,1,0),P (0,0,1). 所以CD =(-1,1,0),PB =(t ,-1,-1), ∞〈PB 、CD 〉362311-•--==CDPB CD PB , 所以异面直线PB 与CD 所成的角的余弦值为36, (Ⅲ)设平面PCD 的法向量为n =(x 0,y 0,x 0), 由(Ⅱ)知CP =(-1,0,1),CD =(-1,1,0), 则 n ·CP =0,所以 -x 0+ x 0=0,n ·CD =0, -x 0+ y 0=0,即x 0=y 0=x 0,取x 0=1,得平面的一个法向量为n =(1,1,1). 又AC =(1,1,0).从而点A 到平面PCD 的距离d .33232==•nnAC (20)本小题主要考查等差数列、等比数列等基本知识,考查转化与化归思想,考查推理与运算能力.满分12分. 解法一:(Ⅰ)由已知得a n +1=a n +1、即a n +1-a n =1,又a 1=1,所以数列{a n }是以1为首项,公差为1的等差数列. 故a n =1+(a -1)×1=n.(Ⅱ)由(Ⅰ)知:a n =n 从而b n +1-b n =2n. b n =(b n -b n -1)+(b n -1-b n -2)+···+(b 2-b 1)+b 1=2n -1+2n -2+···+2+1=2121--n =2n -1. 因为b n ·b n +2-b 21+n =(2n -1)(2n +2-1)-(2n -1-1)2=(22n +2-2n +2-2n +1)-(22n +2-2-2n +1-1)=-5·2n +4·2n=-2n<0,所以b n ·b n +2<b 21+n ,(Ⅱ)因为b 2=1,b n ·b n +2- b 21+n =(b n +1-2n )(b n +1+2n +1)- b 21+n=2n +1·b n -1-2n ·b n +1-2n ·2n +1=2n (b n +1-2n +1) =2n (b n +2n -2n +1) =2n (b n -2n) = (2)(b 1-2)=-2n〈0, 所以b n -b n +2<b 2n +1(21)本小题主要考察函数的奇偶性、单调性、极值、导数、不等式等基础知识,考查运用导数研究函数性质的方法,以及分类与整合、转化与化归等数学思想方法,考查分析问题和解决问题的能力.满分12分. 解:(1)由函数f (x )图象过点(-1,-6),得m -n =-3, ……①由f (x )=x 3+mx 2+nx -2,得f ′(x )=3x 2+2mx +n ,则g (x )=f ′(x )+6x =3x 2+(2m +6)x +n ; 而g (x )图象关于y 轴对称,所以-3262⨯+m =0,所以m =-3, 代入①得n =0.于是f ′(x )=3x 2-6x =3x (x -2). 由f ′(x )>得x>2或x <0,故f (x )的单调递增区间是(-∞,0),(2,+∞); 由f ′(x )<0得0<x <2,故f (x )的单调递减区间是(0,2). (Ⅱ)由(Ⅰ)得f ′(x )=3x (x -2), 令f ′(x )=0得x =0或x=2.当变化时,()、()的变化情况如下表:X(-∞.0) 0 (0,2) 2 (2,+ ∞) f ′(x ) + 0 - 0 + f (x )极大值极小值由此可得:当0<a <1时,f (x )在(a -1,a +1)内有极大值f (O )=-2,无极小值; 当a =1时,f (x )在(a -1,a +1)内无极值;当1<a <3时,f (x )在(a -1,a +1)内有极小值f (2)=-6,无极大值; 当a ≥3时,f (x )在(a -1,a +1)内无极值.综上得:当0<a <1时,f (x )有极大值-2,无极小值,当1<a <3时,f (x )有极小值-6,无极大值;当a=1或a ≥3时,f (x )无极值.(22)本小题主要考查直线与椭圆的位置关系、轨迹方程、不等式等基本知识,考查运算能力和综合解题能力,满分14分, 解法一:(Ⅰ)由题设a =2,c =1,从而b 2=a 2-c 2=3,所以椭圆C 前方程为122=+y x .(Ⅱ)(i)由题意得F (1,0),N (4,0).设A (m,n ),则B (m ,-n )(n ≠0),3422n m +=1. ……① AF 与BN 的方程分别为:n (x -1)-(m -1)y =0, n (x -4)-(m -4)y =0.设M (x 0,y 0),则有 n (x 0-1)-(m -1)y 0=0, ……②n (x 0-4)+(m -4)y 0=0, ……③由②,③得x 0=523,52850-=--m ny m m .所以点M 恒在椭圆G 上.(ⅱ)设AM 的方程为x =xy +1,代入3422y x +=1得(3t 2+4)y 2+6ty -9=0.设A (x 1,y 1),M (x 2,y 2),则有:y 1+y 2=.439,4362212+-=+-t y y x x |y 1-y 2|=.4333·344)(2221221++=-+t t y y y y 令3t 2+4=λ(λ≥4),则 |y 1-y 2|=,+)--(=+)-(=- 412113411341·3432λλλλλ 因为λ≥4,0<时,,=,即=所以当04411,41≤1=t λλλ |y 1-y 2|有最大值3,此时AM 过点F . △AMN 的面积S △AMN=.292323y ·212121有最大值y y y y y FN -=-=- 解法二:(Ⅰ)问解法一: (Ⅱ)(ⅰ)由题意得F (1,0),N (4,0).设A (m ,n ),则B (m ,-n )(n ≠0), .13422=+n m ……① AF 与BN 的方程分别为:n (x -1)-(m -1)y =0, ……②n (x -4)-(m -4)y =0, ……③由②,③得:当≠523,528525-=--=x yn x x m 时,. ……④ 1)52(4936)85()52(412)85()52(3)52(4)85()52(3)52(4)85(34222222222222222020=--+-=-+-=-+--=-+--=+m m m m n m m n m m m n m m y x 由于由④代入①,得3422y x +=1(y ≠0). 当x=52时,由②,③得:3(1)023(4)0,2n m y n m y ⎧--=⎪⎪⎨⎪-++=⎪⎩解得0,0,n y =⎧⎨=⎩与a ≠0矛盾. 所以点M 的轨迹方程为221(0),43x x y +=≠即点M 恒在锥圆C 上. (Ⅱ)同解法一.2009年普通高等学校招生全国统一考试(福建卷)数学(理工农医类)一、选择题:本小题共10小题,每小题5分,共50分。
湖北卷一、选择题:本次题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1. 设a =(1,-2),b =(-3,4),c =(3,2),则(a +2b )·c =A.(-15,12)B.0C.-3D.-11 2. 若非空集合A ,B ,C 满足A ∪B=C ,且B 不是A 的子集,则A.“x ∈C ”是“x ∈A ”的充分条件但不是必要条件B. “x ∈C ”是“x ∈A ”的必要条件但不是充分条件C. “x ∈C ”是“x ∈A ”的充分条件D. “x ∈C ”是“x ∈A ”的充分条件也不是“x ∈A ”必要条件3. 用与球心距离为1的平面去截球,所得的截面面积为π,则球的休积为A.38π B.328π C.π28 D.332π4. 函数f (x )=)4323(1122+--++-x x x x n x的定义域为 A.(- ∞,-4)[∪2,+ ∞] B.(-4,0) ∪(0,1) C. [-4,0]∪(0,1)] D. [-4,0∪(0,1) 5.将函数y=3sin (x -θ)的图象F 按向量(3π,3)平移得到图象F ′,若F ′的一条对称轴是直线x=4π,则θ的一个可能取值是A.π125 B. π125- C. π1211 D. π12116.将5名志愿者分配到3个不同的奥运场馆参加接待工作,每个场馆至少分配一名志愿者的方案种数为A.540B.300C.180D.150 7.若f(x)=21ln(2)2x b x -++∞在(-1,+)上是减函数,则b 的取值范围是 A.[-1,+∞] B.(-1,+∞) C.(-∞,-1) D.(-∞,-1)8.已知m ∈N*,a,b ∈R ,若0(1)limm x x ab x→++=,则a ·b = A .-m B .m C .-1 D .1 9.过点A (11,2)作圆22241640xy x y ++--=的弦,其中弦长为整数的共有A.16条B.17条C.32条D.34条10.如图所示,“嫦娥一号”探月卫星沿地月转移轨道飞向月球,在月球附近一点P 轨进入以月球球心F 为一个焦点的椭圆轨道I 绕月飞行,之后卫星在P 点第二次变轨进入仍以F 为一个焦点的椭圆轨道Ⅱ绕月飞行,最终卫星在P 点第三次变轨进入以F 为圆心的圆形轨道Ⅲ绕月飞行,若用2c 1和2c 2分别表示椭轨道Ⅰ和Ⅱ的焦距,用2a 1和2a 2分别表示椭圆轨道Ⅰ和Ⅱ的长轴的长,给出下列式子:①a 1+c 1=a 2+c 2; ②a 1-c 1=a 2-c 2; ③c 1a 2>a 1c 1; ④31c c <22c a .其中正确式子的序号是A.①③B.②③C.①④D.②④二、填空题:本大题共5小题,每小题5分,共25分.把答案填在答题卡相应位置上. 11.设z 1=z 1-z 1(其中z 1表示z 1的共轭复数),已知z 2的实部是-1,则z 2的虚部为 .12.在△ABC 中,三个角A ,B ,C 的对边边长分别为a=3,b=4,c=6,则bc cosA+ca cosB+ab cosC 的值为 . 13.已知函数f(x)=x 2+2x+a,f(bx)=9x-6x +2,其中x ∈R ,a ,b 为常数,则方程f (ax+b )=0的解集为 .14.