建筑工程大体积混凝土裂缝控制与应用
- 格式:doc
- 大小:36.00 KB
- 文档页数:10
建筑工程大体积混凝土温度裂缝控制研究摘要:现代建筑工程体量大、规模大,大体积混凝土施工有利于保障建筑结构的整体性,但混凝土容易出现温度裂缝,需进行严格控制。
本文分析了建筑工程大体积混凝土特征,明确了建筑工程大体积混凝土温度裂缝影响,重点阐述建筑工程大体积混凝土温度裂缝控制措施,包括前期设计、中期施工、后期养护几个阶段。
旨在降低建筑工程大体积混凝土温度裂缝发生几率,提高建筑工程大体积混凝土结构施工质量。
关键词:建筑工程;大体积混凝土;温度裂缝;控制措施1建筑工程大体积混凝土特征和传统混凝土结构相比,大体积混凝土结构体积更大,内部钢筋分布更密集,施工消耗大量水泥材料,浇筑量更大,施工消耗大量的作业时间,对工艺技术应用要求更严格,施工质量易受环境因素影响。
在水化热过程中,水泥产生大量热量,但混凝土结构导热性能较差,大体积混凝土内部热量无法消散,内部温度不断上升极易诱发裂缝问题。
除此之外,大体积混凝土弹性模量低,加之内外温差明显,大体积混凝土温度应力更大,易出现裂缝。
2建筑工程大体积混凝土温度裂缝影响第一,在建筑工程施工时,大体积混凝土结构裂缝将直接影响结构整体稳定性及安全性。
如大体积混凝土结构中出现贯穿性裂缝,将对建筑结构造成严重的结构性损伤,且修复极为困难,这种损伤甚至会对建筑结构带来不可逆的影响,严重威胁结构强度。
第二,大体积混凝土结构裂缝将影响建筑功能发挥。
我国高层建筑及商场等均为大体积混凝土结构。
混凝土结构出现裂缝将导致渗漏问题发生,影响建筑内部功能区域使用[1]。
第三,大体积混凝土裂缝将会使建筑结构刚度不断下降,严重影响建筑工程使用寿命。
大体积混凝土裂缝将会导致该部位刚度下降,尤其是承重部位的裂缝将会导致结构承载能力大幅降低,严重威胁建筑结构整体安全。
除此之外,大体积混凝土裂缝将导致内部混凝土长期暴露在空气条件下,混凝土将受到侵蚀。
随侵蚀不断深入,内部钢筋将会出现锈蚀,大幅降低混凝土结构耐久性。
大体积混凝土质量通病及防治措施在建筑工程中,大体积混凝土的应用越来越广泛。
然而,由于其体积大、结构厚实、施工技术要求高,在施工过程中容易出现一些质量通病,如裂缝、蜂窝麻面、孔洞等,这些问题不仅影响混凝土的外观质量,还可能降低其结构性能和耐久性。
因此,了解大体积混凝土质量通病的产生原因,并采取有效的防治措施,对于保证工程质量具有重要意义。
一、大体积混凝土质量通病(一)裂缝裂缝是大体积混凝土最常见的质量通病之一。
裂缝按深度不同可分为表面裂缝、深层裂缝和贯穿裂缝。
表面裂缝一般危害性较小,但在外界因素的影响下,可能会发展成为深层裂缝或贯穿裂缝。
深层裂缝和贯穿裂缝会严重影响混凝土的结构性能和耐久性。
裂缝产生的原因主要有以下几个方面:1、水泥水化热大体积混凝土中水泥用量较大,水泥在水化过程中会释放出大量的热量,导致混凝土内部温度升高。
由于混凝土的导热性能较差,内部热量不易散发,从而形成较大的内外温差。
当温差超过一定限度时,混凝土表面就会产生拉应力,当拉应力超过混凝土的抗拉强度时,就会产生裂缝。
2、外界气温变化在混凝土施工过程中,如果外界气温突然下降,会导致混凝土表面温度急剧下降,而内部温度下降较慢,从而形成较大的内外温差,产生裂缝。
3、混凝土收缩混凝土在硬化过程中会发生收缩,包括塑性收缩、干燥收缩和自收缩等。
如果收缩受到约束,就会产生拉应力,导致裂缝的产生。
