新能源材料-金属空气电池
- 格式:ppt
- 大小:692.00 KB
- 文档页数:39
锌-空气燃料电池锌-空气燃料电池可以应用于各种领域,例如移动电话、笔记本电脑、电动汽车等。
它不仅具有高能量密度和长续航里程,而且燃料电池使用的是锌颗粒和空气中的氧气,相比传统电池更环保。
然而,锌-空气燃料电池也存在一些挑战和问题,例如金属锌的储存和输送、空气中的湿度对电池性能的影响等。
因此,科学家们正在不断研究和改进锌-空气燃料电池的技术,以便更好地满足未来能源需求。
本文将对锌-空气燃料电池的原理、优势、挑战和发展前景进行深入探讨,以期为读者提供更多有关这一领域的知识和信息。
一、锌-空气燃料电池原理锌-空气燃料电池的工作原理是利用金属锌和空气中的氧气进行化学反应。
当两者在电池中发生化学反应时,会产生电子和离子,从而产生电能。
具体来说,锌-空气燃料电池包括阳极、阴极和电解质三部分。
阳极:阳极是由锌金属组成的,当阳极和电解质接触时,会产生离子和电子,离子会通过电解质向阴极迁移,而电子则通过外部电路向阴极流动,产生电能。
阴极:阴极是由氧气组成的,当阴极和电解质接触时,会吸收到从阳极传来的离子和电子,进而与之结合产生水。
电解质:电解质是连接阳极和阴极的介质,它具有一定的离子传输功能,可以使阳极和阴极之间的化学反应得以进行。
电解质通常是一种固体材料,它不会与金属锌和氧气进行反应,因此可以长时间地维持电池的工作。
总的来说,锌-空气燃料电池的工作原理就是利用金属锌和空气中的氧气进行化学反应,并将产生的电能输出到外部电路中。
这种化学反应的过程非常清洁、高效,不会产生有害的环境污染物质,因此备受人们关注。
二、锌-空气燃料电池的优势锌-空气燃料电池具有许多优势,使其成为一种具有巨大发展潜力的新能源技术。
1. 高能量密度锌-空气燃料电池具有很高的能量密度,可以达到传统电池的2-3倍。
这意味着它可以存储更多的能量,从而在相同体积和重量下提供更长的续航时间,这对于移动设备和电动汽车等需要长时间使用的场合非常重要。
2. 环保锌-空气燃料电池使用的燃料是金属锌和空气中的氧气,在反应过程中产生的产物只有电池内部的锌氢氧化物,不会产生二氧化碳等有害的环境污染物质。
金属空气电池基础知识科普作为在新一代电子产品、电力交通和电能储存中应用前景广阔的能源设备,金属空气电池最突出的优点即其可以将高能量密度的金属负极与具备开放结构的活性空气正极材料相结合。
制作金属空气电池,可选用的原材料比较丰富。
目前已经取得研究进展的金属空气电池主要有铝空气电池、镁空气电池、锌空气电池、锂空气电池等。
这几种类型的金属空气电池有的已经具备大规模量产的条件,有的还停留在实验室阶段,有的已经在电动汽车方面取得良好的应用成果,并即将大规模装载新能源车辆。
从锂离子电池说起——金属空气电池原理我们以锂空气电池为例来看锂离子电池和锂空气电池有何区别。
在锂离子电池中,负极为碳,正极为不同过渡金属氧化物,如钴、锰、铁等。
二者均浸润于溶解有锂盐的电解液中。
充电时,锂离子从正极(阴极)移动到负极(阳极)多孔碳上,嵌入碳材料中,外部电流从负极流到正极(电子从正极移动到负极),形成闭合回路;放电时,锂离子从负极脱嵌,回归正极,外部电流从正极流向负极(电子从负极移动到正极)。
最终电池的容量大小取决于有多少材料能够容纳锂离子,即由电极的体积与质量决定。
锂离子电池原理当对电池进行充电时,电池的正极上有锂离子生成,生成的锂离子经过电解液运动到负极。
而作为负极的碳呈层状结构,它有很多微孔,到达负极的锂离子就嵌入到碳层的微孔中,嵌入的锂离子越多,充电容量越高。
此时正极发生的化学反应为:同样道理,当对电池进行放电时(即我们使用电池的过程),嵌在负极碳层中的锂离子脱出,又运动回到正极。
回到正极的锂离子越多,放电容量越高。
我们通常所说的电池容量指的就是放电容量。
此时负极发生的化学反应为:不难看出,在锂离子电池的充放电过程中,锂离子处于从正极→ 负极→ 正极的运动状态。
如果我们把锂离子电池形象地比喻为一把摇椅,摇椅的两端为电池的两极,而锂离子就象优秀的运动健将,在摇椅的两端来回奔跑。
所以,专家们又给了锂离子电池一个可爱的名字摇椅式电池。
铝空气电池堆
铝空气电池是一种以铝为负极、氧为正极的化学电源,其化学反应与锌空气电池类似。
铝空气电池以高纯度铝Al(含铝%)为负极、氧为正极,以氢氧化钾(KOH)或氢氧化钠(NaOH)水溶液为电解质。
铝摄取空气中的氧,在电池放电时产生化学反应,铝和氧作用转化为氧化铝。
这种电池具有比能量大、质量轻、无毒危险、铝的原材料丰富且回收再生方便等优点。
此外,由于其采用的是低成本的氧化锰催化剂,并且不需要质子交换膜,因此铝空气电池电堆成本可降低40%左右,同时铝空气电池系统成本约为氢燃料电池系统的82%左右。
但是,铝空气电池也存在一些缺点,如比功率较低、充电和放电速度比较缓慢、电压滞后、自放电率较大等。
此外,由于其工作时会过热,因此需要采用热管理系统来防止过热。
以上内容仅供参考,如需获取更多信息,建议查阅相关论文或咨询化学电源领域的专家。