已知函数f(x)=2x,等差数列{a x }的公差为2.若f(a 2+a 4+a b +a 2+a 1)=4,则 Log 2[f(a 1)·f(a 2)·f(a)·…·f(a 10)]= . 15.观察下列等式:2122213222111,22111,326111,424ni ni n i i nn i n n n i n n n ====+=++=++∑∑∑ 444311111,52330ni i n n n n ==++-∑ 24,(1)(321),3n n n n a n b a n +-=--+ ……………………………………212112101,nkk k k k k k k k i ia n a n a n a n a n a +--+--==++++⋅⋅⋅++∑可以推测,当x ≥2(k ∈N*)时,1111,,12k k k a a a k +-===+ a k -2= .三、解答题:本大题共6小题,共75分,解答应写出文字说明,证明过程或演算步骤. 16.(本小题满分12分)已知函数f (t )=117,()cos (sin )sin (cos ),(,).112t g x x f x x f x x t ππ-=+∈+g g (Ⅰ)将函数g(x )化简成Asin(ωx +φ)+B (A >0,ω>0,φ∈[0,2π])的形式; (Ⅱ)求函数g(x )的值域. 17.(本小题满分12分)袋中有20个大小相同的球,其中记上0号的有10个,记上n 号的有n 个(n =1,2,3,4).现从袋中任取一球.ξ表示所取球的标号.(Ⅰ)求ξ的分布列,期望和方差;(Ⅱ)若η=a ξ-b ,E η=1,D η=11,试求a,b 的值.18.(本小题满分12分)如图,在直三棱柱ABC-A 1B 1C 1中,平面ABC ⊥侧面A 1ABB 1.(Ⅰ)求证:AB ⊥BC ;(Ⅱ)若直线AC 与平面A 1BC 所成的角为θ,二面角A 1-BC-A 的大小为φ的大小关系,并予以证明.19.(本小题满分13分)如图,在以点O为圆心,|AB|=4为直径的半圆ADB中,OD⊥AB,P是半圆弧上一点,∠POB=30°,曲线C是满足||MA|-|MB||为定值的动点M的轨迹,且曲线C过点P.(Ⅰ)建立适当的平面直角坐标系,求曲线C的方程;(Ⅱ)设过点D的直线l与曲线C相交于不同的两点E、F.若△OEF的面积不小于....2,求直线l斜率的取值范围.20.(本小题满分12分)水库的蓄水量随时间而变化,现用t表示时间,以月为单位,年初为起点,根据历年数据,某水库的蓄水量(单位:亿立方米)关于t的近似函数关系式为V(t)=12(1440)50,010, 4(10)(341)50,1012.xt t e tt t t⎧⎪-+-+≤⎨⎪--+≤⎩pp(Ⅰ)该水库的蓄求量小于50的时期称为枯水期.以i-1<t<t表示第1月份(i=1,2,…,12),同一年内哪几个月份是枯水期?(Ⅱ)求一年内该水库的最大蓄水量(取e=2.7计算).21.(本小题满分14分)已知数列{a n}和{b n}满足:a1=λ,a n+1=24,(1)(321),3nn n na nb a n+-=--+其中λ为实数,n为正整数.(Ⅰ)对任意实数λ,证明数列{a n}不是等比数列;(Ⅱ)试判断数列{b n}是否为等比数列,并证明你的结论;(Ⅲ)设0<a<b,S n为数列{b n}的前n项和.是否存在实数λ,使得对任意正整数n,都有a<S n<b?若存在,求λ的取值范围;若不存在,说明理由.参考答案一、选择题:本题考查基础知识和基本运算.每小题5分,满分50分.1.C2.B3.B4.D5.A6.D7.C8.A9.C 10.B二、填空题:本题考查基础知识和基本运算,每小题5分,满分25分.11.1 12. 61213.∅14.-6 15.12k,0三、解答题:本大题共6小题,共75分.16.本小题主要考查函数的定义域、值域和三角函数的性质等基本知识,考查三角恒等变换、代数式的化简变形和运算能力.(满分12分)解:(Ⅰ)()cos sin g x x x =cos sin x x =1sin 1cos cos sin .cos sin x xx x x x--=+g g17,,cos cos ,sin sin ,12x x x x x π⎛⎤∈π∴=-=- ⎥⎝⎦Q 1sin 1cos ()cos sin cos sin x x g x x x x x --∴=+--g gsin cos 2x x =+-2.4x π⎛⎫+- ⎪⎝⎭(Ⅱ)由1712x ππ≤<,得55.443x πππ+≤< sin t Q 在53,42ππ⎛⎤ ⎥⎝⎦上为减函数,在35,23ππ⎛⎤⎥⎝⎦上为增函数,又5535sinsin ,sin sin()sin 34244x πππππ∴≤+<<(当17,2x π⎛⎤∈π ⎥⎝⎦),即1sin()2)2344x x ππ-≤+≤+--<<,故g (x )的值域为)2,3.⎡-⎣17.本小题主要考查概率、随机变量的分布列、期望和方差等概念,以及基本的运算能力.(满分12分) 解:(Ⅰ)ξ的分布列为:∴01234 1.5.22010205E ξ=⨯+⨯+⨯+⨯+⨯= 2222211131(0 1.5)(1 1.5)(2 1.5)(3 1.5)(4 1.5) 2.75.22010205ξ=-⨯+-⨯+-⨯+-⨯+-⨯=(Ⅱ)由D a D η=ξ2,得a 2×2.75=11,即 2.a =±又,E aE b η=ξ+所以当a =2时,由1=2×1.5+b ,得b =-2; 当a =-2时,由1=-2×1.5+b ,得b =4.∴2,2a b =⎧⎨=-⎩或2,4a b =-⎧⎨=⎩即为所求.18.本小题主要考查直棱柱、直线与平面所成角、二面角和线面关系等有关知识,同时考查空间想象能力和推理能力.(满分12分) (Ⅰ)证明:如右图,过点A 在平面A 1ABB 1内作AD ⊥A 1B 于D ,则由平面A 1BC ⊥侧面A 1ABB 1,且平面A 1BC I 侧面A 1ABB 1=A 1B ,得 AD ⊥平面A 1BC ,又BC ⊂平面A 1BC , 所以AD ⊥BC .因为三棱柱ABC —A 1B 1C 1是直三棱柱, 则AA 1⊥底面ABC , 所以AA 1⊥BC.又AA 1I AD =A ,从而BC ⊥侧面A 1ABB 1, 又AB ⊂侧面A 1ABB 1,故AB ⊥BC .(Ⅱ)解法1:连接CD ,则由(Ⅰ)知ACD ∠是直线AC 与平面A 1BC 所成的角,1ABA ∠是二面角A 1—BC —A 的平面角,即1,,ACD ABA ∠=θ∠=ϕ于是在Rt △ADC 中,sin ,AD AC θ=在Rt △ADB 中,sin ,ADABϕ= 由AB <AC ,得sin sin θϕ<,又02πθϕ<,<,所以θϕ<,解法2:由(Ⅰ)知,以点B 为坐标原点,以BC 、BA 、BB 1所在的直线分 别为x 轴、y 轴、z 轴,建立如图所示的空间直角坐标系,设AA 1=a ,AC =b ,AB =c ,则 B (0,0,0), A (0,c ,0), 221(,0,0),(0,,),C b c A c a -于是1(0,,),BC BA c a ==u u u r u u u r1,0),(0,0,).AC c AA a =-=u u u r u u u r设平面A 1BC 的一个法向量为n =(x ,y ,z ),则由10,0,n BA n BC ⎧=⎪⎨=⎪⎩u u u r g u u u r g得0,0,cy az +=⎧= 可取n =(0,-a ,c ),于是0n AC ac AC =u u u r u u u rg >,与n 的夹角β为锐角,则β与θ互为余角. sin cos n AC n AC θ-β==u u u r g u u u r g11cos BA BA BA BA ϕ==u u u r u u u r g u u u r u u u r g所以sin ϕ= 于是由c <b即sin sin ,θϕ<又0,2πθϕ<,<所以,θϕ< 19.本小题主要考查直线、圆和双曲线等平面解析几何的基础知识,考查轨迹方程的求法、不等式的解法以及综合解题能力.(满分13分)(Ⅰ)解法1:以O 为原点,AB 、OD 所在直线分别为x 轴、y 轴,建立平面直角坐标系,则A (-2,0),B (2,0),D (0,2),P (1,3),依题意得|MA |-|MB |=|PA |-|PB |=221321)32(2222=)(+--++<|AB |=4.∴曲线C 是以原点为中心,A 、B 为焦点的双曲线. 设实平轴长为a ,虚半轴长为b ,半焦距为c , 则c =2,2a =22,∴a 2=2,b 2=c 2-a 2=2.∴曲线C 的方程为12222=-y x . 解法2:同解法1建立平面直角坐标系,则依题意可得|MA |-|MB |=|PA |-|PB |< |AB |=4.∴曲线C 是以原点为中心,A 、B 为焦点的双曲线.设双曲线的方程为a by a x (12222=->0,b >0).则由.4,11)3(222222=+=-b a b a 解得a 2=b 2=2,∴曲线C 的方程为.12222=-y x(Ⅱ)解法1:依题意,可设直线l 的方程为y =kx +2,代入双曲线C 的方程并整理得(1-K 2)x 2-4kx-6=0. ∵直线l 与双曲线C 相交于不同的两点E 、F , ∴,0)1(64)4(,01222>-⨯+-=∆≠-k k k ⇔.33,1<<-±≠k k∴k ∈(-3,-1)∪(-1,1)∪(1,3).