4、约束条件大体积混凝土在浇筑过程中,如果受到地基、模板等的约束,不能自由变形,就会在混凝土内部产生拉应力,当拉应力超过混凝土的抗拉强度时,就会产生裂缝。
(二)蜂窝麻面蜂窝麻面是指混凝土表面局部出现酥松、砂浆少、石子多,石子之间形成空隙类似蜂窝状的窟窿,以及混凝土表面局部缺浆、粗糙,或有许多小凹坑的现象。
蜂窝麻面产生的原因主要有以下几个方面:1、混凝土配合比不当混凝土中水泥、砂、石的比例不合适,或者砂率过小、石子粒径过大,都会导致混凝土和易性差,容易产生蜂窝麻面。
运用QC方法控制地下室大体积混凝土施工裂缝在建筑工程中,地下室大体积混凝土施工是一个关键环节,而裂缝问题往往是影响其质量的重要因素。
大体积混凝土由于体积大、水泥水化热释放集中、内部温升快等特点,容易产生温度裂缝、收缩裂缝等,给工程的安全性和耐久性带来隐患。
因此,运用 QC 方法(Quality Control,质量控制)来控制地下室大体积混凝土施工裂缝具有重要意义。
一、地下室大体积混凝土施工裂缝的类型及成因地下室大体积混凝土施工中常见的裂缝类型主要包括温度裂缝、收缩裂缝和施工裂缝。
温度裂缝是由于混凝土在浇筑后,水泥水化反应产生大量的热量,导致混凝土内部温度迅速升高,而表面散热较快,形成较大的内外温差,从而产生拉应力。
当拉应力超过混凝土的抗拉强度时,就会出现温度裂缝。
收缩裂缝则是由于混凝土在硬化过程中,水分逐渐蒸发,体积收缩。
如果收缩受到约束,就会产生收缩应力,导致裂缝的出现。
施工裂缝主要是由于施工过程中的不当操作引起的,如混凝土浇筑不连续、振捣不均匀、模板拆除过早等。
二、QC 方法在控制地下室大体积混凝土施工裂缝中的应用步骤1、确定质量控制目标首先要明确地下室大体积混凝土施工裂缝控制的目标,一般要求裂缝宽度不超过规定限值,以确保混凝土结构的安全性和耐久性。
2、现状调查对以往类似工程中地下室大体积混凝土施工裂缝的情况进行调查,收集相关数据,包括裂缝的类型、位置、宽度、长度等,分析裂缝产生的原因和规律。
3、原因分析运用因果图、排列图等工具,对调查结果进行分析,找出导致地下室大体积混凝土施工裂缝的主要原因。
可能的原因包括原材料质量、配合比设计、施工工艺、养护措施等方面的问题。
4、制定对策针对找出的主要原因,制定相应的对策措施。
例如,对于原材料质量问题,可以选择优质的水泥、骨料和外加剂;对于配合比设计不合理,可以通过试验优化配合比;对于施工工艺不当,可以加强施工过程的控制和管理;对于养护措施不到位,可以制定科学合理的养护方案。
大体积混凝土裂缝成因及控制措施水利建设工程中大体积混凝土结构比较多,混凝土重力坝、大型船闸、混凝土挡墙等建筑物,虽然设计时都分成好多块,但每一块都仍然有几百方,甚至上千方混凝土。
工程实践证明,大体积混凝土施工难度较大,混凝土产生裂缝的机率较多,稍有差错,将会造成无法估量的损失。
为了提高工程质量,降低不必要的经济损失,我们一定要减少和控制裂缝的的出现。
从裂缝的形成过程可以看到,混凝土特别是大体积混凝土之所以开裂,主要是混凝土所承受的拉应力大于混凝土本身的抗拉强度的结果。
因此为了控制大体积混凝土裂缝,就必须从提高混凝土本身抗拉强度性能和降低拉应力(特别是温度应力)这两方面综合考虑。
抗拉强度主要决定于混凝土的强度等级及组成材料,要保证抗拉强度关键在于原材料的优选和配合比的优化(混凝土强度等级设计已经确定),由于混凝土选用地材,从经济角度来考虑,原材料优化的空间相对较小,所以降低拉应力是控制混凝土裂缝的有效途径。
而降低拉应力主要通过减少温度应力和沉缩应力来控制温度裂缝和沉缩裂缝。
一、温度裂缝1、温度裂缝产生的主要原因:一是由于混凝土结构内外温差较大引起的。
