2019-2020年高二上学期期末模块考试数学(理)试题 含答案
- 格式:doc
- 大小:477.00 KB
- 文档页数:8
2019-2020学年高二上学期期末考试数学(理)试题一、选择题(本大题共12小题,共60.0分)1.命题“若,则”的逆命题为A. 若,则B. 若,则C. 若,则D. 若,则【答案】C【解析】解:根据逆命题的定义可知逆命题为“若,则”故选:C.根据逆命题的定义写出它的逆命题即可.本题考查了逆命题的定义与应用问题,是基础题.2.在等差数列中,,,则A. 8B. 9C. 11D. 12【答案】B【解析】解:在等差数列中,由,得,又,.故选:B.由已知结合等差数列的性质即可求解的值.本题考查等差数列的通项公式,考查等差数列的性质,是基础题.3.在中,角A,B,C的对边分别是边a,b,c,若,,,则A. B. 6 C. 7 D. 8【答案】C【解析】解:,,,,由余弦定理可得:.故选:C.由已知利用三角形内角和定理可求B的值,根据余弦定理可得b的值.本题主要考查了三角形内角和定理,余弦定理在解三角形中的应用,属于基础题.4.已知双曲线的实轴的长度比虚轴的长度大2,焦距为10,则双曲线的方程为A. B. C. D.【答案】B【解析】解:依题意可得,得,所以双曲线的方程为.故选:B.依题意可得,得,即可.本题考查了双曲线的方程,属于基础题.5.在三棱柱中,若,则A. B. C. D.【答案】D【解析】解:如图,;,;.故选:D.可画出三棱柱,结合图形即可求出,这样根据向量加法的平行四边形法则即可求出.考查相等向量、相反向量的概念,向量减法的几何意义,向量加法的平行四边形法则,数形结合的解题方法.6.设,,若“”是“”的充分不必要条件,则的取值范围为A. B. C. D.【答案】C【解析】解:设,,由题意可得,.的取值范围为.故选:C.设,,根据“”的充分不必要条件即可得出.本题考查了不等式的解法、简易逻辑的判定方法,考查了推理能力与计算能力,属于基础题.7.设直线l的方向向量为,平面的法向量为,,则使成立的是A. ,1,B. ,1,C. 1,,D. ,1,【答案】B【解析】解:直线l的方向向量为,平面的法向量为,,使成立,,在A中,,故A错误;在B中,,故B成立;在C中,,故C错误;在D中,,故D错误.故选:B.由直线l的方向向量为,平面的法向量为,,使成立,得到,由此能求出结果.本题考查线面平行的判断与求法,考查直线的方向向量、平面的法向量等基础知识,考查运算与求解能力,考查化归与转化思想,是基础题.8.设x,y满足约束条件,则的最小值为A. B. C. D.【答案】C【解析】解:作出x,y满足约束条件对应的平面区域如图:由得,平移直线,由图象可知当直线经过点A时,直线的截距最小,此时z最小,由,解得,此时,故选:C.作出不等式组对应的平面区域,利用z的几何意义,利用数形结合即可得到结论.本题主要考查线性规划的应用,利用z的几何意义,通过数形结合是解决本题的关键.9.已知点F是抛物线的焦点,点、分别是抛物线上位于第四象限的点,若,则的面积为A. 42B. 30C. 18D. 14【答案】A【解析】解:,,则抛物线的方程为,把代入方程,得舍去,即.,则AB:,即.设直线AB与x轴交于C点,已知,.故选:A.由已知求得p,得到抛物线方程,进一步求得B、A的坐标,得到AB方程,求出AB 与x轴交点C,再由面积公式求解.本题考查抛物线的简单性质,考查数形结合的解题思想方法,是中档题.10.已知在长方体中,,,,E是侧棱的中点,则直线AE与平面所成角的正弦值为A. B. C. D.【答案】B【解析】解:在长方体中,,,,E是侧棱的中点,以D为原点,DA为x轴,DC为y轴,为z轴,建立空间直角坐标系,0,,1,,0,,0,,,0,,1,,设平面的法向量为y,,则,取,得,设直线AE与平面所成角为,则.