设E (x ,y ),F (x 2,y 2),则由①式得x 1+x 2=k x x k k --=-16,14212,于是|EF |=2212221221))(1()()(x x k x y x x -+=++-=.132214)(1222212212kk k x x x x k --⋅+=-+⋅+而原点O 到直线l 的距离d =212k+,∴S △DEF =.132213221122121222222kk k k k k EF d --=--⋅+⋅+⋅=⋅ 若△OEF 面积不小于22,即S△OEF22≥,则有 解得.22,022********2≤≤-≤--⇔≥--k k k k k ③综合②、③知,直线l 的斜率的取值范围为[-2,-1]∪(1-,1) ∪(1, 2).解法2:依题意,可设直线l 的方程为y =kx +2,代入双曲线C 的方程并整理, 得(1-K 2)x 2-4kx -6=0.∵直线l 与双曲线C 相交于不同的两点E 、F ,∴.0)1(64)4(,01222>-⨯+-=∆≠-k k k ⇔33,1<<-±≠k k .∴k ∈(-3,-1)∪(-1,1)∪(1,3).设E (x 1,y 1),F (x 2,y 2),则由①式得 |x 1-x 2|=.132214)(22221221kk kx x x x --=-∆=-+ ③当E 、F 在同一去上时(如图1所示),S △OEF =;21212121x x OD x x OD S S ODE ODF -⋅=-⋅=-∆∆ 当E 、F 在不同支上时(如图2所示).+=∆∆ODF OEF S S S△ODE=.21)(212121x x OD x x OD -⋅=+⋅ 综上得S △OEF =,2121x x OD -⋅于是 由|OD |=2及③式,得S △OEF =.132222kk --若△OEF 面积不小于2则有即,22,2≥∆OEF S.22,022*******2≤≤-≤-⇔≥--k k k kk 解得④综合②、④知,直线l 的斜率的取值范围为[-2,-1]∪(-1,1)∪(1,2).20.本小题主要考查函数、导数和不等式等基本知识,考查用导数求最值和综合运用数学知识解决实际问题能力.(满分12分)解:(Ⅰ)①当0<t ≤10时,V (t )=(-t 2+14t -40),5050441<+e化简得t 2-14t +40>0,解得t <4,或t >10,又0<t ≤10,故0<t <4. ②当10<t ≤12时,V (t )=4(t -10)(3t -41)+50<50, 化简得(t -10)(3t -41)<0, 解得10<t <341,又10<t ≤12,故 10<t ≤12. 综合得0<t <4,或10<t 12,故知枯水期为1月,2月,,3月,4月,11月,12月共6个月. (Ⅱ)(Ⅰ)知:V (t )的最大值只能在(4,10)内达到.由V ′(t )=),8)(2(41)42341(41241-+-=++-t t c t t c tt令V ′(t )=0,解得t=8(t=-2舍去).当t 变化时,V ′(t ) 与V (t )的变化情况如下表:由上表,V (t )在t =8时取得最大值V (8)=8e 2+50-108.52(亿立方米). 故知一年内该水库的最大蓄水量是108.32亿立方米21.本小题主要考查等比数列的定义、数列求和、不等式等基础知识和分类讨论的思想,考查综合分析问题的能力和推理认证能力,(满分14分)(Ⅰ)证明:假设存在一个实数λ,使{a n }是等比数列,则有a 22=a 1a 3,即,094949494)494()332(222=⇔-=+-⇔-=-λλλλλλλ矛盾. 所以{a n }不是等比数列.(Ⅱ)解:因为b n +1=(-1)n +1[a n +1-3(n -1)+21]=(-1)n +1(32a n -2n +14) =32(-1)n·(a n -3n +21)=-32b n又b 1x -(λ+18),所以当λ=-18,b n =0(n ∈N +),此时{b n }不是等比数列: 当λ≠-18时,b 1=(λ+18) ≠0,由上可知b n ≠0,∴321-=+n a b b (n ∈N +). 故当λ≠-18时,数列{b n }是以-(λ+18)为首项,-32为公比的等比数列. (Ⅲ)由(Ⅱ)知,当λ=-18,b n =0,S n =0,不满足题目要求. ∴λ≠-18,故知b n = -(λ+18)·(-32)n-1,于是可得S n =-.321·)18(53⎥⎦⎤⎢⎣⎡+n )-(- λ要使a <S n <b 对任意正整数n 成立, 即a <-53(λ+18)·[1-(-32)n]〈b(n ∈N +) ,则令 得)2(1)()32(1)18(53)32(1--=--<+-<--n f b a nnλ ①当n 为正奇数时,1<f (n ),1)(95;35<≤≤n f n 为正偶数时,当 ∴f (n )的最大值为f (1)=35,f (n )的最小值为f (2)= 95,于是,由①式得95a <-53(λ+18),<.1831853--<<--⇔a b b λ当a <b ≤3a 时,由-b -18≥=-3a -18,不存在实数满足题目要求;当b >3a 存在实数λ,使得对任意正整数n ,都有a <S n <b ,且λ的取值范围是(-b -18,-3a -18)。
2008年河南省专升本(高等数学)真题试卷(题后含答案及解析) 题型有:1. 选择题 2. 填空题 4. 解答题 5. 综合题 6. 证明题选择题在每小题给出的四个选项中,只有一项是符合要求的。
1.函数f(x)=ln(1-x)+的定义域是( )A.[-2,-1]B.[-2,1]C.[-2,1)D.(-2,1)正确答案:C解析:解不等式组,得C为正确选项.2.= ( )A.1B.0C.D.正确答案:D解析:3.点x=0是函数y=的( )A.连续点B.跳跃间断点C.可去间断点D.第二类间断点正确答案:B解析:=-1,左右极限均存在,但不相等,故选B.4.下列极限存在的是( )A.B.C.D.正确答案:B解析:选项A的极限为正的无穷大,选项B的极限为2,选项C的极限振荡不存在,选项D的极限也为正的无穷大.5.当x→0时,ln(1+x2)是比1-cosx的( )A.低阶无穷小B.高阶无穷小C.等价无穷小D.同阶但不等价无穷小正确答案:D解析:因为=2故选D.6.设函数f(x)=,则f(x) ( )A.在x=-1处连续,在x=0处不连续B.在x=0处连续,在x=-1处不连续C.在x=-1,x=0处均连续D.在x=-1,x=0处均不连续正确答案:A解析:=1=f(-1),所以f(x)在x=-1处连续;,所以在x=0处不连续7.过曲线y=arctanx+ex上的点(0,1)处的法线方程为( )A.2x-y+1=0B.x-2y+2=0C.2x-y-1=0D.x+2y-2=0正确答案:D解析:y’=+ex,曲线上点(0,1)处的切线斜率为y’|0=2,所以法线的斜率为k=,因此法线方程为y-1=(x-0),即x+2y-2=08.设函数f(x)在x=0处满足f(x)=f(0)-3x+a(x),且=0,则f’(0)=( ) A.-1B.1C.-3D.3正确答案:C解析:f’(0)=9.函数(x)=(lnx)x(x>1),则f’(x)= ( )A.(lnx)x-1B.(lnx)x-+(lnx)xln(lnx)C.(lnx)xln(lnx)D.x(lnx)x正确答案:B解析:f(x)=(lnx)x=exln(lnx),则f’(x)=exln(lnx)×[ln(lnx)+],即f’(x)=(lnx)x[ln(lnx)+]=(lnx)x-1+(lnx)xln(lnx)·10.设函数y=y(x)由参数方程确定,则= ( )A.-2B.-1C.D.正确答案:D解析:11.下列函数中,在区间[-1,1]上满足罗尔定理条件的是( )A.y=exB.y=ln|x|C.y=1-x2D.y=正确答案:C解析:选项A在[-1,1]两端的值不相等,选项B在[-1,1]内不连续,选项D在[-1,1]内不连续.12.曲线y=x3+5x-2的拐点是( )A.x=0B.(0,-2)C.无拐点D.z=0,y=-2正确答案:B解析:y’=3x2+5,令y’’=6x=0,得x=0,此时y=-2,当x>0时,f’’>0;当x ( )A.仅有水平渐近线B.既有水平渐近线,又有垂直渐近线C.仅有垂直渐近线D.既无水平渐近线,又无垂直渐近线正确答案:B解析:因=+∞,所以有垂直渐近线,又因=0,所以有水平渐近线14.f(x)的一个原函数是xlnx,那么∫x2f’’(x)x= ( )A.lnx+CB.x2+CC.x3lnx+CD.C-x正确答案:D解析:f(x)的一个原函数是xlnx,则f(x)=(xlnx)l=lnx+1,f’(x)=,f’’(x)=,那么∫x2f’’(x)dx=∫-1dx=-x+C.15.= ( )A.B.C.ln(x-3)-ln(x-1)+CD.ln(x-1)-ln(x-3)+C正确答案:A解析:16.设I=,则I的取值范围为( )A.0≤I≤1B.≤I≤1C.0≤I≤D.<I<1正确答案:B解析:在区间[0,1]上,1≤1+x4≤2,从而,所以选B.17.下列广义积分收敛的是( )A.B.C.D.正确答案:D解析:因广义积分(a>1)在k>1时均收敛,k≤1时均发散,所以选项A、B、C中积分均发散,故选D.18.= ( )A.B.C.D.正确答案:D解析:19.若函数f(x)为可导函数,f(x)>0,且满足f2(x)=ln22-,则f(x)= ( )A.ln(1+cosx)B.-ln(1+cosx)+CC.-ln(1+cosx)D.ln(1+cosx)+C正确答案:A解析:对f2(x)=ln22-两边求导得,2f(x)f’(x)=,即f’(x)=+cosx=ln(1+cosx)+C,又因f(x)满足初始条件f(0)=ln2,代入上式可得C=0,所以f(x)=ln(1+cosx).20.若函数f(x)满足f(x)=x+1-f(x)dx,则f(x)=( )A.B.C.D.正确答案:C解析:因为f(x)dx的值为常数,不妨令其为k,则对f(x)=x+1-f(x)dx 两边同时积分得k==2-k,所以k=1,从而f(x)=x+1-21.若I=,则I=( )A.B.C.D.正确答案:C解析:I=22.直线与平面4x-3y+7z=5的位置关系是( )A.