在混凝土结构硬化期间,水泥释放大量的水化热,如果散热不及时,内部温度就会不断上升,使混凝土表面和内部温差变大。
混凝土内部膨胀高于外部,此时混凝土表面将受到很大的拉应力,而混凝土的早期抗拉强度很低,因而出现温度裂缝。
这种温度应力一般在表面处较大,离开表面就很快减弱,因此裂缝只在接近表面的范围内发生,表面层以下结构仍保持完整。
二是由于结构温差较大,受到外界的约束引起的,当大体积混凝土浇筑在约束地基(例如桩基)上时,又没有采取特殊措施降低、放松或取消约束,或根本无法消除约束,则易发生深度、甚至是贯穿的温度裂缝。
2、温度裂缝形成的过程:一般(认为)分为三个时期:一是初期裂缝—就是在混凝土浇筑的升温期。
由于水化热,混凝土浇筑后2~3天内温度急剧上升,内热外冷引起的“约束力”超过混凝土抗拉强度引起裂缝。
可编辑修改精选全文完整版大体积混凝土裂缝的控制措施【摘要】:大体积混凝土施工过程中,由于其工程条件的复杂性,在温度应力作用下容易产生开裂问题。
针对裂缝产生原因进行分析,找出影响混凝土裂缝产生的因素,并提出避免大体积混凝土产生裂纹的应对措施,以及施工工程中的技术措施。
【关键字】:大体积混凝土措施施工技术1大体积混凝土裂缝产生的原因混凝土结构物的裂缝可分为微观裂缝和宏观裂缝。
微观裂缝是指那些肉眼看不见的裂缝,主要有三种:一是骨料与水泥石粘合面上的裂缝,称为粘着裂缝;二是水泥石中自身的裂缝,称为水泥石裂缝;三是骨料本身的裂缝,称为骨料裂缝。
微观裂缝在混凝土结构中的分布是不规则、不贯通的。
反之,肉眼看得见的裂缝称为宏观裂缝,这类裂缝的范围一般不小于0.05mm。
宏观裂缝是微观裂缝扩展而来的。
因此在混凝土结构中裂缝是绝对存在的,只是应将其控制在符合规范要求范围内,以不致发展到有害裂缝。
混凝土结构的宏观裂缝产生的原因主要有三种,一是有外荷载引起的,这是发生最为普遍的一种情况,即按常规计算的主要应力引起的;二是结构次内力引起的裂缝,这是由于结构的实际工作状态与计算假设模型的差异引起的;三是变形应力引起的裂缝,这是由温度、收缩、膨胀、不均匀沉降等因素引起结构变形,当变形受到约束时便产生应力,当此应力超过混凝土抗拉强度时就产生裂缝。
建筑工程中的大体积混凝土结构中,由于结构截面大,水泥用量多,水泥水化所释放的水化热会产生较大的温度变化和收缩作用,因此形成的温度收缩应力是导致钢筋混凝土产生裂缝的主要原因。
这种裂缝有表面裂缝和贯通裂缝两种。
表面裂缝是混凝土表面和内部的散热条件不同,温度外低内高,形成温度梯度,使混凝土内部产生压应力,表面产生拉应力,表面的拉应力超过混凝土抗拉强度而引起的。
贯通裂缝是由于大体积混凝土在强度发展到一定程度,混凝土逐渐降温,这个降温差引起的变形加上混凝土失水引起的体积收缩变形,受到地基和其它结构边界条件的约束时引起的拉应力,超过混凝土抗拉强度时所可能产生的贯通整个截面的裂缝。
至塑夔苤浅谈大体积混凝土在工程中的应用与裂缝控制技术王征兵王玉龙(周口市阳光房产建筑有限责任公司,河南周15466000)睛要】随着建筑施工技术飞速发展,现代建筑中经常涉及到大体积混凝土施工,如高层楼房基础、大型设备基础、水利大坝等,大体积混凝土结构在浇筑后,水泥的水化热量犬,而由于混凝土体积大,水化热聚积在混凝土内部不易散发,浇筑初期混凝土内部温度显著升高,而表面散热较快,这样就形成较大的内外温差,混凝土内部产生压应力,而混凝土表面产生拉应力,如温差过大则易于在混凝土表面产生裂缝影响结构安全和正常使周,所以必须从根本上加以分析,米保证施工的质量。
