显示译码器作用-类型
- 格式:docx
- 大小:9.60 KB
- 文档页数:2
实验四译码器及其应用[实验目的]1、掌握中规模集成译码器的逻辑功能和使用方法。
2、熟悉数码管的使用,了解七段数码显示电路的工作原理。
[实验原理]译码管是一个多输入、多输出的组合逻辑电路。
它的作用是把给定的代码进行“翻译”,变成相应的状态,使输出通道中相应的一路有信号输出。
译码器在数字系统中有广泛的用途,不仅用于代码的转换、终端的数字显示,还用于数据分配,存贮器寻址和组合控制信号等。
不同的功能可选用不同种类的译码器。
译码器可分为通用译码器和显示译码器两大类。
前者又分为变量译码器和代码变换译码器。
1、变量译码器(又称二进制译码器)用以表示输入变量的状态,如2-4译码器、3-8译码器和4-16译码器。
若用n个输入变量,则有2n个不同的组合状态,就有2n个输出端供其使用。
而每一个输出所代表的函数对应于n个输入变量的最小项。
以3-8译码器74LS138为例进行分析,图4-4-1为其逻辑图及引脚排列。
其中A2、A1、A0为地址输入端,Y——0~Y——7为译码输出端,S1、S2、S3为使能端。
当S1=1,S——2+S——3=0时,器件处于正常译码状态地址码所指定的输出端有信号(为0)输出,其它所有输出端均无信号(全为1)输出。
当S1=0,S——2+S——3=X时,或S1=X,S——2+S——3=1时,译码器被禁止,所有输出同时为1。
图4-4-1 3-8译码器74LS138逻辑图及引脚排列表4-4-1为74LS138的功能表。
表4-4-1二进制译码器实际上也是负脉冲输出的脉冲分配器。
若利用使能端中的一个输入端输入数据信息,器件就成为一个数据分配器(又称又路分配器),如图4-4-2所示。
若在S1输入端输入数据信息,S——2=S——3=0,地址码所对应的输出的S1数据信息的反码;若从S——2端输入数据信息,令S1=1、S——3=0,地址码所对应的输出就是S——2端数据信息的原码。
若数据信息是时钟脉冲,则数据分配器便成为时钟脉冲分配器。
译码器的工作原理和应用概述译码器是一种电子数字逻辑电路,用于将输入的二进制编码转换为相应的输出信号。
它是数字电子系统中非常重要的组成部分,广泛应用于计算机、通信设备、音频和视频设备等领域。
工作原理译码器通常由多个逻辑门电路组成,其工作原理基于布尔运算和逻辑门的原理。
1. 布尔运算布尔运算是一种基于逻辑值的运算方式,包括与运算、或运算和非运算。
在译码器中,布尔运算被用来判断输入的二进制编码,并根据结果产生相应的输出信号。
2. 逻辑门逻辑门是基本的逻辑电路,用于执行特定的逻辑运算。
常见的逻辑门包括与门、或门、非门和异或门。
这些逻辑门在译码器中被组合使用以实现特定的功能。
3. 输入和输出译码器通常有多个输入和多个输出。
输入是指待译码的二进制编码,输出是指对应的输出信号。
译码器的输入和输出之间的对应关系由译码器的设计决定。
应用译码器具有广泛的应用,以下列举了一些典型的应用场景:1. 数字显示译码器可以将输入的二进制编码转换为适合于数码管、LED灯等显示设备的输出信号。
通过不同的输入编码,可以显示不同的数字、字符或图形。
2. 键盘扫描在计算机键盘中,译码器被用于将按键对应的二进制编码转换为计算机能够理解的信号。
这样,计算机可以通过译码器获取用户输入的信息。
3. 控制逻辑译码器可以用于控制逻辑电路的操作。
例如,在计算机的控制电路中,译码器被用于将指令编码转换为相应的控制信号,以控制计算机的操作。
4. 数据传输译码器在数据传输中起着重要的作用。
例如,串行通信中的串行-并行转换器就是一种常用的译码器。
它可以将串行输入的数据转换为并行输出的数据。
5. 地址译码在计算机的存储器管理中,译码器被用于将地址编码转换为存储器中的物理地址。
这样,计算机可以根据地址访问指定位置的存储单元。
6. 传感器接口译码器可以用于将传感器输出的模拟信号转换为数字信号。
这样,数字电子系统可以通过译码器获取传感器的测量数值。
总结译码器是一种重要的数字逻辑电路,用于将输入的二进制编码转换为相应的输出信号。
一、概述数码显示管是一种常见的显示设备,用于在电子设备和仪器中显示数字和字符。
为了控制数码显示管的工作,常常需要使用译码器来将输入信号转换为驱动数码显示管的信号。