直平与平面斜B.直线与平面垂直C.直线在平面内D.直线与平面平行正确答案:D解析:直线的方向向量为={5,9,1},平面的法向量为={4,-3,7},因为=0,即,从而可知直线与平面平行或重合,又因直线过定点M0(-2,-4,0),将该点坐标代人平面方程得4×(-2)-3×(-4)+7×0=4≠5,即表明该点不在平面内,故选D.23.= ( )A.2B.3C.1D.不存在正确答案:A解析:令x2+y2=t,则24.曲面z=x2+y2在点(1,2,5)处的切平面方程为( )A.2x+4y-z=5B.4x+2y-z=5C.x+2y-4z=5D.2x-4y+z=5正确答案:A解析:令F(x,y,z)=x2+y2-z,则(x,y,z)=2x,(z,y,z)=2y,(x,y,z)=-1,则在点(1,2,5)处,=2,=4,=-1,曲面z=x2+y2在该点处切平面的法向量为{2,4,-1},所以切平面方程为2(x-1)+4(y-2)-(x-5)=0,即2x+4y-z=5.25.设函数z=x3y-xy3,则= ( )A.6xyB.3x2-3y2C.-6xyD.3y2-3x2正确答案:B解析:=3x2y-y3,=3x2-3y226.如果区域D被分成两个子区域D1和D2,且f(x,y)dxdy=5,f(x,y)dxdy=1,则f(x,y)dxdy= ( )A.5B.4C.6D.1正确答案:C解析:如果区域D被分成两个子区域D1和D2,则f(x,y)dxdy=f(x,y)dxdy+f(x,y)dxay=5+1=6.27.如果L是摆线从点a(2π,0)到B(0,0)的一段弧,则曲线积分∫L(x2y+3xex)dx+(-ysiny)dy= ( )A.e2π(1-2π)-1B.2[eπ(1-2π)-1]C.3[e2π(1-2π)-1]D.4[e2π(1-2π)-1]正确答案:C解析:令P(x,y)=x2y+3xex,Q(x,y)=,则表明曲线积分与路径无关,取x轴上从A(2π,0)到B(0,0)的直线段,则有∫L(x2y+3xex)dx+(x3-ysiny)dy==3[e2π(1-2π)-]28.通解为y=Cex(C为任意常数)的微分方程为( )A.y’+y=0B.y’-y=0C.y’y=1D.y’-y+1=0正确答案:B解析:对y=Cex求导可得y’=Cex=y,即y-y’=0.显然B为正确选项.29.微分方程y’’+y=ce-x的特解形式应设为( )A.x(ax+b)e-xB.ax+bC.(ax+b)e-xD.x2(ax+b)e-x正确答案:A解析:根据自由项的形式为f(x)=xe-x,知多项式为1次多项式,且λ=-1,又知y’’+y’=0对应特征方程的根为r1=0,r2=-1,所以λ为单根,故特解形式应设为x(ax+b)e-x30.下列四个级数中,发散的级数是( )A.B.C.D.正确答案:B解析:的一般项为,其极限为≠0,故选项B的级数为发散的填空题31.(x)=A的______条件是正确答案:充要解析:函数在点x0处极限存在的充分必要条件是左右极限存在且相等.32.函数y=x-sinx在区间(0,2π)内单调______,其曲线在区间(0,)内的凹凸性为______的正确答案:递增凹解析:因y’=1-cosx,在区间(0,2π)内y’≥0,故单调递增;y’=sinx在区间(0,)内恒大于0,故为凹的.33.设方程3x2+2y2+z2=a(a为常数)所确定的隐函数为z=f(x,y),则=______正确答案:解析:方程两边同时对x求偏导(视y为常数),得6x+2z.34.=______正确答案:2-2ln(1+)+C解析:=2t-2ln(1+t)+C=2-2ln(1+)+C 35.=________正确答案:0解析:对称区间上奇函数的定积分恒为零.36.在空间直角坐标系中,以点A(0,-4,1),B(-1,-3,1),C(2,-4,0)为顶点的△ABC的面积为________正确答案:解析:={-1,1,0},={2,0,-1},则={-1,-1,-2},,故S△ABC=37.方程组在空间直角坐标系下的图形为________正确答案:两条平行直线解析:将x=-2代入=1,得y=,则该方程组的另一种形式为,因此在空间直角坐标系下的图形表示两条平行直线。
2008年7月高等教育自学考试全国统一命题考试高等数学(工本) 试卷课程代码 0023一、单项选择题(本大题共5小题,每小题3分,共15分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1.与向量{-1,1,-1}平行的单位向量是( )A .{,,}B .{,,}C .{0,0,0}D .{,,}2. 设函数f(x,y)=f 1(x)f 2(y)在(x 0,y 0)处偏导数存在,则f y (x 0,y 0)=( )A .f 1(x 0)B .C .f 2(y 0)D .3. 设为球面x 2+y 2+z 2=1,则对面积的曲面积分(x 2+y 2+z 2)dS=( )A .B .2C .3D .44. 微分方程(e x+y -e x )dx -(e y -e x+y )dy =0是( )A .可分离变量的微分方程B .齐次微分方程C .一阶线性非齐次微分方程D .一阶线性齐次微分方程 5. 下列无穷级数中,收敛的无穷级数是( ) A .n sin B .C .D .ln二、填空题(本大题共5小题,每小题2分,共10分)请在每小题的空格中填上正确答案。
错填、不填均无分。
6.设函数z =xy ,则全微分dz =_____________.7.设函数z=,则=_____________.8. 设积分区域D :0≤x ≤2,-1≤y ≤0,则二重积分2dxdy =_____________.9. 通解为y =C 1sin x+C 2cos x (C 1,C 2为任意常数)的二阶常系数线性齐次微分方程为_____________.10. 无穷级数x n 的和函数为_____________.三、计算题(本大题共12小题,每小题5分,共60分)11.求点P (3,-2,2)在平面2x -3y +z =0上的投影点的坐标. 31-31-31-3131-313131310lim →h h y f h y f )()(0202-+0lim →h h y f h y f )()(0202-+0lim →h h x f h x f )()(0101-+0lim →h h x f h x f )()(0101-+∑⎰∑ππππ∑∞=1n n 3∑∞=1n n n n n )1(3+∑∞=1n 132+n ∑∞=1n 1+n n xy y x e +-x z ∂∂⎰⎰D ∑∞=1n !1n12.设函数z =f (x +2y ,2x -y ),其中f 是可微函数,求和.13.设方程z 5-5xyz =5确定函数z =z (x ,y ),求和.14.已知函数f (x ,y ,z )=3x 2+2y 2+z 2-yz -2x -3z +1,求梯度grad f (1,1,1)15.求曲线x =,y =,z =2t 2在t =1所对应的点处的切线方程.16.计算二重积分I=xdxdy ,其中积分区域D 是由直线y =x ,x +y =2及x 轴所围成. 17.计算三重积分I=(x 2+y 2)dxdydz ,其中积分区域Ω是由锥面z =及平面z =1所围成. 18.计算对弧长的曲线积分[(x 2+y 2)2-1]ds ,其中L 是圆周x 2+y 2=9. 19.计算对坐标的曲线积分xdy -ydx ,其中L 是椭圆x=acost,y=bsint(0≤t ≤2)的逆时针方向。
2008年江苏省高考数学试卷一、填空题(共14小题,每小题5分,满分70分)1.(5分)(2008•江苏)若函数最小正周期为,则ω=_________.2.(5分)(2008•江苏)若将一颗质地均匀的骰子(一种各面上分别标有1,2,3,4,5,6个点的正方体玩具),先后抛掷两次,则出现向上的点数之和为4的概率是_________.3.(5分)(2008•江苏)若将复数表示为a+bi(a,b∈R,i是虚数单位)的形式,则a+b=_________.4.(5分)(2008•江苏)若集合A={x|(x﹣1)2<3x+7,x∈R},则A∩Z中有_________个元素.5.(5分)(2008•江苏)已知向量和的夹角为120°,,则=_________.6.(5分)(2008•江苏)在平面直角坐标系xoy中,设D是横坐标与纵坐标的绝对值均不大于2的点构成的区域,E是到原点的距离不大于1的点构成的区域,向D中随机投一点,则所投点在E中的概率是_________.7.(5分)(2008•江苏)某地区为了解70﹣80岁的老人的日平均睡眠时间(单位:h),随机选择了50位老人进行调查,下表是这50位老人睡眠时间的频率分布表:序号i 分组(睡眠时间)组中值(G i)频数(人数)频率(F i)1 [4,5) 4.5 6 0.122 [5,6) 5.5 10 0.203 [6,7) 6.5 20 0.404 [7,8)7.5 10 0.205 [8,9]8.5 4 0.08在上述统计数据的分析中一部分计算见算法流程图,则输出的S的值为_________.8.(5分)(2008•江苏)设直线y=x+b是曲线y=lnx(x>0)的一条切线,则实数b的值为_________.9.(5分)(2008•江苏)如图,在平面直角坐标系xoy中,设三角形ABC的顶点分别为A(0,a),B(b,0),C (c,0),点P(0,p)在线段AO上的一点(异于端点),这里a,b,c,p均为非零实数,设直线BP,CP分别与边AC,AB交于点E,F,某同学已正确求得直线OE的方程为,请你完成直线OF 的方程:_________.10.(5分)(2008•江苏)将全体正整数排成一个三角形数阵:按照以上排列的规律,第n行(n≥3)从左向右的第3个数为_________.11.(5分)(2008•江苏)设x,y,z为正实数,满足x﹣2y+3z=0,则的最小值是_________.12.