狰蝴】大体积混凝土;工程应用;裂缝控制1裂缝控制的设计措施1)大体积混凝土的强度等级宣在C20~C35范围内选用,利用后期强度R600隧着高层和超高层建筑物不断出现,大体积混凝土的强度等级日趋增高,设计强度过高,水泥用量过大,必然造成混凝土水化热过高,混凝土块体内部温度高,混凝土内外温差超过3a℃以上,温度应力容易超过混凝土的抗拉强度,产生开裂。
竖向受力结构可以用高强混凝±减小截面,而对于大体积混凝土底板应在满足抗弯及抗冲切计算要求下,采用C20~C35的混凝土,避免设计上“强度越高越好”的错误概念。
考虑到建设周期长的特点,在保证基础有足够强度、满足使用要求的前提下,可以利用混凝土60d或90d的后期强度,这样可以减少混凝土中的水泥用量,以降低混凝土浇筑块体的温度升高。
2)大体积混凝土基础除应满足承载力和构造要求外,还应增配承受因水泥水化热引起的温度应力及控制裂缝开展的钢筋,以构造钢筋来控制裂缝,配筋应尽可能采用小直径、小间距。
采用直径8—14m m的钢筋和100~150m m间距足比较合理的。
配筋率应在O.3%~O.5%之间。
3)当基础设置于岩石地基上时,宜住混凝土垫层上设置滑动层,滑动层构造可采用一毡一油。
4)避免结构突变(或断裂突变)产生应力集中。
防止大体积混凝土裂缝产生的措施
大体积混凝土在施工过程中容易出现裂缝,影响结构的强度和美观度。
以下措施可以有效防止大体积混凝土裂缝产生:
1. 控制水灰比:水灰比过高会使混凝土变得过于流动,难以凝固,容易出现裂缝。
控制水灰比可以使混凝土的强度和稳定性得到保证。
2. 增加混凝土中的骨料:适量增加混凝土中的骨料可以降低水
灰比,减少混凝土的收缩率和热胀冷缩率,从而减少裂缝的产生。
3. 控制施工温度:避免在高温或低温条件下施工可以减少混凝
土的收缩和膨胀,从而减少裂缝的产生。
4. 使用聚合物或纤维增强剂:加入聚合物或纤维增强剂可以提
高混凝土的韧性和抗裂性,减少裂缝的产生。
5. 控制混凝土的浇筑速度和浇筑方式:混凝土的浇筑速度过快
或浇筑方式不当容易造成混凝土内部应力不均,从而导致裂缝的产生。
通过上述措施,可以有效防止大体积混凝土裂缝的产生,保证建筑结构的稳定性和美观度。
- 1 -。
大体积混凝土施工方法及裂缝处理控制措施随着社会的不断进步及我国各城市的基础建设的迅速发展,混凝土在工程建设中占有重要地位,现代建筑中经常涉及到大体积混凝土施工,如房屋建筑工程、公路工程、桥梁工程、市政工程、水利工程等。
尽管我们在施工中采取各种措施,小心谨慎,但裂缝几乎无所不在,仍然时有出现,并困扰着大批工程技术人员和管理人员,是一个迫切需要解决的技术难题.所以必须从根本上加以分析、处理、控制,来保证施工的质量.下面重点阐述大体积混凝土的施工工艺和技术要求以及施工裂缝的处理控制措施。
一、大体积混凝土的浇筑方法目前,大体积混凝土浇筑的混凝土,绝大部分是采用泵送混凝土,避免了现场搅拌速度慢,跟不上的缺点。
混凝土在运输的过程中不得产生分层、离析现象,如有离析现象,必须在浇筑前进行第二次搅拌。
在大体积的混凝土在浇筑时,为了保证混凝土结构的整体性和施工的连续性,采用分层浇筑时,应保证在下层混凝土初凝前将上层的混凝土浇筑完毕。
分层浇筑主要有以下三种形式:1.全面分层:在整个模板内,将结构分成若干个厚度相等的浇筑层,浇筑区的面积即为基础平面面积.浇筑混凝土时从短边开始,沿长边的方向进行浇筑,要求在逐层浇筑过程中,第二层混凝土必须要在第一层混凝土初凝前浇筑完毕。