直线AE与平面所成角的正弦值为.故选:B.以D为原点,DA为x轴,DC为y轴,为z轴,建立空间直角坐标系,利用向量法能求出直线AE与平面所成角的正弦值.本题考查线面角的正弦值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题.11.在直角坐标系xOy中,F是椭圆C:的左焦点,A,B分别为左、右顶点,过点F作x轴的垂线交椭圆C于P,Q两点,连接PB交y轴于点E,连接AE交PQ于点M,若M是线段PF的中点,则椭圆C的离心率为A. B. C. D.【答案】C【解析】解:可令,由,可得,由题意可设,,可得BP的方程为:,时,,,,则AE的方程为:,则,M是线段QF的中点,可得,即,即,可得.故选:C.利用已知条件求出P的坐标,然后求解E的坐标,推出M的坐标,利用中点坐标公式得到双曲线的离心率即可.本题考查椭圆的简单性质的应用,考查转化思想以及计算能力.12.设是数列的前n项和,若,则A. B. C. D.【答案】A【解析】解:当时,,即.当时,,则,即,,从而,即,则..故选:A.利用数列的递推关系式,求出数列的首项以及,求解数列的通项公式,然后求解.本题考查数列的递推关系式的应用,考查转化首项以及计算能力.二、填空题(本大题共4小题,共20.0分)13.设命题p:,,则¬为______ .【答案】,【解析】解:命题p:,,¬为,,故答案为:,根据全称命题的否定方法,根据已知中的原命题,写出其否定形式,可得答案.本题考查的知识点是全称命题,命题的否定,熟练掌握全特称命题的否定方法是解答的关键.14.已知,则的最小值为______.【答案】1【解析】解:,,,当且仅当,即时取等号,故答案为:1根据基本不等式即可求出最小值.本题考查了基本不等式的应用,属于基础题.15.在中,内角A,B,C所对的边分别为a,b,c,若,,,则______.【答案】【解析】解:,由余弦定理可得:,整理可得:,,,,解得:,,,可得:,.故答案为:.由已知利用余弦定理可求,又,可求b,c的值,根据余弦定理可求,利用同角三角函数基本关系式可求的值,根据三角形的面积公式即可计算得解.本题主要考查了余弦定理,同角三角函数基本关系式,三角形的面积公式在解三角形中的综合应用,考查了计算能力和转化思想,属于基础题.16.已知双曲线的左、右焦点分别为、,过的直线交C的右支于A、B两点,,,则C的离心率为______.【答案】【解析】解:可设,,由可得,由双曲线的定义可得,,由双曲线的定义可得,在直角三角形中,可得,即,在直角三角形中,可得,即为,即,可得.故答案为:.可设,,由可得,运用双曲线的定义和勾股定理求得,再由勾股定理和离心率公式,计算可得所求值.本题考查双曲线的定义和性质,主要是离心率的求法,注意运用直角三角形的勾股定理,考查方程思想和运算能力,属于中档题.三、解答题(本大题共6小题,共70.0分)17.已知:表示焦点在x轴上的双曲线,q:方程表示一个圆.若p是真命题,求m的取值范围;若是真命题,求m的取值范围.【答案】解:若:表示焦点在x轴上的双曲线为真命题,则,得,得,由得,若方程表示圆,则得,即q:,若是真命题,则p,q都是真命题,则,得,即实数m的取值范围是.【解析】结合双曲线的定义进行求解即可根据复合命题真假关系,得到p,q都是真命题进行求解即可.本题主要考查命题真假的应用,以及复合命题真假关系,求出命题为真命题的等价条件是解决本题的关键.18.已知数列满足,.证明:数列是等比数列;设,求数列的前n项和.【答案】解:证明:数列满足,,可得,即有数列是首项为2,公比为3的等比数列;由可得,即有,数列的前n项和.【解析】对数列的递推式两边加1,结合等比数列的定义,即可得证;由对数的运算性质可得,再由裂项相消求和,化简可得所求和.