(5分)(2008•江苏)在平面直角坐标系xOy中,椭圆的焦距为2c,以O为圆心,a 为半径作圆M,若过作圆M的两条切线相互垂直,则椭圆的离心率为_________.13.(5分)(2008•江苏)满足条件AB=2,AC=BC的三角形ABC的面积的最大值是_________.14.(5分)(2008•江苏)f(x)=ax3﹣3x+1对于x∈[﹣1,1]总有f(x)≥0成立,则a=_________.二、解答题(共12小题,满分90分)15.(15分)(2008•江苏)如图,在平面直角坐标系xOy中,以Ox轴为始边作两个锐角α,β,它们的终边分别交单位圆于A,B两点.已知A,B两点的横坐标分别是,.(1)求tan(α+β)的值;(2)求α+2β的值.16.(15分)(2008•江苏)如图,在四面体ABCD中,CB=CD,AD⊥BD,点E,F分别是AB,BD的中点.求证:(1)直线EF∥面ACD;(2)平面EFC⊥面BCD.17.(15分)(2008•江苏)如图,某地有三家工厂,分别位于矩形ABCD的两个顶点A,B及CD的中点P处.AB=20km,BC=10km.为了处理这三家工厂的污水,现要在该矩形区域上(含边界)且与A,B等距的一点O处,建造一个污水处理厂,并铺设三条排污管道AO,BO,PO.记铺设管道的总长度为ykm.(1)按下列要求建立函数关系式:(i)设∠BAO=θ(rad),将y表示成θ的函数;(ii)设OP=x(km),将y表示成x的函数;(2)请你选用(1)中的一个函数关系确定污水处理厂的位置,使铺设的污水管道的总长度最短.18.(15分)(2008•江苏)在平面直角坐标系xOy中,记二次函数f(x)=x2+2x+b(x∈R)与两坐标轴有三个交点.经过三个交点的圆记为C.(1)求实数b的取值范围;(2)求圆C的方程;(3)问圆C是否经过定点(其坐标与b的无关)?请证明你的结论.19.(15分)(2008•江苏)(1)设a1,a2,…,a n是各项均不为零的n(n≥4)项等差数列,且公差d≠0,若将此数列删去某一项后得到的数列(按原来的顺序)是等比数列.(i)当n=4时,求的数值;(ii)求n的所有可能值.(2)求证:对于给定的正整数n(n≥4),存在一个各项及公差均不为零的等差数列b1,b2,…,b n,其中任意三项(按原来的顺序)都不能组成等比数列.20.(15分)(2008•江苏)已知函数,(x∈R,p1,p2为常数).函数f(x)定义为:对每个给定的实数x,(1)求f(x)=f1(x)对所有实数x成立的充分必要条件(用p1,p2表示);(2)设a,b是两个实数,满足a<b,且p1,p2∈(a,b).若f(a)=f(b),求证:函数f(x)在区间[a,b]上的单调增区间的长度之和为(闭区间[m,n]的长度定义为n﹣m)21.(2008•江苏)如图,△ABC的外接圆的切线AE与BC的延长线相交于点E,∠BAC的平分线与BC交于点D.求证:ED2=EB•EC.22.(2008•江苏)在平面直角坐标系xOy中,设椭圆4x2+y2=1在矩阵对应的变换作用下得到曲线F,求F的方程.23.(2008•江苏)在平面直角坐标系xOy中,点P(x,y)是椭圆上的一个动点,求S=x+y的最大值.24.(2008•江苏)设a,b,c为正实数,求证:.25.(2008•江苏)记动点P是棱长为1的正方体ABCD﹣A1B1C1D1的对角线BD1上一点,记.当∠APC 为钝角时,求λ的取值范围.26.(2008•江苏)请先阅读:在等式cos2x=2cos2x﹣1(x∈R)的两边求导,得:(cos2x)′=(2cos2x﹣1)′,由求导法则,得(﹣sin2x)•2=4cosx•(﹣sinx),化简得等式:sin2x=2cosx•sinx.(1)利用上题的想法(或其他方法),结合等式(1+x)n=C n0+C n1x+C n2x2+…+C n n x n(x∈R,正整数n≥2),证明:.(2)对于正整数n≥3,求证:(i);(ii);(iii).2008年江苏省高考数学试卷参考答案与试题解析一、填空题(共14小题,每小题5分,满分70分)1.(5分)考点:三角函数的周期性及其求法.专题:计算题.分析:根据三角函数的周期公式,即T=可直接得到答案.解答:解:.故答案为:10点评:本小题考查三角函数的周期公式,即T=.2.(5分)考点:古典概型及其概率计算公式.专题:计算题.分析:分别求出基本事件数,“点数和为4”的种数,再根据概率公式解答即可.解答:解析:基本事件共6×6个,点数和为4的有(1,3)、(2,2)、(3,1)共3个,故.故填:.点评:本小题考查古典概型及其概率计算公式,考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.3.(5分)考点:复数的基本概念;复数代数形式的乘除运算.专题:计算题.分析:利用复数除法的法则:分子分母同乘以分母的共轭复数.解答:解:.∵,∴a=0,b=1,因此a+b=1故答案为1点评:本小题考查复数的除法运算.4.(5分)考点:交集及其运算.分析:先化简集合A,即解一元二次不等式(x﹣1)2<3x+7,再与Z求交集.解答:解:由(x﹣1)2<3x+7得x2﹣5x﹣6<0,∴A=(﹣1,6),因此A∩Z={0,1,2,3,4,5},共有6个元素.故答案是6点评:本小题考查集合的运算和解一元二次不等式.5.(5分)考点:向量的模.专题:计算题.分析:根据向量的数量积运算公式得,化简后把已知条件代入求值.解答:解:由题意得,=,∴=7.故答案为:7.点评:本小题考查向量模的求法,即利用数量积运算公式“”进行求解.6.(5分)考点:古典概型及其概率计算公式.专题:计算题.分析:本题是一个几何概型,试验包含的所有事件是区域D表示边长为4的正方形的内部(含边界),满足条件的事件表示单位圆及其内部,根据几何概型概率公式得到结果.解答:解析:本小题是一个几何概型,∵试验包含的所有事件是区域D表示边长为4的正方形的内部(含边界),面积是42=16,满足条件的事件表示单位圆及其内部,面积是π×12根据几何概型概率公式得到∴故答案为:.点评:本题考查几何概型,几何概型的概率的值是通过长度、面积、和体积、的比值得到,本题是通过两个图形的面积之比得到概率的值.本题可以以选择和填空形式出现.7.(5分)考点:频率分布表;工序流程图(即统筹图).专题:图表型.分析:观察算法流程图知,此图包含一个循环结构,即求G1F1+G2F2+G3F3+G4F4+G5F5的值,再结合直方图中数据即可求解.解答:解:由流程图知:S=G1F1+G2F2+G3F3+G4F4+G5F5=4.5×0.12+5.5×0.20+6.5×0.40+7.5×0.2+8.5×0.08=6.42,故填:6.42.点评:本题考查读频率分布直方图、算法流程图的能力和利用统计图获取信息的能力.利用图表获取信息时,必须认真观察、分析、研究图表,才能作出正确的判断和解决问题.8.(5分)考点:利用导数研究曲线上某点切线方程.专题:计算题.分析:欲实数b的大小,只须求出切线方程即可,故先利用导数求出在切点处的导函数值,再结合导数的几何意义即可求出切线的斜率,最后求出切线方程与已知直线方程对照即可.解答:解:y′=(lnx)′=,令=得x=2,∴切点为(2,ln2),代入直线方程y=x+b,∴ln2=×2+b,∴b=ln2﹣1.故答案为:ln2﹣1点评:本小题主要考查直线的方程、导数的几何意义、利用导数研究曲线上某点切线方程等基础知识,考查运算求解能力.属于基础题.9.(5分)考点:直线的一般式方程;归纳推理.专题:转化思想.分析:本题考查的知识点是类比推理,我们类比直线OE的方程为,分析A(0,a),B(b,0),C(c,0),P(0,p),我们可以类比推断出直线OF的方程为:.解答:解:由截距式可得直线AB:,直线CP:,两式相减得,显然直线AB与CP的交点F满足此方程,又原点O也满足此方程,故为所求直线OF的方程.故答案为:.点评:类比推理的一般步骤是:(1)找出两类事物之间的相似性或一致性;(2)用一类事物的性质去推测另一类事物的性质,得出一个明确的命题(猜想).10.(5分)考点:归纳推理;等比数列的前n项和.专题:压轴题;规律型.分析:观察图例,我们可以得到每一行的数放在一起,是从一开始的连续的正整数,故n行的最后一个数,即为前n项数据的个数,故我们要判断第n行(n≥3)从左向右的第3个数,可先判断第n﹣1行的最后一个数,然后递推出最后一个数据.解答:解:本小题考查归纳推理和等差数列求和公式.前n﹣1行共有正整数1+2+…+(n﹣1)个,即个,因此第n行第3个数是全体正整数中第+3个,即为.点评:归纳推理的一般步骤是:(1)通过观察个别情况发现某些相同性质;(2)从已知的相同性质中推出一个明确表达的一般性命题(猜想).11.(5分)考点:基本不等式.分析:由x﹣2y+3z=0可推出,代入中,消去y,再利用均值不等式求解即可.解答:解:∵x﹣2y+3z=0,∴,∴=,当且仅当x=3z时取“=”.故答案为3.点评:本小题考查了二元基本不等式,运用了消元的思想,是高考考查的重点内容.12.(5分)考点:椭圆的简单性质.专题:计算题;压轴题.分析:抓住△OAP是等腰直角三角形,建立a,c的关系,问题迎刃而解.解答:解:设切线PA、PB互相垂直,又半径OA垂直于PA,所以△OAP是等腰直角三角形,故,解得,故答案为.点评:本题考查了椭圆的离心率,有助于提高学生分析问题的能力.13.(5分)考点:三角形中的几何计算.专题:计算题;压轴题.分析:设BC=x,根据面积公式用x和sinB表示出三角形的面积,再根据余弦定理用x表示出sinB,代入三角形的面积表达式,进而得到关于x的三角形面积表达式,再根据x的范围求得三角形面积的最大值.解答:解:设BC=x,则AC=x,根据面积公式得S△ABC=AB•BCsinB=×2x,根据余弦定理得cosB===,代入上式得S△ABC=x=,由三角形三边关系有,解得2﹣2<x<2+2.