由于全面分层浇筑,不需要进行分段,不需要支模分隔,而且一般情况下搅拌站的混凝土都能及时的跟上现成的浇筑,所以全面分层是目前大体积混凝土浇筑采用的最多的形式。
2.分段分层:当采用全面分层方案时浇筑强度很大,现场混凝土搅拌机、运输和振捣设备均不能满足施工要求时,可采用分段分层浇筑的方案。
浇筑混凝土时结构沿长边方向分成若干段,浇筑工作从底层开始,当第一层混凝土浇筑一段长度后,便回头浇筑第二层,当第二层浇筑一段长度后,回头浇筑第三层,如此向前呈阶梯形推进.分段分层方案适用于结构厚度不大,但面积或长度较大时采用.3.斜面分层:采用斜面分层方案时,混凝土一次浇筑到顶,由于混凝土自然流淌而形成斜面。
2024年大体积商品混凝土裂纹的控制
1. 使用低收缩的混凝土:选择低收缩性能优良的混凝土材料,可以减少混凝土在硬化过程中的收缩,减少裂缝的产生。
2. 控制混凝土表面的蒸发速率:在混凝土浇筑后,要注意控制浇水或使用覆盖物来减少混凝土表面的蒸发速率,以防止裂纹的发生。
3. 控制温度变化:在混凝土浇筑后,要通过控制温度变化来减少混凝土的热应力,可以采取降低浇筑温度、使用降温剂等措施。
4. 使用添加剂:在混凝土配制中加入一些添加剂,如减水剂、增稠剂、增强剂等,可以改善混凝土的流动性、减少收缩等问题,从而降低裂纹的发生。
5. 控制施工过程:在混凝土浇筑过程中,要注意控制浇注速度、浇筑高度、振捣等施工参数,以确保混凝土的均匀性,减少裂纹的产生。
这些仅仅是一些一般性的建议,具体的控制裂纹的方法还需要根据具体的工程要求和现场条件进行综合考虑和控制。
建议您在实施前咨询专业的工程师或混凝土技术人员,以确保正确的建议和方法。
第 1 页共 1 页。
大体积混凝土温度裂缝裂缝控制在现代建筑工程中,大体积混凝土的应用越来越广泛。
然而,大体积混凝土在施工过程中,由于其体积较大,水泥水化热释放集中,内部温度升高较快,而表面散热较快,从而形成较大的内外温差,导致混凝土产生温度裂缝。
温度裂缝不仅会影响混凝土的外观质量,还会降低混凝土的耐久性和承载能力,严重影响建筑物的安全和使用寿命。
因此,如何有效地控制大体积混凝土的温度裂缝,是建筑工程中一个亟待解决的重要问题。
一、大体积混凝土温度裂缝的产生原因1、水泥水化热水泥在水化过程中会释放出大量的热量,由于大体积混凝土结构断面较厚,水泥水化热聚集在结构内部不易散失,使得内部温度升高较快。
当混凝土内部与表面的温差过大时,就会产生温度应力,当温度应力超过混凝土的抗拉强度时,就会产生温度裂缝。
2、外界气温变化大体积混凝土在施工期间,外界气温的变化对混凝土的开裂有着重要的影响。
混凝土的内部温度是由水泥水化热的绝热温升、浇筑温度和散热温度三者的叠加。
如果外界气温下降较大,会使混凝土表面温度急剧下降,而内部温度下降较慢,从而形成较大的内外温差,导致温度裂缝的产生。
3、混凝土的收缩混凝土在硬化过程中会发生体积收缩,包括化学收缩、干湿收缩和温度收缩等。
对于大体积混凝土,由于其体积较大,收缩受到约束时产生的拉应力也较大,容易导致裂缝的产生。
4、约束条件大体积混凝土在浇筑后,由于基础、垫层或相邻结构的约束,使其不能自由变形。
当混凝土内部产生的温度应力超过其约束应力时,就会产生裂缝。
二、大体积混凝土温度裂缝的控制措施1、优化混凝土配合比(1)选用低水化热的水泥品种,如矿渣水泥、粉煤灰水泥等,以减少水泥水化热的产生。
(2)掺入适量的粉煤灰、矿渣粉等掺和料,不仅可以降低水泥用量,减少水化热,还可以改善混凝土的和易性和耐久性。
(3)优化骨料级配,选用粒径较大、级配良好的骨料,减少水泥和水的用量,降低混凝土的收缩。
