动压巷道围岩控制支护技术探讨(最新版)
- 格式:docx
- 大小:47.25 KB
- 文档页数:5
动压下的巷道掘进与支护技术探析摘要:突然的动压现象不但会造成煤岩体的振动与破坏,还可能使巷道垮塌,支架、设备损毁,甚至发生重大的人员伤亡事故,因此必须引起矿井工作者的充分重视。
本文以笔者参与施工的实际工程为例,介绍了动压下的巷道掘进施工控制要点。
关键词:动压巷道掘进施工锚网支护1 引言以实现某矿采区通风为建设目的的辅助进风巷,其断面呈矩形,宽4.6m,高 3.6m,预测该工作面绝对瓦斯涌出量为0.63m3/min~1.13m3/min,煤尘具有爆炸性,煤层无自燃发火现象,顶压、侧压明显,水文地质条件相对复杂。
工程中以锚网支护作为掘进支护手段,并采用EBJ-120型掘进机割煤、出煤,MQT-130型风动钻机及ZMS-60型风动煤钻打眼安装锚杆,机械式扭矩放大器紧固锚杆施工。
2 动压巷道对掘进施工的影响煤矿巷道掘进及开采过程中,常存在着高应力下积聚着大量弹性能的岩体在一定条件下突然释放能量,发生破坏、冒落与抛出等明显动力效应的煤矿动压现象。
突然的动压现象不但会造成煤岩体的振动与破坏,还可能使巷道垮塌,支架、设备损毁,甚至发生重大的人员伤亡事故,因此必须引起矿井工作者的充分重视。
根据动压生成的不同机理可将其分为冲击矿压、顶板大面积来压与煤及瓦斯突出等三种形式。
以冲击矿压为例,其一般是指聚积在矿井巷道和采场周围煤岩体中的能量突然释放,在井巷发生爆炸性事故,产生的动力将煤岩抛向巷道,此时顶板可能有瞬间明显下沉,但一般并不冒落;有时底板突然开裂鼓起甚至接顶;常常有大量煤块甚至上百立方米的煤体突然破碎并从煤壁抛出,并可能引起瓦斯、煤尘爆炸、火灾以及水灾,干扰通风系统,严重时还会造成地面震动和建筑物破坏。
从生产实践经验来看,冲击矿压多发生在生产高度集中的区域,顶板大面积来压、煤及瓦斯突出则与施工技术、支护方式、现场安全管理不到位有直接的关系。
因此煤矿工作者必须得到在全面掌握动压分布及作用规律的前提下合理选择巷道开拓布置的方式、科学安排工艺程序、确保支护措施到位,并进行严格规范的施工组织和安全管理,尽可能减少动压巷道的潜在风险,以提高掘进施工的效率及安全性。
煤矿深部巷道围岩控制及支护技术研究随着我国煤矿开采深度的不断增加,围岩控制及支护技术成为深部巷道开采的聚焦点。
因此,本文首先简要的阐述了煤矿深部巷道围岩条件及变形特点,然后重点分析了煤矿深部巷道围岩稳定性控制措施及支护技术,这对煤矿深部巷道安全作业提供了一些指导。
标签:深部巷道;控制措施;支护0 引言据统计,我国煤炭埋深大于600米的储量占到总煤炭储量的70%以上,煤炭埋深大于1000米的储量占2.95×1012吨,占总煤炭储量的53.17%。
随着我国能源需求在进一步增加,煤矿的开挖深度逐渐向更深部巷道延伸。
但是,由于开采深度不断加深,巷道围岩条件日趋复杂,开挖难度日趋增大,巷道围岩控制及支护问题日趋困难。
因此,煤矿深部巷道围岩控制及支护技术成为制约煤矿安全稳定生产的最主要因素。
基于这一现状,本文首先简要叙述了煤矿深部巷道围岩条件及巷道变形的主要特点,继而从围岩强度和围堰内应力两方面入手,分析了煤矿深部巷道围岩稳定性的控制原理及相应的围岩支护技术措施,以保证煤矿深部开采的有序进行。
1 煤矿深部巷道开采特点深部巷道围岩条件比较复杂,只有充分了解深部巷道围岩性质的变化才能因地制宜,进行有效的围岩控制。