故当x=2时,S△ABC取得最大值2.点评:本题主要考查了余弦定理和面积公式在解三角形中的应用.当涉及最值问题时,可考虑用函数的单调性和定义域等问题.14.(5分)考点:利用导数求闭区间上函数的最值.专题:计算题;压轴题.分析:这类不等式在某个区间上恒成立的问题,可转化为求函数最值的问题,本题要分三类:①x=0,②x>0,③x <0等三种情形,当x=0时,不论a取何值,f(x)≥0都成立;当x>0时有a≥,可构造函数g(x)=,然后利用导数求g(x)的最大值,只需要使a≥g(x)max,同理可得x<0时的a的范围,从而可得a的值.解答:解:若x=0,则不论a取何值,f(x)≥0都成立;当x>0即x∈(0,1]时,f(x)=ax3﹣3x+1≥0可化为:a≥设g(x)=,则g′(x)=,所以g(x)在区间(0,]上单调递增,在区间[,1]上单调递减,因此g(x)max=g()=4,从而a≥4;当x<0即x∈[﹣1,0)时,f(x)=ax3﹣3x+1≥0可化为:a≤,g(x)=在区间[﹣1,0)上单调递增,因此g(x)min=g(﹣1)=4,从而a≤4,综上a=4.答案为:4点评:本题考查的是含参数不等式的恒成立问题,考查分类讨论,转化与化归的思想方法,利用导数和函数的单调性求函数的最大值,最小值等知识与方法.在讨论时,容易漏掉x=0的情形,因此分类讨论时要特别注意该问题的解答.二、解答题(共12小题,满分90分)15.(15分)考点:两角和与差的正切函数.分析:(1)先由已知条件得;再求sinα、sinβ进而求出tanα、tanβ;最后利用tan(α+β)=解之.(2)利用第一问把tan(α+2β)转化为tan[(α+β)+β]求之,再根据α+2β的范围确定角的值.解答:解:(1)由已知条件即三角函数的定义可知,因为α为锐角,则sinα>0,从而同理可得,因此.所以tan(α+β)=;(2)tan(α+2β)=tan[(α+β)+β]=,又,故,所以由tan(α+2β)=﹣1得.点评:本题主要考查正切的和角公式与转化思想.16.(15分)考点:直线与平面平行的判定;平面与平面垂直的判定.专题:证明题.分析:(1)根据线面平行关系的判定定理,在面ACD内找一条直线和直线EF平行即可,根据中位线可知EF∥AD,EF⊄面ACD,AD⊂面ACD,满足定理条件;(2)需在其中一个平面内找一条直线和另一个面垂直,由线面垂直推出面面垂直,根据线面垂直的判定定理可知BD⊥面EFC,而BD⊂面BCD,满足定理所需条件.解答:证明:(1)∵E,F分别是AB,BD的中点.∴EF是△ABD的中位线,∴EF∥AD,∵EF⊄面ACD,AD⊂面ACD,∴直线EF∥面ACD;(2)∵AD⊥BD,EF∥AD,∴EF⊥BD,∵CB=CD,F是BD的中点,∴CF⊥BD又EF∩CF=F,∴BD⊥面EFC,∵BD⊂面BCD,∴面EFC⊥面BCD点评:本题主要考查线面平行的判定定理,以及面面垂直的判定定理.考查对基础知识的综合应用能力和基本定理的掌握能力.17.(15分)考点:在实际问题中建立三角函数模型.分析:(1)(i)根据题意知PQ垂直平分AB,在直角三角形中由三角函数的关系可推得OP,从而得出y的函数关系式,注意最后要化为最简形式,确定自变量范围.(ii)已知OP,可得出OQ的表达式,由勾股定理推出OA,易得y的函数关系式.(2)欲确定污水处理厂的位置,使铺设的污水管道的总长度最短也就是最小值问题,(1)中已求出函数关系式,故可以利用导数求解最值,注意结果应与实际情况相符合.解答:解:(Ⅰ)①由条件知PQ垂直平分AB,若∠BAO=θ(rad),则,故,又OP=10﹣10tanθ,所以,所求函数关系式为②若OP=x(km),则OQ=10﹣x,所以OA=OB=所求函数关系式为(Ⅱ)选择函数模型①,令y′=0得sin,因为,所以θ=,当时,y′<0,y是θ的减函数;当时,y′>0,y是θ的增函数,所以当θ=时,.这时点P位于线段AB的中垂线上,在矩形区域内且距离AB边km处.点评:本小题主要考查函数最值的应用.①生活中的优化问题,往往涉及到函数的最值,求最值可利用单调性,也可直接利用导数求最值,要掌握求最值的方法和技巧.②在求实际问题中的最大值或最小值时,一般先设自变量、因变量,建立函数关系式,并确定其定义域,利用求函数最值的方法求解,注意结果应与实际情况相符合.用导数求解实际问题中的最大(小)值时,如果函数在区间内只有一个极值点,那么根据实际意义该极值点也就是最值点.18.(15分)考点:二次函数的图象;圆的标准方程.专题:计算题.分析:(1)由题意知,由抛物线与坐标轴有三个交点可知抛物线不过原点即b不等于0,然后抛物线与x轴有两个交点即令f(x)=0的根的判别式大于0即可求出b的范围;(2)设出圆的一般式方程,根据抛物线与坐标轴的交点坐标可知:令y=0得到与f(x)=0一样的方程;令x=0得到方程有一个根是b即可求出圆的方程;(3)设圆的方程过定点(x0,y0),将其代入圆的方程得x02+y02+2x0﹣y0+b(1﹣y0)=0,因为x0,y0不依赖于b得取值,所以得到1﹣y0=0即y0=1,代入x02+y02+2x0﹣y0=0中即可求出定点的坐标.解答:解:.(1)令x=0,得抛物线与y轴交点是(0,b);令f(x)=x2+2x+b=0,由题意b≠0且△>0,解得b<1且b≠0.(2)设所求圆的一般方程为x2+y2+Dx+Ey+F=0令y=0得x2+Dx+F=0这与x2+2x+b=0是同一个方程,故D=2,F=b.令x=0得y2+Ey+F=0,方程有一个根为b,代入得出E=﹣b﹣1.所以圆C的方程为x2+y2+2x﹣(b+1)y+b=0.(3)圆C必过定点,证明如下:假设圆C过定点(x0,y0)(x0,y0不依赖于b),将该点的坐标代入圆C的方程,并变形为x02+y02+2x0﹣y0+b(1﹣y0)=0(*)为使(*)式对所有满足b<1(b≠0)的b都成立,必须有1﹣y0=0,结合(*)式得x02+y02+2x0﹣y0=0,解得经检验知,(﹣2,1)均在圆C上,因此圆C过定点.点评:本小题主要考查二次函数图象与性质、圆的方程的求法.是一道综合题.19.(15分)考点:等差数列的性质;等比关系的确定;等比数列的性质.专题:探究型;分类讨论;反证法.分析:(1)根据题意,对n=4,n=5时数列中各项的情况逐一讨论,利用反证法结合等差数列的性质进行论证,进而推广到n≥4的所有情况.(2)利用反证法结合等差数列的性质进行论证即可.解答:解:(1)①当n=4时,a1,a2,a3,a4中不可能删去首项或末项,否则等差数列中连续三项成等比数列,则推出d=0.若删去a2,则a32=a1•a4,即(a1+2d)2=a1•(a1+3d)化简得a1+4d=0,得若删去a3,则a22=a1•a4,即(a1+d)2=a1•(a1+3d)化简得a1﹣d=0,得综上,得或.②当n=5时,a1,a2,a3,a4,a5中同样不可能删去a1,a2,a4,a5,否则出现连续三项.若删去a3,则a1•a5=a2•a4,即a1(a1+4d)=(a1+d)•(a1+3d)化简得3d2=0,因为d≠0,所以a3不能删去;当n≥6时,不存在这样的等差数列.事实上,在数列a1,a2,a3,…,a n﹣2,a n﹣1,a n中,由于不能删去首项或末项,若删去a2,则必有a1•a n=a3•a n﹣2,这与d≠0矛盾;同样若删去a n﹣1也有a1•a n=a3•a n﹣2,这与d≠0矛盾;若删去a3,,a n﹣2中任意一个,则必有a1•a n=a2•a n﹣1,这与d≠0矛盾.(或者说:当n≥6时,无论删去哪一项,剩余的项中必有连续的三项)综上所述,n=4.(2)假设对于某个正整数n,存在一个公差为d的n项等差数列b1,b2,b n,其中b x+1,b y+1,b z+1(0≤x<y <z≤n﹣1)为任意三项成等比数列,则b2y+1=b x+1•b z+1,即(b1+yd)2=(b1+xd)•(b1+zd),化简得(y2﹣xz)d2=(x+z﹣2y)b1d(*)由b1d≠0知,y2﹣xz与x+z﹣2y同时为0或同时不为0当y2﹣xz与x+z﹣2y同时为0时,有x=y=z与题设矛盾.故y2﹣xz与x+z﹣2y同时不为0,所以由(*)得因为0≤x<y<z≤n﹣1,且x、y、z为整数,所以上式右边为有理数,从而为有理数.于是,对于任意的正整数n(n≥4),只要为无理数,相应的数列就是满足题意要求的数列.例如n项数列1,,,,满足要求.点评:本题是一道探究性题目,考查了等差数列和等比数列的通项公式,以及学生的运算能力和推理论证能力.20.(15分)考点:指数函数综合题.专题:计算题;压轴题;分类讨论.分析:(1)根据题意,先证充分性:由f(x)的定义可知,f(x)=f1(x)对所有实数成立,等价于f1(x)≤f2(x)对所有实数x成立等价于,即对所有实数x均成立,分析容易得证;再证必要性:对所有实数x均成立等价于,即|p1﹣p2|≤log32,(2)分两种情形讨论:①当|p1﹣p2|≤log32时,由中值定理及函数的单调性得到函数f(x)在区间[a,b]上的单调增区间的长度;②当|p1﹣p2|>log32时,a,b是两个实数,满足a<b,且p1,p2∈(a,b).若f(a)=f(b),根据图象和函数的单调性得到函数f(x)在区间[a,b]上的单调增区间的长度.解答:解:(1)由f(x)的定义可知,f(x)=f1(x)(对所有实数x)等价于f1(x)≤f2(x)(对所有实数x)这又等价于,即对所有实数x均成立.(*)由于|x﹣p1|﹣|x﹣p2|≤|(x﹣p1)﹣(x﹣p2)|=|p1﹣p2|(x∈R)的最大值为|p1﹣p2|,故(*)等价于,即|p1﹣p2|≤log32,这就是所求的充分必要条件(2)分两种情形讨论(i)当|p1﹣p2|≤log32时,由(1)知f(x)=f1(x)(对所有实数x∈[a,b])则由f(a)=f(b)及a<p1<b易知,再由的单调性可知,函数f(x)在区间[a,b]上的单调增区间的长度为(参见示意图)(ii)|p1﹣p2|>log32时,不妨设p1<p2,,则p2﹣p1>log32,于是当x≤p1时,有,从而f(x)=f1(x);当x≥p2时,有从而f(x)=f2(x);当p1<x<p2时,,及,由方程解得f1(x)与f2(x)图象交点的横坐标为(1)显然,这表明x0在p1与p2之间.