(4)掺入适量的减水剂、缓凝剂等外加剂,延长混凝土的凝结时间,降低水化热的释放速度,减少温度裂缝的产生。
论建筑工程大体积混凝土裂缝控制与应用-----褚建国一、后浇带间距、后浇缝间距:首先应考虑能有效地削减温度收缩应力,其次考虑与施工缝相结合。
通过计算及实践经验调查,在正常施工条件下,后浇缝的间距约为20~30m。
后浇带保留时间后浇缝保留时间一般愈长愈好。
一般不应小于40天,最宜60天。
后浇带的宽度及构造后浇缝的理论宽度,只须1cm已足够保证温度收缩变形。
但是考虑施工方便,并避免应力集中,一般设置宽度在700mm——1000mm左右。
后浇带处钢筋连续不断,也可断开钢筋,后浇带可做成企口式,无论采用什么形式,后浇带施工前都必须凿毛清理干净。
后浇缝的填充材料最宜采用浇筑水泥及其它微膨胀水泥。
后浇带的施工在凿毛处理、清理干净后用比原结构强度等级高C5—C10的混凝土填实,并加以良好的养护,养护时间不少于15天。
二、大体积混凝土的冬期施工:在工业与民用建筑钢筋混凝土结构的冬期施工中,主要是防止早期混凝土被冻问题;而在大体积混凝土的冬期施工中,情况有所不同,除了防止早期混凝土被冻外,还存在着控制温差、防止裂缝的问题,而且防冻与防裂之间往往还存在着矛盾。
在设计和施工中,必须妥善解决这个矛盾,兼顾防冻与防裂两方面的要求。
这是大体积混凝土冬期施工的主要特点。
混凝土冬期施工,尤其是在严寒地区,无论采用何种施工方法,为了防止旱期混凝土被冻,一般都要求混凝土具有较高的浇筑温度。
但另一方面,正是由于气温寒冷,基础温差和内外温差必然加大,往往超过允许温差,不能满足防止混凝土裂缝的要求。
因此,大体积混凝土冬期施工中防冻与防裂的矛盾,集中在混凝土浇筑温度的选择上。
实践经验表明,如果单纯从混凝土旱期被冻出发,选择过高的浇筑温度,往往会导致混凝土开裂,造成混凝土施工中出现质量问题,所以要选择合理的浇筑温度[15,20,21]。
三、大体积混凝土冬期施工的原则:连续五天日平均气温在5℃以下,即进入混凝土的冬期施工阶段。
重庆大学硕士学位论文4大体积混凝土施工方案和施工技术研究30大体积混凝土冬施工应兼顾防冻与防裂两方面的要求,因此应遵循以下三条基本原则:1、砂、石等原材料中不能含有冻块,混凝土拌合物也该具有一定的温度,以保证在运输和浇筑过程中不致冻结。
2、混凝土在达到临界强度之前不能受冻,以免混凝土内部结构受到破坏,最终强度受到损失。
3、混凝土的内外温差和最高温度均不能超过规定数值,以免发生裂缝,破坏结构的整体性。
上述三条原则中,第1、2条是为了防冻,第3条是为了防裂。
四、大体积混凝土冬期施工的技术措施:为了使上述冬期施工的原则得到满足,必须采取一系列技术措施。
1、混凝土出机温度与浇筑温度的选择混凝土的浇筑温度系指经过平仓震捣,将要盖上第二层混凝土拌合物之前的温度。
为了防止旱期混凝土受冻,浇筑温度当然越高越好,规范规定入模温度不低于5℃,没有上限控制。
但大体积混凝土,除了防冻外,还有防裂要求,由于体积大,浇筑以后,虽然表面温度低。
内部温度却因水化热急剧上升。
为了减少内外温差和基础温差,浇筑温度越低越有利,一般说最好不超过10℃。
因此,大体积混凝土施工的浇筑温度一般以5~10℃为宜.如果气温很低,在达到临界强度以前表面混凝土有遭受冻害的可能,应加强保温措施,不可单纯为了防冻而随意提高浇筑温度,以致引起裂缝.根据当地的气候条件和保温方法,由浇筑温度,加上运输及浇筑过程中的热量损失,就可得到混凝土的出机温度.规范规定不低于10℃,一般控制在10~15℃为宜.2、基础及冷壁的预热在浇筑混凝土以前,对基础、预埋铁件及新混凝土接触的冷壁,应用蒸汽清除所有的冰、雪、霜冻,并使其表面温度上升。