深部巷道围岩开采过程中会表现出如下特点:与上部围岩相比,深部开采巷道围岩密度增加,围岩变硬;开挖前,岩体处于三向受力状态下,由于巷道掘进后,周围岩石被开挖,相当于卸载,致使其压力释放,岩体容易破碎,导致围岩强度有所下降,出现大量细微裂缝,围岩软化。
开采巷道的变形特点:(1)由于巷道开挖后,围岩会发生卸载现象,岩体能量突然得到释放,使得围岩塑性区和破碎区范围加大,巷道两帮移近量大,继而两帮高应力传到底板,巷道底鼓严重;巷道变形易受扰动,对外部环境影响反应十分灵敏,外部作用发生变化变化,巷道应力、变形均会出现显著改变。
(2)巷道围岩变形的时间效应。
初期来压时比较快、变形也非常显著,如果不采取科学有效的支护措施,极易发生冒顶、片帮等现象,当围岩变形稳定后,围岩则长期处于流变状态。
巷道围岩控制
巷道围岩控制是指在地下巷道开挖过程中,通过采取一系列的措施和手段,以保证巷道周围岩层的稳定性和安全性。
巷道围岩控制是地下工程施工中的重要环节,主要目的包括以下几个方面:
1. 防止巷道塌方:采用支护结构和材料,如钢支撑、锚杆、锚喷等,对巷道周围的岩层进行支护,防止其塌方。
2. 防止岩爆和冒顶:通过喷浆封孔、锚喷、钻爆、预裂、顶板保护等措施,增强巷道周围岩体的稳定性,防止岩爆和冒顶的发生。
3. 控制地表沉降:在地下巷道开挖过程中,采用合适的措施和技术,控制地表沉降的幅度和范围,保护地表建筑物的安全。
4. 控制地下水:巷道开挖过程中,地下水的水压和渗流量增大,容易引起巷道周围岩体的涌水和破坏。
因此,需要采取合适的水文地质措施,控制地下水的水压和渗流,保证巷道的稳定和安全。
总之,巷道围岩控制是地下巷道施工中的重要环节,需要综合考虑地质条件、工程要求和施工技术等因素,采取相应的措施和手段,确保巷道的稳定和安全。
动压巷道围岩控制支护技术探讨随着经济的快速发展和城市化进程的加快,地下空间的利用日益广泛,如地下商场、地下车库、地铁等。
而与此同时,地下建筑的施工以及地下水位的变化也给围岩控制支护技术的研发和应用带来了更大的挑战。
动压巷道是地下工程中常见的一种结构形式,其围岩的控制支护技术尤为重要。
动压巷道的围岩控制支护技术需要考虑到围岩的岩性、结构面、脆弱性、饱和度等因素,同时还需要根据地层土层的不同特性来选择不同的支护方式。
目前,钢筋混凝土衬砌和锚杆网片矩形截面加喷浆支护成为动压巷道围岩控制支护技术中的主流方式。
钢筋混凝土衬砌是传统的围岩支护方式,在安装方便、施工速度快、支护效果好等方面具有显著优势。
但是,它也存在一些不足之处,如成本较高、施工时间长、对地下水环境污染等问题。
相比之下,锚杆网片矩形截面加喷浆支护技术是一种更新的围岩控制支护技术,它具有施工时间短、成本低、对地下水环境污染小等优点,因此在近年来得到了广泛应用和推广。
然而,锚杆网片矩形截面加喷浆支护技术也存在一些问题,如锚杆网片容易老化、加固效果难以保障等。
针对以上问题,近年来国内外学者们也在不断地研究和探索新型的动压巷道围岩控制支护技术。
例如,研发出了基于钢板桩的支护技术,这种技术可以在钢筋混凝土衬砌与锚杆网片矩形截面加喷浆支护技术之间找到一个平衡点,具有成本较低、施工方便等优点。
此外,还有将膨润土与环氧树脂结合使用的支护技术等。
总之,动压巷道围岩控制支护技术的研究和发展离不开理论的探索和实践的积累,各种支护技术之间并不存在一种绝对优劣之分,只有根据地质条件、施工条件和经济条件等因素,在实际施工中科学选用符合要求的支护技术,才能最大程度地保证工程的施工质量和安全性。