其中,用于驱动共阴极和共阳极的数码显示管的译码器是常见的一种类型,本文将对其进行分类和介绍。
二、共阴极和共阳极数码显示管共阴极数码显示管和共阳极数码显示管是常见的两种数码显示管类型。
共阴极数码显示管的所有阴极都连接在一起,并通过负极性的驱动信号来显示数字和字符;而共阳极数码显示管的所有阳极都连接在一起,并通过正极性的驱动信号来显示数字和字符。
三、译码器的分类根据不同的工作原理和功能特点,译码器可以分为以下几种类型:1. BCD-7段译码器BCD-7段译码器是一种常见的译码器,它将二进制代码转换为驱动7段数码显示管的控制信号。
在共阴极和共阳极的数码显示管中,BCD-7段译码器可以根据输入的二进制代码来控制相应的数码显示管段的亮灭,从而实现数字和字符的显示。
2. 译码器/驱动器一体化芯片译码器/驱动器一体化芯片是一种集成了译码和驱动功能的芯片,它能够直接驱动数码显示管,提高了系统的集成度和稳定性。
在共阴极和共阳极的数码显示管中,译码器/驱动器一体化芯片能够减少外部电路的复杂度,简化系统设计与布局。
3. 数字集成电路数字集成电路中包含了多种用于驱动数码显示管的译码器,例如74系列芯片中的7447、7448等译码器。
这些数字集成电路与其他逻辑门、触发器等元件结合,可以实现更复杂的功能,适用于不同类型的共阴极和共阳极数码显示管驱动。
四、不同类型译码器的特点和应用不同类型的译码器在共阴极和共阳极数码显示管中有各自的特点和应用场景:1. BCD-7段译码器BCD-7段译码器具有简单、稳定的特点,适用于对数码显示管的基本显示功能。
它可以将二进制代码转换成相应数码显示管段的控制信号,实现数字和字符的显示,广泛应用于计数器、时钟、温度计等各种电子设备和仪器中。
译码器的应⽤(七段码)效果展⽰:这是74HC138芯⽚,有三个输⼊脚,8个输出脚,共有8种⾼低电平输⼊组合,每⼀种组合对应⼀种7⾼1低电平组合态,假设⾼电平数码管亮,低电平数码管灭,那么通过控制⾼低电平的输⼊就可以随意控制七段数码管的亮灭情况,通过多个芯⽚的组合封装就可以拼接成0~9这10个数字,这就是译码器的七段码应⽤原理。
⼀个简单的数字底层是通过复杂的⼆进制组合实现的。
三种基本译码器在译码器基础中,解释了完全译码器(n-2n)的基本⼯作原理,即:当使能端有效时:Y i = m i或者/Y i = !m i (注:这⾥的!表⽰⾮号)除了完全译码器之外,还有4-10线译码器,七段显⽰译码器,相对也⽐较简单,这⾥简单进⾏介绍:- 4-10译码器由真值表可以看出,当A3A2A1A0的取值为[0000~1001]时,输出有效,其它情况均为⽆效,其对应的逻辑器件图如下图所⽰:七段显⽰译码器七段显⽰译码器⼀般⽤于液晶或LED显⽰屏,显⽰0~9数字(⼗进制)或0~F数字(⼗六进制)。
所谓七段,表⽰的是0~9或0~F这些数字可⽤七根数码管显⽰,对应的图为:对应的真值表如下图所⽰:译码器的应⽤译码器主要⽤于地址译码、指令译码以及逻辑表达式表⽰。
下⾯重点解释如何内存寻址以及如何表达逻辑表达式。
内存寻址在⼀⽂中,说明了可执⾏程序的执⾏流程,其中的程序计数器(Program Counter,简称PC)中保存了CPU将要执⾏的指令,那如何在内存中定位到那条指令所在的内存地址呢?(重点理解:这是硬件实现,我们要⽤组合电路寻址)。
下图描述了早期8086的内存寻址⽅式。
(计算机中⽤三类总线:数据总线、地址总线、控制总线进⾏数据传输,数据总线⽤于传输数据,地址总线⽤于传输地址,控制总线⽤于传输控制信号。
三类总线⽤于在IO、内存、CPU以及外设之间进⾏数据传输;每⼀块内存中有rd、wr、adder、cs和data⼏个输⼊输出,其中的rd表⽰读内存,wr表⽰写内存,adder下⽂中解释,cs(chip select)表⽰⽚选,data⽤于内存和总线之间数据的传输)在8086机器中,内存只有4KB(受限于当时的⽣产⼯艺,4KB内存由4块1KB的内存块组成),⽤12位⼆进制串表⽰地址。
用于驱动共阴极和共阳极的数码显示管的译码器的分类-回复共阴极和共阳极的数码显示管是常见的数码显示器件,它们在各种电子设备和应用中广泛使用。
为了驱动这些数码显示管,通常需要使用译码器。
译码器是一种常见的逻辑电路,用于将输入信号转换为特定的输出信号,以便驱动数码显示管显示特定的数字或字符。
按照运行方式和输出类型的不同,译码器可以分为多种分类,下面将逐步介绍这些分类。
