气体放电过程分析
- 格式:ppt
- 大小:198.50 KB
- 文档页数:15
气体放电过程的分析干燥气体通常是良好的绝缘体,但当气体中存在自由带电粒子时,它就变为电的导体。
这时如在气体中安置两个电极并加上电压,就有电流通过气体,这个现象称为气体放电。
依气体压力、施加电压、电极形状、电源频率的不同,气体放电有多种多样的形式。
主要的形式有暗放电、辉光放电、电弧放电、电晕放电、火花放电、高频放电等。
20世纪70年代以来激光导引放电、电子束维持放电等新的放电形式,也日益受到人们的重视。
暗放电暗放电主要是非自持放电(但自持放电的某些区域中有暗放电存在)。
关于暗放电的理论是英国物理学家J.S.汤生于1903年提出的,故这种放电也称为汤生放电。
汤生理论的物理描述是:设外界催离素在阴极表面辐照出一个电子,这个电子向阳极方向飞行,并与分子频繁碰撞,其中一些碰撞可能导致分子的电离,得到一个正离子和一个电子。
新电子和原有电子一起,在电场加速下继续前进,又能引起分子的电离,电子数目便雪崩式地增长。
这称为电子繁流(图2)。
气体放电汤生根据上述物理描述,推导出抵达阳极的电子数目n u为式中n0为阴极发射的电子数;d为阴极阳极间距离;α为汤生第一电离系数。
上式表明,电子数目随距离d指数增长。
在一些光电器件中,特意充入一些惰性气体,使光电阴极发射的电子在气体中进行繁流,以得到光电流的放大,提高器件的灵敏度。
放电中产生的正离子最后都抵达阴极。
正离子轰击阴极表面时,使阴极产生电子发射;这种离子轰击产生的次级电子发射,称为r过程。
r过程使放电出现新的特点,这就是:r过程产生的次级电子也能参加繁流。
如果同一时间内,由于r过程产生的电子数,恰好等于飞抵阳极的电子数,放电就能自行维持而不依赖于外界电离源,这时就转化为自持放电。
辉光放电低压气体在着火之后一般都产生辉光放电。
若电极是安装在玻璃管内,在气体压力约为 100帕且所加电压适中时,放电就呈现出明暗相间的 8个区域(图4)。
图中下方的曲线表示光强的分布,按从阴极到阳极的顺序分为7个区。
气体放电实验报告
实验目的:
通过气体放电实验,观察气体放电的现象,了解不同气体放电的特点,探究气体放电的原理。
实验步骤:
1. 准备实验仪器:气体放电装置、气体灯管、电源、电压表、电流表等。
2. 按照实验要求选择不同气体灯管,如氢气灯管、氧气灯管、氮气灯管等。
3. 将气体灯管连接到气体放电装置上,接通电源。
4. 调节电源电压和电流,观察气体灯管的放电现象,记录电压和电流值。
5. 重复以上步骤,对不同气体灯管进行实验,比较不同气体放电的特点和现象。
实验结果:
实验结果表明,不同气体放电的特点和现象不同。
在氧气灯管中,放电时会发出红色光芒,氢气灯管中,放电时会发出紫色光芒,氮
气灯管中,放电时会发出紫色光芒和白色光芒。
而且,不同气体的放电电压和电流值也不同。
实验分析:
气体放电现象是气体在电场作用下发生电离,形成等离子体的过程。
当电场强度达到一定值时,气体中的原子或分子会失去或获得电子,形成正负离子对。
这些离子会在电场作用下不断加速,撞击其他原子或分子,继续发生电离,最终形成等离子体。
等离子体的存在使气体灯管中的气体发出了不同的光芒。
不同气体的放电特点和现象与其分子结构和性质有关。
例如,氢气分子中只有一个电子,容易发生电离;氧气分子中的氧原子具有两个未成对电子,易于发生电子跃迁,因此放电时发出红色光芒;氮气分子中的氮原子具有五个未成对电子,放电时发出紫色光芒和白色光芒。
实验结论:
通过气体放电实验,我们了解了气体放电的现象和原理,探究了不同气体放电的特点和现象。
这对我们深入理解等离子体物理学、电子学等领域有着重要的意义。
第二章气体放电的物理过程本章节教学内容要求:气体分子的激发与游离,带电质点的产生与消失汤森德气体放电理论:电子崩的形成,自持放电的条件,帕邢定律。
流注理论:长间隙击穿的放电机理,极性效应,先导放电,雷云放电及电晕。
必要说明:1)常用高压工程术语击穿:在电场的作用下,由电介质组成的绝缘间隙丧失绝缘性能,形成导电通道。
闪络:沿固体介质表面的气体放电(亦称沿面放电)电晕:由于电场不均匀,在电极附近发生的局部放电。
击穿电压(放电电压)Ub(kV):使绝缘击穿的最低临界电压。
击穿场强(抗电强度,绝缘强度)Eb(kV/cm):发生击穿时在绝缘中的最小平均电场强度。
Eb=Ub/S(S:极间距离)一般在常压大气中,Eb=30kV/cm,当S较小为cm且电场为均匀分布时;Eb=500kV/m,当S较大接近m时。
放电:(狭义与广义)气体绝缘的击穿过程。
辉光放电:当气体压力低,电源容量小时,放电表现为充满整个气体间隙两电极之间的空间辉光,这种放电形式称为辉光放电。
火花放电:在大气压力或更高的压力下,电源容量不大时变现出来的放电。
主要表现为:从一电极向对面电极伸展的火花而不是充满整个空间。