铝空气电池原理
铝空气电池是一种新型的电池技术,使用铝和空气作为主要材料。
它的原理主要涉及两个过程:铝氧化和氧还原反应。
首先,铝极在电解液中发生氧化反应,将铝离子释放出来,并释放出电子。
这个过程可以表示为:
Al → Al3+ + 3e-
同时,空气(通常指的是氧气)在电极表面发生还原反应,接受铝电子,生成氧化物。
这个过程可以表示为:
O2 + 4e- + 2H2O → 4OH-
两个反应共同构成了铝空气电池中的电化学反应。
铝离子和氧化物离子通过离子导体(通常是电解液)进行离子传输,而电子则通过电路进行电子传输。
在电化学反应中,铝极逐渐被氧化,而空气电极逐渐被还原。
这导致铝空气电池产生了电势差,可以驱动电子在电路中流动,从而产生电能。
铝空气电池的优点是具有高能量密度、不可充电等特点,适用于一次性使用的电源。
然而,它也存在一些挑战,比如电极的反应速率和电解液的稳定性等问题,这些问题仍在研究中得到解决。
空气电池氯化铝铝-概述说明以及解释1.引言1.1 概述概述:空气电池是一种利用空气中的氧气作为氧化剂和铝作为还原剂的电池。
它是一种绿色、环保的电池技术,具有高能量密度、可持续使用和安全性高等优点。
氯化铝是一种无机化合物,化学式为AlCl3。
它具有很强的腐蚀性,在常温下为白色结晶固体。
氯化铝在化工工业、制药工业等领域有广泛的应用,如催化剂、脱水剂和电解质等方面。
铝是一种常见的金属元素,化学符号为Al,原子序数为13。
它具有轻质、良好的导电性和导热性等特点,在航空航天、汽车制造、建筑和包装等领域有广泛的应用。
本文将重点介绍空气电池、氯化铝和铝的原理、性质和应用领域,探讨它们之间的关系,以及对环境和能源的影响。
最后,展望空气电池技术、氯化铝和铝的未来发展前景。
通过本文的阐述,读者将更好地了解空气电池、氯化铝和铝这些重要的科技和材料,并认识到它们对于推动可持续发展和节能减排的重要作用。
1.2 文章结构文章结构部分的内容如下:文章结构部分旨在给读者呈现本文的整体框架和组织方式。
本文分为引言、正文和结论三个主要部分。
在引言部分中,我们将概述本文的主题,介绍空气电池、氯化铝和铝的基本概念,并明确本文的目的。
在正文部分,我们将详细探讨空气电池、氯化铝和铝的各个方面,包括它们的原理、优点、物理性质、化学性质和应用领域。
最后,结论部分将总结和归纳空气电池、氯化铝和铝之间的关系,分析它们对环境和能源的影响,并展望未来的发展前景。
通过这样的文章结构,我们希望读者能够全面了解空气电池、氯化铝和铝的相关知识,并对其在环境和能源领域的潜力有更深入的了解。
1.3 目的本文旨在探讨空气电池、氯化铝和铝的相关性,并分析它们对环境和能源的影响。
同时,本文还将研究它们的物理性质和化学性质,以及它们在不同领域中的应用。
通过对这些内容的研究,本文旨在为读者提供关于空气电池、氯化铝和铝的全面了解,并展望它们在未来的发展前景。
通过深入研究这些问题,我们将能够更好地理解这些材料的特性和用途,并为环境保护和可持续能源发展提供更多的解决方案。
2014.2Vol.38No.2金属-空气电池由具有反应活性的负极材料和空气电极经某些电化学反应组合而成(其结构如图1所示),兼具原电池和燃料电池的特点,有很高的质量比能量和体积比能量,而且容量大、成本低、放电稳定,且正极材料用之不尽,被认为是未来很有发展和应用前景的新能源,所以科研工作者对金属-空气电池的开发做了很多的努力。
现在金属-空气电池中已开展研究的有:锂-空气电池、锌-空气电池、铝-空气电池、镁-空气电池、铁-空气电池、钠-空气电池等,下面是国外一些有关金属-空气电池的研究进展。
1各国研究进展美国IBM正在研发的一项很有前景的技术就是锂-空气电池。
锂-空气电池是通过锂与空气中的氧发生化学反应产生电力。
它的原理是在行驶过程中将空气中的氧分子与电池中的锂离子及电子进行反应,从而产生电能。
每次充电的时候,氧气就会被排出电池之外。
目前市售电动汽车(EV)配备的锂离子电池使用了重金属氧化物,由于锂-空气电池不使用重金属氧化物,从而可大幅减轻电池质量,此外还把比能量提高10倍左右。
和现有锂电池相比,锂-空气电池容量更大,其储电能力是目前锂电池的4 ̄5倍。
IBM是锂-空气电池技术研发的领导者,自2009年以来,IBM公司一直致力于“电池500”项目的研究,2012年日本旭化成(AsahiKasei)及中央硝子(CentralGlass)2家公司加入IBM“电池500”项目团队(图1),共同合作开发锂-空气电池。
2014年IBM锂-空气电池样品有望问世,不过要实现商业化则还需要5 ̄10年的时间。
麻省理工学院的科研小组将转基因病毒用于纳米线的生产,可提高锂-空气电池的效率,使超轻质量的锂-空气电池应用到电动汽车的可能性大大提高。
转基因病毒能够有效地从水中提取氧化锰,捕捉水中的金属分子,并在纳米线表面生成大量的粗糙、有凸起的表面结构形状,可作为电池正极。
研究者表示这种生成过程与鲍鱼壳的形成非常相似:从海水中吸收钙,以固态的形式储存。