动压下掘进巷道支护技术研究与工程实践研究摘要:对于煤炭企业来说,矿井生产过程中的采掘接续以及安全性是其一直以来关注的重要课题,尤其是在和谐社会建设不断推进的过程中,国内煤炭企业要想在日益激烈的市场竞争中立于不败之地,生产安全问题必须得到有效解决。
但是在实际的生产经营过程中,不少企业出现接续紧张,并为使生产份额得到满足而对优化回采巷道位置措施有所忽略,导致回采巷道处于动压下掘进状态,严重影响了井下掘进生产的安全性。
基于此,笔者对动压下巷道掘进安全问题展开研究,并结合工程实践报告如下。
关键词:巷道动压巷道支护围岩控制采动压力1 工程概况某矿区年设计生产能力为150万t,其核定生产能力为240万t,该矿区2012年原煤实际生产量为235万t。
本区域具有相对简单的地质构造,具有相对稳定的煤层赋存,开采方式为多煤层近距离联合开采。
笔者从项目研究实际需求出发,以该矿区17#煤层巷道为对象,与该巷道具体情况相结合,对其顶板实施现场取样,并通过实验室方法测定其力学参数,该巷道顶板特征详见下表1,岩层力学指标则见下表2。
2 采准巷道形变特点以及采动应力分析2.1 采动应力以17#采准巷道具体位置为参照,对其采场在作业面回采影响下发生的应力变化进行分析,同时分析其底板应力的规律分布。
对于处于采动影响状态下的采准巷道来说,上述分析工作对其围岩变形控制具有积极意义。
下图1为巷道关系图,由图1可以看出,16#作业面在其采动过程中对17#巷道内部七面皮带道产生了较大影响,在16#煤层开采过程中,其作业面造成的前支撑压力以及煤柱在回采作业影响下产生的叠加支撑压力对其骑采前巷道产生了较大影响,此种状态下一般会有3~4个系数的应力增高。
采空区下部是骑采作业后巷道。
此巷道由于上部煤柱具有较远水平距离,且所处区域应力有所降低,因而并未受到煤柱的严重影响。
17#煤层中采准巷道内部八面下料道不仅受到上部16#采动作业影响,而且长期处于其上方16#作业面上的煤柱所产生的支撑压力作用下。
隧道施工中的围岩锚杆支护技术和施工要点探讨在隧道工程中,围岩锚杆支护技术是一项重要的工程措施。
它能够稳定围岩,保障隧道施工的安全和顺利进行。
本文将对隧道施工中的围岩锚杆支护技术和施工要点进行探讨。
一、围岩锚杆支护技术的介绍围岩锚杆支护技术是指在隧道施工过程中,使用锚杆固定围岩,增加其稳定性和承载力的一种方法。
该技术通常在施工工序中,通过钻孔将锚杆插入岩体内,并注入砂浆将锚杆与岩体连接,从而达到支护作用。
围岩锚杆支护技术的优点主要有以下几个方面:1. 提高围岩的稳定性:通过锚杆与岩体的连接,能够有效地增加围岩的稳定性,防止其塌方和滑动等不稳定现象的发生。
2. 增加围岩的承载力:围岩锚杆的使用能够增加围岩的承载力,使其能够承受更大的荷载,提高隧道的使用寿命。
3. 提高施工效率:围岩锚杆支护技术可以在较短的时间内完成施工,因此可以提高施工效率,节约时间和成本。
二、围岩锚杆支护技术的施工要点在进行围岩锚杆支护技术施工时,需要注意以下几个要点:1. 岩体质量评估:在进行围岩锚杆支护技术前,需要对岩体的质量进行评估。
通过岩体钻孔取样和岩体勘探等方式,判断岩体的结构和强度等信息,以便选择合适的锚杆规格和施工工艺。
2. 锚杆的选择和布设:根据岩体质量评估的结果,选择合适的锚杆规格,并合理布设锚杆。