火花放电常常会瞬时熄灭,接着有突然出现。
电晕放电:在不均匀电场中,曲率半径很小的电极附近会出现紫兰色的放电晕光,并发出“兹兹”的可闻噪声,此种现象称为电晕放电。
如不提高电压,则这种放电就局限在很小的范围里,间隙中的大部分气体尚未失去绝缘性能。
电晕放电的电流很小电弧放电:在大气压力下,当电源容量足够大时,气体发生火花放电之后,便立即发展到对面电极,出现非常明亮的连续电弧,此称为电弧放放电。
电弧放电时间长,甚至外加电压降到比起始电压低时电弧依然还能维持。
电弧放电电流大,电弧温度高。
电气设备常常以一个标准大气压作为绝缘的情况,这是可能发生的是电晕放电,火花放电或者是电弧放电。
2)常见电场的结构均匀场:板-板稍不均匀场:球-球极不均匀场:(分对称与不对称)棒-棒对称场棒-板不对称场线-线对称场§2-1气体中带电质点的产生和消失一.带电粒子的产生(电离过程)气体中出现带电粒子,才可在电场作用下发展成各种气体放电现象,其来源有两个:一是气体分子本身发生电离,二气体中的固体或液体金属发生表面电离。
第二章 气体放电的基本物理过程一、带电质点的产生与消失产生带电质点的物理过程称为电离(游离),是气体放电的首要前提。
激励(激发):当原子获得外部能量,一个或若干个外层电子跃迁到离原子核较远的轨道上去的现象。
激励需要外界给原子一定的能量,称为激励能。
电离(游离):若原子从外界获得的能量足够大,以致使一个或几个电子摆脱原子核的束缚形成自由电子和正离子,这一过程称为电离。
电离所需的能量称为电离能Wi ,通常用电子伏(eV)表示,有时也用电离电位Ui 表示, Ui = Wi /e (e 为电子的电荷量)。
1、电离的方式:碰撞电离、光电离、热电离、分级电离属于空间游离。
金属表面电离 电极表面带电质点的产生2、带电质点的消失与两电极的电量中和、带电质点的扩散、带电质点的复合3、放电的电子崩阶段1)非自持放电和自持放电的不同特点各种高能辐射射线(外界电离因素)引起:阴极表面光电离气体中的空间光电离因此:气体空间中存在一定浓度的带电质点。
在气隙的电极间施加电压时,可检测到很微小的电流。
外施电压小于U0时的放电是非自持放电。
电压到达U0后,电流剧增,间隙中电离过程只靠外施电压已能维持,不再需要外电离因素,此时的放电为自持放电。
2)电子崩的形成外界电离因素在阴极附近产生了一个初始电子,如果空间电场强度足够大,该电子在向阳极运动时就会引起碰撞电离,产生一个新的电子,初始电子和新电子继续向阳极运动,又会引起新的碰撞电离,产生更多电子。
依此,电子将按照几何级数不断增多,类似雪崩似地发展,这种急剧增大的空间电子流称为电子崩。
放电由非自持向自持转化的机制与气体的压强和气隙长度的乘积(pd)有关:汤逊理论(pd 值较小)流注理论(pd 值较大)共同理论基础:电子碰撞电离形成电子崩。
3)自持放电条件要达到自持放电的条件,必须在气隙内初始电子崩消失前产生新的电子(二次电子)来取代外电离因素产生的初始电子。
实验现象表明,二次电子产生的机制与气压和气隙长度的乘积(pd )有关:汤逊理论 (pd 值较小): b()U f pd1903年,由英国人汤逊(J.S.Townsend)根据试验事实,提出了比较系统的气体放电理论,阐述了气体放电过程,并确定出放电电流和击穿电压之间的函数关系。
第1篇一、实验目的本实验旨在研究气体绝缘设备中局部放电的特性,通过实验观察和分析不同气体介质中局部放电的现象,探究局部放电对气体绝缘性能的影响,为提高气体绝缘设备的安全性和可靠性提供理论依据。
二、实验原理局部放电是指在高压电场作用下,气体介质中出现的电击穿现象。
当电场强度超过气体的击穿场强时,气体介质中的分子会发生电离,产生自由电子和正离子,形成导电通道,从而发生局部放电。
局部放电会对气体绝缘设备的绝缘性能造成损害,甚至引发设备故障。
本实验采用直流高压电源对气体介质施加电场,通过测量放电电流、电压等参数,分析不同气体介质中局部放电的特性。
三、实验设备1. 直流高压电源:输出电压0~30kV,输出电流0~1mA。
2. 电流探头:测量范围0~10mA。
3. 电压探头:测量范围0~30kV。
4. 气体介质:空气、氮气、SF6等。
5. 实验室气瓶:用于存储实验用气体。
6. 电压表、电流表、示波器等测量仪器。
四、实验步骤1. 准备实验用气体:将空气、氮气、SF6等气体分别充入实验室气瓶中,确保气体纯净、无杂质。
2. 安装实验设备:将直流高压电源、电流探头、电压探头等设备连接好,确保连接牢固、接触良好。
3. 选择实验气体:依次选择空气、氮气、SF6等气体作为实验介质,分别进行实验。
4. 施加电场:调整直流高压电源输出电压,使气体介质中的电场强度逐渐增加。
5. 观察放电现象:通过示波器观察放电电流、电压波形,记录放电开始、结束时间,分析放电特性。