一、基于运行方式的分类:1. 组合逻辑译码器:组合逻辑译码器的输出仅依赖于当前的输入信号,而不受任何其他因素的影响。
这种类型的译码器适用于静态的、不需要时序控制的应用。
2. 时序逻辑译码器:时序逻辑译码器的输出不仅依赖于当前的输入信号,还可能受到之前的输入信号或时序控制信号的影响。
这种类型的译码器适用于需要时序控制的应用,例如对数码显示器进行动态的扫描显示。
二、基于输出类型的分类:1. 边缘译码器:边缘译码器的输出信号只在输入信号发生上升沿(或下降沿)时改变。
这种类型的译码器适用于需要精确时序控制的应用,可以避免在输入信号变化时产生不稳定的输出。
2. 级联译码器:级联译码器的输出信号改变的方式是通过串联多个译码器实现的。
这种类型的译码器适用于需要高位数码显示和复杂逻辑控制的应用,可以提供更多的输入和输出端口。
三、基于工作原理的分类:1. 位译码器:位译码器将一个或多个数字信号转换为对应的输出信号。
例如,通常使用的7段数码管就需要使用位译码器将4位二进制数转换为对应的7段信号。
2. 字节译码器:字节译码器将一个或多个字节(或字符)的二进制信号转换为对应的输出信号。
例如,用于驱动液晶显示屏的字节译码器将8位二进制数转换为对应的驱动信号。
四、基于应用场景的分类:1. 通用译码器:通用译码器可以用于各种不同的应用场景,可以根据需要配置输入和输出端口,具有较大的灵活性。
2. 特定功能译码器:特定功能译码器是根据特定应用场景的需求设计,仅提供特定的输入和输出方式。
译码器原理及常用译码器简介首页> 电子基础> 数字电路译码器原理及常用译码器简介--------------------------------------------------------------------------------译码器原理及常用译码器简介一. 译码器译码器的功能是对具有特定含义的输入代码进行"翻译",将其转换成相应的输出信号。
译码器的种类很多,常见的有二进制译码器、二-十进制译码器和数字显示译码器。
1.二进制译码器(1) 定义二进制译码器:能将n个输入变量变换成2n个输出函数,且输出函数与输入变量构成的最小项具有对应关系的一种多输出组合逻辑电路。
(2) 特点●二进制译码器一般具有n个输入端、2n个输出端和一个(或多个)使能输入端。
●在使能输入端为有效电平时,对应每一组输入代码,仅一个输出端为有效电平,其余输出端为无效电平(与有效电平相反)。
●有效电平可以是高电平(称为高电平译码),也可以是低电平(称为低电平译码)。
(3) 典型芯片常见的MSI二进制译码器有2-4线(2输入4输出)译码器、3-8线(3输入8输出)译码器和4-16线(4输入16输出)译码器等。
图7.7(a)、(b)所示分别是T4138型3-8线译码器的管脚排列图和逻辑符号。
该译码器真值表如表7.1所示。
表7.1 T4138译码器真值表输入S1 S2+S3 A2 A1 A01 0 0 0 01 0 0 0 11 0 0 1 01 0 0 1 11 0 1 0 01 0 1 0 11 0 1 1 01 0 1 1 10 d d d dd 1 d d d输出Y0 Y1 Y2 Y3 Y4 Y5 Y6 Y70 1 1 1 1 1 1 11 0 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 01 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1由真值表可知,当s1=1,s2+s3=0 时,无论A2、A1和A0取何值,输出Y0 、…、Y7中有且仅有一个为0(低电平有效),其余都是1。
数电实验之译码器及其应用译码器是一种常见的数字电路,其主要作用是将输入的二进制代码转化为相应的输出信号。
译码器通常被用于控制设备或数字显示器等应用中。
本文将介绍译码器的基本原理、常见的译码器类型及其应用。
一、译码器的基本原理译码器由若干个与门和非门组成,通常输入为二进制代码,输出为对应的输出信号。
这些输出信号可以作为控制信号,用于控制相应的设备或数字显示器。
译码器通常可以分为两类:通用译码器和专用译码器。
通用译码器可以处理多种编码格式的输入信号,而专用译码器只能处理特定编码格式的输入信号,例如BCD码、格雷码等。