锚杆的布设应考虑围岩的力学特性和工程的实际情况,保证锚杆与岩体的连接牢固。
3. 施工工艺控制:在进行围岩锚杆支护技术的施工过程中,需要严格控制施工工艺。
施工人员应按照规范要求进行孔洞钻进、锚杆安装和注浆等操作,确保施工质量和工艺效果。
4. 质量检测和验收:施工完成后,应进行质量检测和验收。
通过检测围岩的稳定性、锚杆与岩体的连接质量和注浆效果等指标,确保围岩锚杆支护技术的有效性和可靠性。
三、围岩锚杆支护技术在隧道施工中的应用围岩锚杆支护技术在隧道施工中应用广泛,特别适用于以下几种情况:1. 多裂缝、弱结构围岩:对于具有多裂缝和弱结构的围岩,采用围岩锚杆支护技术可以加强其稳定性,防止裂缝扩展和塌方。
巷道围岩控制方法与支护方式巷道围岩控制方法与支护方式[摘要]在煤矿生产过程中,巷道围岩控制与巷道的支护是非常重要的环节,关系到煤炭生产的高产高效与采煤安全生产。
降低巷道围岩应力,提高围岩的稳定性,合理选择支护是巷道围岩控制的主要途径。
本文主要阐述了巷道围岩压力及影响因素、巷道围岩控制措施、方法和巷道保护与支护措施等技术问题。
【关键词】巷道;围岩控制;支护方式在煤矿生产过程中,巷道围岩控制与巷道的支护是非常重要的环节,关系到煤炭生产的高产高效与采煤安全生产。
降低巷道围岩应力,提高围岩的稳定性,合理选择支护是巷道围岩控制的主要途径。
回采导致的支承压力不但数倍于原岩应力,并且,影响范围大。
巷道受回采影响后,围岩应力、围岩变形成几倍、几十倍急增。
巷道围岩控制的实质是利用煤层开采引起采场周围岩体应力重新分布的规律,正确选择巷道布置和护巷方法,使巷道位于应力降低区内,防范回采引起的支承压力的影响,控制围岩压力。
本文主要阐述了巷道围岩压力及影响因素、巷道围岩控制措施、方法和巷道保护与支护措施等技术问题。
1、巷道围岩压力及影响因素1.1、围岩压力(1)松动围岩压力。
因巷道挖掘而松动、塌落的岩体,其重力直接作用在支架结构物上的压力,表现为松动围岩压力载荷形式,如支护没有有效控制围岩变形,围岩形成松动垮塌圈时,造成松动围岩压力,顶压显现严重。
(2)变形围岩压力。
支护可控制围岩变形的发展时,围岩位移挤压支架而出现的压力,即:变形围岩压力。
在围岩、支护力学体系中,围岩与支架互相作用,围岩就对支架施加变形压力。
弹性变形压力是围岩弹性变形时作用在支架上的压力,弹性变形出现的速度很快,变形量相当小,围岩、支护相互作用的过程,实际作用较小。
塑性变形压力是因为围岩塑性变形和破裂,围岩向巷道空间位移,使支护结构受压,这是变形围岩压力的基本形式。
塑性变形的状况由巷道塑性区和破裂区的范围所决定。
塑性区的扩展具有时间效应,它不再扩展时,围岩变形速度就下降。
( 安全技术 )
单位:_________________________
姓名:_________________________
日期:_________________________
精品文档 / Word文档 / 文字可改
动压巷道围岩控制支护技术探
讨(最新版)
Technical safety means that the pursuit of technology should also include ensuring that people
make mistakes
动压巷道围岩控制支护技术探讨(最新版)
1问题的提出