如果基岩及冷壁的内部温度较低,还需要提前进行预热。
如果不提前预热,浇筑混凝土后,接触面附近的新混凝土温度将很快降到零度以下。
预热所需温度、深度和持续时间,由温度计算确定。
计算原则应使接触面附近的新混凝土在达到临界强度之前不被冻结。
一般来说,应使基岩深度10cm内温度在5℃以上。
3、原材料加热当气温不低于-1℃时,一般只需将拌和水加热,以满足出机温度的要求。
水温不能超过60℃,以免水泥发生假凝。
当气温低于-1℃时,须将水与细骨料加热,同时加热粗骨料使其中的冰雪融化。
加热砂石料时应避免过热和过分干燥,最高温度不宜超过75℃。
水的加热可用锅炉、电热或蒸汽,砂料加热可用封闭的蛇形管,石料加热使用蒸汽最方便。
4、运输中的保温运输中的热量损失与运输工具有关。
如使用大型运输罐,热损失一般不大。
如使用自卸卡车,可用废气加热车底,车皮外面应加保温层并在车身上面加以覆盖,如使用皮带运输机,最好搭盖帐篷,完全封闭,否则热量损失很大。
此外,运输中应尽量减少倒转次数。
5、浇筑过程中减少热量损失混凝土是分层浇筑的,每层厚度20~50cm,由于厚度薄,散热面积大,浇筑过程中的热量损失是很大的。
减少热量损失的方法:①加快浇筑速度,缩短浇筑时间;②用保温被或聚乙烯泡沫塑料板覆盖保温。
当气温低于-5℃时,即停止浇筑。
在更低的气温下浇筑混凝土,一般以采取用暖棚法为宜。
6、保温养护混凝土浇筑完毕以后,应采取严格的保温养护措施,使混凝土强度得到充分发展。
在混凝土达到临界强度以前,任一点温度均不能降至零度以下。
保温方法大致有以下三类:(1)表面保温法。
侧面用保温模板、保温被、聚苯乙烯泡沫塑料板等,顶面用聚乙烯泡沫塑料板、保温被、锯末等保温,将混凝土浇筑时所包含的热量(决定于浇筑温度)及水化热保存起来,维持所需温度。
保温层厚度应通过计算确定。
(2)主动加热法。
在模板内侧以蒸汽或电热线加热,或在表层混凝土内插入电极,利用混凝土的电阻,以低压(50~100V)加热。
(3)暖棚法。
在混凝土块外面搭盖暖棚,在棚内利用电热风机、蒸汽热风或火炉加热,创造人工气候。
六、混凝土的浇筑与养护1、混凝土的浇筑方法可采用分层连续浇筑或推移式连续浇筑如图4.1所示、数字为浇筑先后次序,不得随意留施工缝,并应符合下列规定:(1)、混凝土的摊铺厚度应根据所用振捣器的作用深度及混凝土的和易性确定。
当采用泵送混凝土时,混凝土的摊铺厚度不宜大于600mm;当采用非泵送混凝土时,混凝土的摊铺厚度不宜大于400mm;重庆大学硕士学位论文4大体积混凝土施工方案和施工技术研究26(2)、分层连续浇筑或推移式连续浇筑,其层间的间隔时间应尽量缩短,必须在前层混凝土初凝之前,将其次层混凝土浇筑完毕。
层间最长的时间间隔应不大于混凝土的初凝时间,混凝土的初凝时间应通过试验确定。
当层间间隔时间超过混凝土的初凝时间时,层面应按施工缝处理。
对于工程量大,浇筑面积也大、一次连续浇筑层厚度不大(一般不超过3m),且浇筑能力不足时的混凝土工程,宜采用推移式连续浇筑法。
分层连续浇筑法是目前大体积混凝土施工中普遍采用的方法。
分层连续浇筑一是便于振捣,易保证混凝土的浇筑质量;二是可利用混凝土层面散热,对降低大体积混凝土浇筑块的温升有利。
2、采取分层浇筑混凝土时,水平施工缝的处理应符合下列规定(1)、清除浇筑表面的浮浆,软弱混凝土层及松动的石子,并均匀地露出粗骨料;(2)、在上层混凝土浇筑前,应用压力水冲洗混凝土表面的污物,充分湿润,但不得有积水;(3)、对非泵送及低流动度混凝土,在浇筑上层混凝土时,应采取接浆措施。