由(1)易知综上可知,在区间[a,b]上,(参见示意图)故由函数f1(x)及f2(x)的单调性可知,f(x)在区间[a,b]上的单调增区间的长度之和为(x0﹣p1)+(b ﹣p2),由于f(a)=f(b),即,得p1+p2=a+b+log32(2)故由(1)、(2)得综合(i)(ii)可知,f(x)在区间[a,b]上的单调增区间的长度和为.点评:考查学生理解充分必要条件的证明方法,用数形结合的数学思想解决问题的能力,以及充分必要条件的证明方法.21.(2008•江苏)考点:与圆有关的比例线段;二阶行列式与逆矩阵;简单曲线的极坐标方程;不等式的证明.分析:根据已知EA是圆的切线,AC为过切点A的弦得两个角相等,再结合角平分线条件,从而得到△EAD是等腰三角形,再根据切割线定理即可证得.解答:证明:因为EA是圆的切线,AC为过切点A的弦,所以∠CAE=∠CBA.又因为AD是ÐBAC的平分线,所以∠BAD=∠CAD所以∠DAE=∠DAC+∠EAC=∠BAD+∠CBA=∠ADE所以,△EAD是等腰三角形,所以EA=ED.又EA2=EC•EB,所以ED2=EB•EC.点评:此题主要是运用了弦切角定理的切割线定理.注意:切线长的平方应是EB和EC的乘积.考点:圆的标准方程;矩阵变换的性质.专题:计算题.分析:由题意先设椭圆上任意一点P(x0,y0),根据矩阵与变换的公式求出对应的点P′(x0′,y0′),得到两点的关系式,再由点P在椭圆上代入化简.解答:解:设P(x0,y0)是椭圆上任意一点,则点P(x0,y0)在矩阵A对应的变换下变为点P′(x0′,y0′)则有,即,所以又因为点P在椭圆上,故4x02+y02=1,从而(x0′)2+(y0′)2=1所以,曲线F的方程是x2+y2=1点评:本题主要考查了矩阵与变换的运算,结合求轨迹方程得方法:代入法求解;是一个较综合的题目.23.(2008•江苏)考点:椭圆的参数方程.专题:计算题;转化思想.分析:先根据椭圆的标准方程进行三角代换表示椭圆上任意一点,然后利用三角函数的辅助角公式进行化简,即可求出所求.解答:解:因椭圆的参数方程为(ϕ为参数)故可设动点P的坐标为,其中0≤ϕ<2π.因此所以,当时,S取最大值2.点评:本题主要考查了椭圆的简单性质及参数方程的问题.考查了学生综合分析问题和解决问题的能力.24.(2008•江苏)考点:平均值不等式;不等式的证明.专题:证明题.分析:先根据平均值不等式证明,再证.解答:证明:因为a,b,c为正实数,由平均不等式可得,即,所以,,而,所以,点评:本题考查平均值不等式的应用,n个正数的算术平均数大于或等于它们的几何平均数.考点:用空间向量求直线间的夹角、距离.专题:计算题;压轴题.分析:由题意易知∠APC不可能为平角,则∠APC为钝角等价于,即,再将用关于λ的字母表示,根据向量数量积的坐标运算即可解答:解:由题设可知,以、、为单位正交基底,建立如图所示的空间直角坐标系D﹣xyz,则有A(1,0,0),B(1,1,0),C(0,1,0),D(0,0,1)由,得,所以显然∠APC不是平角,所以∠APC为钝角等价于,则等价于即(1﹣λ)(﹣λ)+(﹣λ)(1﹣λ)+(λ﹣1)2=(λ﹣1)(3λ﹣1)<0,得因此,λ的取值范围是点评:本题考查了用空间向量求直线间的夹角,一元二次不等式的解法,属于基础题.26.(2008•江苏)请先阅读:考点:微积分基本定理;二项式定理;类比推理.专题:证明题;综合题;压轴题.分析:(1)对二项式定理的展开式两边求导数,移项得到恒等式.(2)(i)对(1)中的x 赋值﹣1,整理得到恒等式.(ii)对二项式的定理的两边对x求导数,再对得到的等式对x两边求导数,给x赋值﹣1化简即得证.(iii)对二项式定理的两边求定积分;利用微积分基本定理求出两边的值,得到要证的等式.解答:证明:(1)在等式(1+x)n=C n0+C n1x+C n2x2++C n n x n两边对x求导得n(1+x)n﹣1=C n1+2C n2x++(n﹣1)C n n n x n﹣1﹣1x n﹣2+nCn移项得(*)(2)(i)在(*)式中,令x=﹣1,整理得所以(ii)由(1)知n(1+x)n﹣1=C n1+2C n2x+…+(n﹣1)C n n﹣1x n﹣2+nC n n x n﹣1,n≥3 两边对x求导,得n(n﹣1)(1+x)n﹣2=2C n2+3•2C n3x+…+n(n﹣1)C n n x n﹣2在上式中,令x=﹣1,得0=2C n2+3•2C n3(﹣1)+…+n(n﹣1)C n2(﹣1)n﹣2即,亦即(1)又由(i)知(2)由(1)+(2)得(iii)将等式(1+x)n=C n0+C n1x+C n2x2+…+C n n x n两边在[0,1]上对x积分由微积分基本定理,得所以点评:本题考查导数的运算法则、考查通过赋值求系数和问题、考查微积分基本定理.。
上海卷一、填空题(本大题满分44分)本大题共有11题,只要求直接填写结果,每个空格填对得4分,否则一律得零分. 1.不等式11x -<的解集是.2.若集合A ={x |x ≤2}、B ={x |x ≥a}满足{2}A B = ,则实数a = .3.若复数z 满足z =i (2-z ) (i 是虚数单位),则z = .4.若函数f (x )的反函数为f -1(x )=x 2(x >0),则f (4)= .5.若向量a b 、满足1,2,a b == 且a 与b 的夹角为3π,则a b+ = .6.函数f (xsin 2x x π⎛⎫++ ⎪⎝⎭的最大值是.7.在平面直角坐标系中,从六个点:A (0,0)、B (2,0)、C (1,1)、D (0,2)、E (2,2)、F (3,3)中任取三个,这三点能构成三角形的概率是 (结果用分数表示). 8.设函数f (x )是定义在R 上的奇函数.若当(0,)x ∈+∞时,f (x )=lg x ,则满足f (x )>0的x 的取值范围是 .9.已知总体的各个体的值由小到大依次为2,3,3,7,a ,b ,12,13.7,18. 3,20,且总体的中位数为10.5.若要使该总体的方差最小,则a 、b 的取值分别是 .10.某海域内有一孤岛.岛四周的海平面(视为平面)上有一浅水区(含边界),其边界是长轴长为2a 、短轴长为2B r 椭圆.已知岛上甲、乙导航灯的海拔高度分别为h 1、h 2,且两个导航灯在海平面上的投岸恰好落在椭圆的两个焦点上.现有船只经过该海域(船只的大小忽略不计),在船上测得甲、乙导航灯的仰角分别为θ1、θ2,那么船只已进入该浅水区的判别条件是 . 11.方程x 2+2x -1=0的解可视为函数y -x +2的图像与函数y =x1的图像交点的横坐标.若方程x 4+ax -4=0的各个实根x 1, x 2,…,x k (k ≤4)所对应的点⎪⎪⎭⎫ ⎝⎛14,x x i (I=1,2,…,k )均在直线y =x 的同侧,则实数a 的取值范围是 .二、选择(本大题满分16分)本大题共有4题,每题都给出代号为A 、B 、C 、D 的四个结论,其中有只有一个结论是正确的,必须把正确结论的代号写在题后的圆括号内,选对得4分,不选、选错或者选出的代号超过一个(不论是否都写在圆括号内),一律得零分. 12.组合数C r n r n rn 、,1(≥>∈Z )恒等于[答]( )(A ).1111--++r n C n r (B)(n +1)(r +1)C 11--r n (C)nrC 11--r n (D)C rn 11--r n .13.给定空间中的直线l 及平面α.条件“直线l 与平面α内无数条直线都垂直”是“直线l 与平面α垂直”的 [答]( )(A )充要条件. (B )充分大必要条件. (C )必要非充分条件. (D )既非充分又非必要条件. 14.若数列{a n }是首项为l ,公比为a 23-的无穷等比数列,且{a n }各项的和为a ,则A r 值是[答]( )(A )1. (B)2. (C).21 (D).45 15.如图,在平面直角坐标系中,Ω是一个与x 轴的正半轴、y 轴的正半轴分别相切于点C 、D 的定圆所围成的区域(含边界),A 、B 、C 、D 是被圆的四等分点.若点P (x ,y )、点P ′(x ′,y ′)满足x ≤ x ′且y ≥y ′,则称P 优于P ′.如果Ω中的点O 满足,不存在Ω中的其它点优于Q ,那么所有这样的点Q 组成的集合是劣弧 [答]( ) (A ) AB(B ) BC(C ) CD(D ) DA 三、解答题(本大题满分90分)本大题共有6题,解答下列各题必须写出必要的步骤.16.(本题满分12分)如图,在棱长为2的正方体ABC-A 1B 1C 1D 1中,E 是BC 1的中点.求直线DE 平平面ABCD 所成角的大小(结果用反三角函数值表示).17.(本题满分13分)如图,某住宅小区的平面图呈圆心角为120°的扇形AOB .小区的两个出入口设置在点A 及点C 处,且小区里有一条平等于BO 的小路CD .已知某人从C 沿CD 走到D 用B 10分钟,从D 沿DA 走到A 用了6分钟.若此人步行的速度为每分钟50米,求该扇形的半径OA 的长(精确到1米)18.(本题满分15分)本题共有2个小题,第1个题满分5分,第2小题满分10分. 已知函数f (x )=sin2x ,g (x )=cos ⎪⎭⎫⎝⎛+62πx ,直线x =t (t ∈R)与函数f (x )、g (x )的图像分别交于M 、N 两点. (1) 当t=4π时,求|MN |的值;(2) 求|MN |在t ∈⎥⎦⎤⎢⎣⎡2,0π时的最大值.AEB 1D 1 D C 1A 1BCAODBC19.(本题满分16分)本题共有2个小题,第1小题满分8分,第2小题满分8分. 已知函数f (x )=pqx212-.(1) 若f (x )=2,求x 的值;(2) 若2tf (2t )+mf (t )≥0对于t ∈[1,2]恒成立,求实数m 的取值范围.20.(本题满分16分)本题共有3个小题,第1小题满分3分,第2小题满分5分,第3小题满分8分。