由于我矿主采煤层的底板大多为松软的泥岩,二水平开采深度已达500m,布置在底板岩巷的南大巷、南异三条上山、各类峒室及采区准备巷道,受采动影响遭到严重破坏,失修巷道达1万m,年维修费用达千万元以上。
为彻底解决失修巷道,从根本上解决问题,除抓好工程施工质量外,将受采动影响的巷道提前进行加固,保证巷道受采动后仍能保证安全使用。
2支护技术方案与对策
2.1锚注预加固支护方案
对于锚喷巷道来说,可采取的加固措施包括可缩性金属支架加强支护、加长锚杆及预应力锚索支护、注浆加固支护等。
通过矿井近几年的实践证明,采用金属支架加强支护并不能保证巷道的长期
稳定,而采用加长锚杆及预应力锚索支护工艺复杂,成本较高,亦不宜采用。
经分析研究,决定采用锚注预加固联合支护方案。
在原锚网喷基础上,对巷道进行初喷,堵塞巷道的裂缝,接着进行锚注加固,使灰浆充满围岩中裂隙,最后进行锚网梯加固。
2.2支护材料与参数
锚注锚网梯加固支护所用材料主要包括螺纹钢锚杆、注浆锚杆、菱形网树脂锚固剂、水泥、喷射混凝土等,其主要支护及施工工艺参数如下:
(1)先要对要加固的巷道进行喷浆,厚度3~5mm,喷浆混凝土配料为水泥:河砂:石屑=1:2.5:1.5,水泥采用425#普通水泥,石屑粒径为3~5mm。
(2)注浆锚杆与施工措施。
采用Φ2280mm的注浆锚杆,锚杆角度与顶板夹角不小于75°,空心锚杆间排距为1.5×1.5m,允许误差为±200mm,锚杆外露长度不超过50mm,每孔用空心锚固剂不小于2块,孔处用锚固剂与巷道糊平,注完后及时封孔,防止浆液泄漏。
(3)注浆参数:注浆压力为3.5~4.0Mpa,浆液的水灰比为0.75~
1∶1,注浆材料道425#水泥浆液,用人工在容器中配制。
搅拌时间不小于5min,注浆量以孔满不吸为标准。
(4)锚网梯加固:采用Φ20×1800mm螺纹树脂锚杆,树脂锚固剂采用中速Φ25×350mm和Φ25×500mm各一根,锚杆间排距为800×800mm,两帮锚杆距底板不大于300mm,金属网为8#铁丝纺织的菱形网,钢筋梯为8#钢筋焊接而成,采用YI—24型风钻打眼,风动锚杆钻机安装锚杆,待锚杆全部投入锚杆孔后,开始挂网、安设钢筋梯,用锚杆托盘压在钢筋梯上,使菱形网紧贴岩面,最后再喷射混凝土,把网喷严。
3井下试验与应用
由于23611工作面底板岩石到南异三条上山距离只有8~15m,为防止23611跨采后破坏三条巷道,决定在南异三条上山与23611跨采对立段的每条上山200m进行加固试验。
3.1加固施工工艺程序
初喷混凝土堵漏→打眼安装注浆锚杆→注浆→打眼安装树脂锚杆→安装梯子梁、金属网→喷射混凝土。
3.2试验效果直观分析
南异三条上山锚注、锚网梯、喷浆加固后,经过23611工作面回采动压的试用观察,巷道变形量很小,没有发现明显的顶板下沉、喷层开裂冒落及底鼓等现象,巷道承受住了23611工作面的回采动压影响,保证了矿井正常运输、通风。
4结论
通过近距离开采底板岩巷围岩进行高强锚网注浆加固,解决了跨采巷道支护的难题,提高了支护安全可靠性,改善了矿井运输条件。
同时,大大减少了巷道维修费用,其加固费用仅为常规扶U型棚费用的33~40%;缓解了采掘接续紧张局面;多回收原煤100万t,少开切眼一个,减少综采安装撤除各一次,节约资金300万元,累计为我矿增收节支2300万元,并且为类似的23310工作面、2367工作面近距离跨采南异三条上山提供了经验。
云博创意设计
MzYunBo Creative Design Co., Ltd.。