3、混凝土的拌制,运输应符合下列规定(1)、当炎热季节浇筑大体积混凝土时,混凝土搅拌场、站宜对砂、石骨料采取遮阳、降温措施;(2)、当采用自备搅拌站时,搅拌站应尽量靠近混凝土浇筑地点,以缩短水平运输距离。
(3)、当采用泵送混凝土时,混凝土的运输宜采用混凝土搅拌运输车。
混凝土搅拌运输车的数量应满足混凝土浇筑的要求。
4、在混凝土浇筑过程中,应及时清理混凝土表面的泌水在大体积混凝土浇筑过程中,由于混凝土表面泌水现象普遍存在,为保证混凝土的浇筑质量,要及时清除混凝土表面的泌水。
因为泵送混凝土的水灰比一般比较大,泌水现象也比较严重,不及时清除,将会降低结构的混凝土质量。
5、在每次浇筑完毕后,应及时进行保温养护,并应符合下列规定(1)、保温养护措施,应使混凝土浇筑块体的内外温差及降温速度满足温控指标的要求;(2)、保温养护的持续时间,应根据温度应力(包括混凝土收缩产生的应力)加以控制、确定,混凝土的养护时间自混凝土浇注开始计算,使用普通硅酸盐水泥不少于14d,使用其它水泥不少于21d,炎热天气适当延长。
养护期内(含撤除保温层后);混凝土表面应始终保持温热潮湿状态(塑料膜内应有凝结水),对掺有膨胀剂的混凝土尤应富水养护;但气温低于5℃时,不得浇水养护。
保温覆盖层的拆除应分层逐步进行。
保温养护是大体积混凝土施工的关键环节。
保温养护的目的主要是降低大混凝土浇筑块体的内外温差值以及降低混凝土块体的降温速度,充分利用混凝土的抗拉强度,以提高混凝土块体承受温度应力时的抗裂能力,达到防止或控制温度裂缝的目的。
同时,在养护过程中保持良好的温度和防风条件,使混凝土在良好的环境下养护,施工人员应根据事先确定的温控指标的要求,来确定大体积混凝土浇筑后的养护措施。
混凝土浇筑后4~6小时内可能在表面上出现塑性裂缝,可采用二次压光或二次浇灌层处理。
塑料薄膜、草袋等可作为保温材料覆盖混凝土和模板,在寒冷季节可搭设挡风保温棚,覆盖层的厚度应根据温控指标的要求计算确定。
具有保温性能良好的材料可以用于混凝土的保温养护中。
在大体积混凝土施工时,可因地制宜地采用保温性能好而又便宜的材料用作大体积混凝土的保温养护中。
在大体积混凝土保温养护过程中,应对混凝土块体的内外温差和降温速度进行监测,根据现场实测结果可随时掌握与温控施工控制资料有关的资料(内外温差、最高温升及降温速度等),可根据这些实测结果调整保温养护措施以满足温控指标的要求。
在大体积混凝土养护过程中,不得采用强制、不均匀的降温措施,否则,易使大体积混凝土产生裂缝。
大体积混凝土施工时,主要采用钢模和木模。
无论钢模、木模在模板拆除后,都应根据大体积混凝土浇筑块体内部实际的温度场情况,按温控指标的要求采取必要的保温措施。
对标高位于±0.000以下的部位,应及时回填土;±0.000以上部位应及时加以覆盖,不宜长期暴露在风吹日晒的环境中。
6、大体积混凝土“后浇带”的设计与施工在现浇整体式钢筋混凝土结构中,只在施工期间保留的临时施工缝,称为“后浇缝”或“后浇带”。
该施工缝根据具体条件,保留一定时间后,再进行填充封闭,后浇成连续整体的无伸缩缝结构。
因为这种缝只在施工期间存在,所以是一种特殊的施工缝。
但是,又因为它的目的是取消结构中的永久变形缝,与结构的温度收缩应力和差异沉降有关,所以它又是一种设计中的伸缩缝和沉降缝,一种临时性的变形缝。
它既是施工所致,又是设计所致。
后浇带的设置、施工、目前规范规定不很详细。