二、常见的译码器类型1.二进制-十进制译码器二进制-十进制译码器通常用于驱动七段数码管等数字显示设备。
该译码器可以将4位二进制代码转化为0~9的十进制数。
例如,输入“0000”将转化为“0”,输入“0001”将转化为“1”。
2.译码-选通器译码-选通器通常用于地址译码器。
该译码器可以将输入的二进制代码转化为八个输出信号。
例如,输入“000”将激活第一个输出端口,输入“111”将激活第八个输出端口。
3.扩展码-BCD码译码器扩展码-BCD码译码器通常用于处理扩展码和BCD码之间的转化问题。
该译码器将扩展码转化为BCD码,并将结果输出到四位BCD码端口。
4.倒置器译码器三、译码器的应用1.数字显示器2.存储器控制译码器通常用于控制存储器的读写操作,例如将地址码转换为存储区域的物理地址。
译码器可以将输入的地址码转换为存储器中的相应位置,并控制存储器中的数据读出或写入。
3.数字信号控制总之,译码器在数字电路中应用广泛,在数字显示、存储器控制和数字信号控制等方面都发挥了重要的作用。
译码器和解码器知识讲座大家好,今天我来向大家介绍一些关于译码器和解码器的知识。
译码器和解码器在数字电子中起着至关重要的作用,用于将输入的信号转换为所需的输出信号。
让我们深入了解一下它们的工作原理和应用。
首先,让我们从译码器开始。
译码器是一种将数字输入转换为对应的输出代码的电子设备。
它通常用于将二进制代码译码为特定的控制信号,并用于控制其他设备的操作。
译码器可以根据特定编码规则将输入代码转换为输出代码。
常见的译码器类型有二-四译码器和三-八译码器。
二-四译码器是一种将两个输入转换为四个输出的电路,其中每一个输入组合都对应一个输出。
这种译码器广泛应用于数字显示器、显示屏等设备中。
另一种常见的译码器类型是三-八译码器,它将三个输入信号转换为八个输出信号。
它通常用于存储器系统和其他数字逻辑电路中,以将输入代码转换为对应的输出信号。
接下来,让我们谈谈解码器。
解码器是将给定的编码信号转换为对应的输出状态或命令的电子设备。
与译码器不同的是,解码器将输入信号解码为输出信号,用于执行特定的操作或控制其他设备。
常见的解码器类型有二-四解码器和三-八解码器。
二-四解码器接受两个输入信号,并将其转换为四个输出信号。
这种解码器常用于数字电路中的控制系统或多路选择电路。
类似地,三-八解码器接受三个输入信号并生成八个输出信号。
它也经常用于存储器系统和其他数字逻辑电路中。
译码器和解码器是数字电子系统中不可或缺的组成部分。
它们通常与其他逻辑门电路和存储器一起使用,用于实现复杂的操作和处理任务。
它们的主要功能是将输入信号转换为适当的输出信号,并根据需要执行特定的操作。
总结一下,译码器和解码器是数字电子中必不可少的组件。
它们是将输入信号转换为所需输出信号的关键设备。
译码器将输入代码转换为特定的输出代码,而解码器将输入信号解码为输出状态或命令。
它们广泛应用于数字电路、存储系统和控制系统中,用于实现复杂的操作和任务。
希望今天的讲座能够帮助大家更好地理解译码器和解码器的工作原理和应用。
显示译码器作用/类型
1. 作用
在数字系统中,译码器的功能是将一种数码变换成另一种数码。
译码器的输出状态是其输入变量各种组合的结果。
译码器的输出既可以用于驱动或控制系统其他部分,也可驱动显示器,实现数字、符号的显示。
2. 类型
译码器是一种组合电路,工作状态的改变无需依赖时序脉冲。
译码器可分为数码译码和显示译码两大类。
其中:
-显示译码:包括驱动液晶显示器(LCD)、发光二极管(led)、荧光数码管等。
-数码译码:主要是用来完成各种码制之间的转换。
例如可用来完成BCD 十进制数、十进制数BCD 之间数制的转换。
3. 常见数码显示器
数码显示器件有多种形式,目前广泛使用的是七段数码显示器,简称七段数码管。
主要包括发光二极管(LED)数码管和液晶显示(LCD)数码管两种。
(1) LED 数码管
LED 数码管是利用LED 构成显示数码的笔画来显示数字的。
具有较高的亮度,并且有多种颜色可供选择,故应用相当广泛。
其显示数码
根据连接方式的不同,LED 数码管有共阳极和共阴极两种连接方式,如-共阳极连接时,译码器必须输出低电平才能驱动相应的发光二极管导通发光。
-共阴极连接时,译码器必须输出高电平才能驱动相应的发光二极管导通发光。