2008年普通高等学校招生全国统一考试(安徽卷)(20).设函数1()(01)ln f x x x x x=>≠且(Ⅰ)求函数()f x 的单调区间; (Ⅱ)已知12axx >对任意(0,1)x ∈成立,求实数a 的取值范围。
(21).设数列{}n a 满足3*010,1,,n n a a ca c c N c +==+-∈其中为实数(Ⅰ)证明:[0,1]n a ∈对任意*n N ∈成立的充分必要条件是[0,1]c ∈;(Ⅱ)设103c <<,证明:1*1(3),n n a c n N -≥-∈; (Ⅲ)设103c <<,证明:222*1221,13n a a a n n N c++>+-∈-(22).设椭圆2222:1(0)x y C a b a b+=>>过点M ,且着焦点为1(F(Ⅰ)求椭圆C 的方程;(Ⅱ)当过点(4,1)P 的动直线l 与椭圆C 相交与两不同点,A B 时,在线段AB 上取点Q ,满足AP QB AQ PB =,证明:点Q 总在某定直线上20 解 (1) '22ln 1(),ln x f x x x +=-若 '()0,f x = 则 1x e= 列表如下(2)在 12axx > 两边取对数, 得1ln 2ln a x x >,由于01,x <<所以1ln 2ln a x x>(1) 由(1)的结果可知,当(0,1)x ∈时, 1()()f x f e e≤=-, 为使(1)式对所有(0,1)x ∈成立,当且仅当ln 2ae >-,即ln 2a e >- 21解 (1) 必要性 :120,1a a c ==-∵∴ ,又 2[0,1],011a c ∈≤-≤∵∴ ,即[0,1]c ∈充分性 :设[0,1]c ∈,对*n N ∈用数学归纳法证明[0,1]n a ∈当1n =时,10[0,1]a =∈.假设[0,1](1)k a k ∈≥则31111k k a ca c c c +=+-≤+-=,且31110k k a ca c c +=+-≥-=≥1[0,1]k a +∈∴,由数学归纳法知[0,1]n a ∈对所有*n N ∈成立(2) 设 103c <<,当1n =时,10a =,结论成立 当2n ≥ 时, 3211111,1(1)(1)n n n n n n a ca c a c a a a ----=+--=-++∵∴ 103C <<∵,由(1)知1[0,1]n a -∈,所以 21113n n a a --++≤ 且 110n a --≥ 113(1)n n a c a --≤-∴ 21112113(1)(3)(1)(3)(1)(3)n n n n n a c a c a c a c -----≤-≤-≤≤-= ∴1*1(3)()n n a c n N -≥-∈∴(3) 设 103c <<,当1n =时,2120213a c=>--,结论成立 当2n ≥时,由(2)知11(3)0n n a c -≥->21212(1)1(1(3))12(3)(3)12(3)n n n n n a c c c c ----≥-=-+>-∴222222112212[3(3)(3)]n n n a a a a a n c c c -+++=++>--+++ ∴2(1(3))2111313n c n n c c-=+->+---22解 (1)由题意:2222222211c a bc a b ⎧=⎪⎪+=⎨⎪⎪=-⎩,解得224,2a b ==,所求椭圆方程为 22142x y += (2)方法一 设点Q 、A 、B 的坐标分别为1122(,),(,),(,)x y x y x y 。
1 哈尔滨工业大学(威海)2008/2009学年 秋季学期工科数学分析 (A 班) 试题卷(A )(答案)考试形式(闭卷):闭 答题时间:150 (分钟) 本卷面成绩占课程成绩 70 %一、填空题(每题2分,共20分)(不填题首答案按零分处理)答案:1. e 312. 1- Ⅱ 3. 21,14. 22)1(t t e t - 5. 632=-+z y x 6.337. C x x x ++----13tan 2tan 318. 22121123f f f ''+''+''9. 161- 10. 1 1.=++++++∞→3231323)1ln(limnnen n e n n n2.115+-=x x y 的间断点是=x ,且是 类间断点。
3.已知0]1[lim 2=--+++∞→b ax x x x ,则=a ,=b4.已知:⎩⎨⎧=+=tey t x 12,则=22dx yd 5.曲面632222=++z y x 在点)1,1,1(-M 处的切平面方程为教研室主任签字:第1 页(共 12 页)姓名: 班级: 学号:26.函数)0(>=z z u xy沿21P P =l 的方向导数=∂∂1P ul,其中21,P P 分别为)1,1,1(与)2,2,2(。
7.⎰=x x dx24cos sin8.设),(),2,(v u f y x y x f z ++=有二阶连续偏导数,则=∂∂∂yx z29.⎰==13ln xdx x I10.设R x xe y x ∈=-,1,则=∈y Rx max 二、选择题:(每题2分,共20分)(不填题首答案按零分处理) 答案:1.设nn x xx f 211lim)(++=∞→ ,则( )成立。
(A )有间断点1=x ; (B )有间断点1-=x ; (C )有间断点0=x ; (D )无间断点2.关于函数⎪⎩⎪⎨⎧<≥=-1,11,)(22x ex e x x f x 在1±=x 两点处的连续性与可导性为( )(A )在1±=x 处连续但不可导;(B )在1±=x 处可导 ;(C )在1=x 可导,在1-=x 处不可导 ; (D )在1=x 不可导,在1-=x 处可导。
第 1 页 共 3 页
铜 陵 学 院
2008-2009学年第二学期 《高等数学》考试试卷(A 卷)
(适用班级:08工科本科各专业)
一、填空题(每题2分,共20分)
1、已知()()2,1,2,4,,10,a b a b λ==-⊥
且,则λ=
2、2(,)lim x y →=
3、设函数y
u xy x
=+,则22u y ∂∂=
4、函数2
2
u x y =+在点(1,2)M 处的梯度M gradu =
5、幂级数213
n
n
n n x ∞
=∑
的收敛半径为
6、设平面区域()}{22,8D x y x y =+≤,则二重积分⎰⎰=D
d σ
7、曲面()231,2,0z z e xy -+=在点处的切平面方程为
8、设L 为抛物线2y x =上点(0,0)与点(1,1)之间的一段弧,则=⎰ 9、函数()x f x e -=展开成x 的幂级数为 10、交换积分次序:1
0(,)dy f x y dx ⎰=
二、选择题(每题3分,共15分)
1、设有直线123
::4220112
x y z L x y z π---==-+-=-及平面,则直线L
A )平行于π
B )在π上
C )垂直于π
D ) 与π斜交
2、二元函数(),f x y 在点()00,x y 处两个偏导数()()0000,,,x y f x y f x y ''存在是
(),f x y 在该点连续的
A) 充分而非必要条件 B )必要而非充分条件 C )充分必要条件 D )既非充分又非必要条件 3、下列级数中发散的级数是
A .∑∞
=+1)1(1n n n B .∑∞=-1)1(n n n C .∑∞=11n n D .∑∞
=12
1
n n
4、设c 为沿222x y R +=逆时针方向,则利用格林公式
22
c
I x ydx xy dy =-+⎰ =
A )200R d d
πθρρ⎰⎰ B )23004sin cos R
d d πθρθθρ⎰⎰ C )22
00R
d R d π
θρρ⎰⎰ D )2300R
d d π
θρρ⎰⎰
5、计算旋转抛物面
22
12
x y z +=+,在12z ≤≤那部分的曲面面积为
A )222
x y
+≤⎰⎰
B )
222
x
y +≤⎰⎰
C )
22
4
x y +≤⎰⎰
D )
224
x y +≤⎰⎰
班级 姓名 学号 ―――――――――装――――――――――订―――――――――线―――――――――――
第 2 页 共 3 页
三、计算题(37分)
1、求过点()3,1,2-且通过直线
43521
x y z
-+==的平面的方程。
(10分)
2、求函数2
2
ln(1)z x y =++,在1,2x y ==时的全微分(1,2)
dz
(8分)
.
3、计算曲面积分2
2
()x y dxdy ∑
+⎰⎰,其中∑是圆222
0x y R z ⎧+≤⎨=⎩的下侧(9分)
4、求由曲面222y x z +=及2262z x y =--所围成的立体的体积(10分)
班 姓 学 ―――――――装――――――――――订―――――――――线―――――――――――
第 3 页 共 3 页
四、解答题(14分)
1、将()3x
f x x
=
+展开成(2)x -的幂级数,并指出收敛域 (8分)
2、求微分方程24dy
xy x dx
+=的通解。
(6分)
五、综合题(14分)
1、设曲线积分2()L xy dx y x dy ϕ+⎰与积分路径无关,其中()x ϕ具有连续的导数,且(0)0ϕ=,求()x ϕ并计算(1,1)
2(0,0)()xy dx y x dy ϕ+⎰(8分)
2、求函数(,)2f x y x y =+在约束条件2241x y +=下的最小值、最大值 (6分)
班 姓 学 ―――――――装――――――――――订―――――――――线―――――――――――。