6. 数据处理:将实验数据整理成表格,分析不同气体介质中局部放电的特性。
五、实验结果与分析1. 空气介质实验结果显示,空气介质在电场强度较低时,不易发生局部放电;随着电场强度的增加,放电电流、电压逐渐增大,放电频率逐渐降低。
2. 氮气介质实验结果显示,氮气介质在电场强度较低时,局部放电现象与空气介质相似;随着电场强度的增加,放电电流、电压逐渐增大,放电频率逐渐降低。
3. SF6气体介质实验结果显示,SF6气体介质在电场强度较低时,不易发生局部放电;随着电场强度的增加,放电电流、电压逐渐增大,放电频率逐渐降低。
气体放电过程的分析摘要:气体电介质,特别是空气,是电力系统中最重要的绝缘介质。
对气体放电过程进行分析,研究气体电介质的绝缘特性具有十分重要的意义。
而气体放电又受气体间隙、环境电场影响,其过程的分析需要各种理论的支持。
关键字:气体放电、带电质点、气体间隙、电子崩、汤逊理论、流注理论K一、气体中带电质点的产生与消失1.气体中带电质点的产生气体的特点:气体的分子间距很大,极化率很小,因此,介电常数都接近于1。
纯净的、中性状态的气体是不导电的,只有气体中出现了带电质点(电子、正离子、负离子)以后,才可能导电,并在电场作用下发展成为各种形式的气体放电现象。
气体导电的原因:气体中出现了带电质点(电子、正离子、负离子)以后,游离出来的自由电子、正离子和负离子在电场作用下移动,从而形成气体电介质的电导层。
气体带电质点的来源:有两个,一是气体分子本身发生游离(包括撞击游离、光游离、热游离等多种形式);二是放在气体中的金属发生表面游离。
2.气体中带电质点的消失气体中带电质点的消失主要有下列三种方式:带电质点受电场力的作用流入电极并中和电量;带电质点的扩散;带电质点的复合。
1)带电质点受电场力的作用而流入电极,中和电量带电质点在电场力的作用下受到加速,在向电场方向运动途中会不断地与气体分子相碰撞,碰撞后会发生散射,但从宏观来看,是向电场方向作定向运动的。
其平均速度开始是逐渐增加的(因受电场力的加速),但随着速度的增加,碰撞时失去的动能也增加,最后,在一定的电场强度下,其平均速度将达到某个稳定值。
这一平均速度称为带电质点的驱引速度。
2)带电质点的扩散带电质点的扩散就是指这些质点会从浓度较大的区域转移到浓度较小的区域,从而使带电质点在空间各处的浓度趋于均匀的过程。
带电质点的扩散是由杂乱的热运动造成的,而不是由于同号电荷的电场斥力造成的,因为即使在很大的浓度下,离子之间的距离仍大到静电力起不到什么作用的程度。
电子的直径比离子的直径小很多,在运动中受到的碰撞也比离子少得多,因此电子的扩散比离子的扩散快得多。
气体放电过程分析摘要:在电力系统和电气设备中,气体常作为绝缘介质。
气体作为绝缘介质有着诸多优点,如空气的廉价和广泛性,SF6气体的电气好强度行等,因此在电力系统中内广泛应用。
至于放电过程,在不均匀电场中,气隙较小时,间隙放电大致可分为电子崩、流注和主放电阶段。
长间隙的放电则可分为电子崩、流注、先导和主放电阶段。
间隙越长,先导过程就发展得越充分。
间隙越长,先到过程就发展的越充分。
气体放电受诸多因素的影响,主要表现为电场形式、电压波形、气体的性质和状态等。
In power system and electric equipment, gas often as insulating medium。
Gas has many merits as insulating medium, such as air of cheap and universality, SF6 gas electrical good strength line, so in the power system widely in the application。
In uneven electric, air gap is lesser, discharge gap can be roughly divided into electronic fracture, lingers and main discharge stage. Long clearance discharge is can be divided into electronic fracture, lingers, pilot and main discharge stage。
Clearance is longer, the first to process development is more sufficient。
Gas discharge under the influence of various factors, main performance for electric form, voltage waveform, the properties of the gas and state, etc。