本题考查等比数列的定义、通项公式和数列的裂项相消求和,考查化简整理的运算能力,属于中档题.19.的内角A,B,C的对边分别为a,b,c,且.Ⅰ求A;Ⅱ若,,求的面积.【答案】解:Ⅰ【方法一】由已知得,,;又,,,由,得;------分【方法二】由已知得,化简得,,由,得;------分Ⅱ由,,得,在中,,由正弦定理,得,------分【解析】Ⅰ【方法一】利用正弦定理与三角形内角和定理,结合题意求得的值,从而求出角A的值;【方法二】利用余弦定理结合题意求得,从而求得A的值;Ⅱ同解法一Ⅱ由同角的三角函数关系求得,再利用三角恒等变换求得,利用正弦定理求得b,计算的面积.本题考查了正弦、余弦定理的应用问题,是中档题.20.如图,在直三棱柱中,,,,,点M在线段上,且.求CM的长;求二面角的大小.【答案】解:为直三棱柱,平面平面,,平面,,,,又,;设,连接BD,,即为二面角的平面角,在中求得,为等腰直角三角形,故.【解析】连接,利用三垂线逆定理可得,而后通过相似三角形或解三角形不难求得CM;连接BD,由三垂线定理可知,即为所求角,求解不难.此题考查了三垂线定理,解三角形,二面角的求法等,难度适中.21.已知动圆C过定点,且与直线相切,圆心C的轨迹为E,求E的轨迹方程;若直线l交E与P,Q两点,且线段PQ的中心点坐标,求.【答案】解:由题设知,点C到点F的距离等于它到直线的距离,所以点C的轨迹是以F为焦点为基准线的抛物线,所以所求E的轨迹方程为.由题意已知,直线l的斜率显然存在,设直线l的斜率为k,,,则有,两式作差得即得,因为线段PQ的中点的坐标为,所以,则直线l的方程为,即,与联立得,得,.【解析】利用动圆C过定点,且与直线:相切,所以点C的轨迹是以F为焦点为基准线的抛物线,即可求动点C的轨迹方程;先利用点差法求出直线的斜率,再利用韦达定理,结合弦长公式,即可求.本题考查轨迹方程,考查直线与抛物线的位置关系,考查学生的计算能力,属于中档题22.已知椭圆C:的离心率为,长半轴长为短轴长的b倍,A,B分别为椭圆C的上、下顶点,点.求椭圆C的方程;若直线MA,MB与椭圆C的另一交点分别为P,Q,证明:直线PQ过定点.【答案】解:由题意知,解得,所以椭圆C的方程为.证明:易知,,则直线MA的方程为,直线MB的方程为.联立,得,于是,,同理可得,,所以直线PN的斜率,直线QN的斜率,因为,所以直线PQ过定点【解析】由题意知,解出即可得出.点易知,,则直线MA的方程为,直线MB的方程为分别与椭圆联立方程组,解得,,可得,,Q坐标可得直线PN,QN的斜率程,即可证明.本题考查了椭圆的标准方程及其性质、直线与椭圆相交、一元二次方程的根与系数的关系、斜率计算公式,考查了推理能力与计算能力,属于中档题.。
2019-2020学年高二上学期期末考试数学试卷(理科)一、选择题(本大题共12小题,共60.0分)1.已知命题p:,,命题q:,,则A. 命题是假命题B. 命题是真命题C. 命题¬是真命题D. 命题¬是假命题【答案】C【解析】解:当时,成立,故命题p为真命题;当时,,故命题q为假命题,故命题是真命题,故A错误;命题是假命题,故B错误;命题¬是真命题,故C正确;命题¬是真命题,故D错误;故选:C.举出正例可知命题p为真命题;举出反例可知命题q为假命题,进而根据复合命题真假判断的真值表得到结论.本题以命题的真假判断与应用为载体,考查了复合命题,全称命题,特称命题,难度基础.2.在中,,,,则边c等于A. B. C. D.【答案】D【解析】解:,,,,则,即得,故选:D.根据三角形的内角和,求出C的大小,结合正弦定理进行求解即可.本题主要考查解三角形的应用,利用正弦定理是解决本题的关键比较基础.3.若实数x,y满足,则的最小值为A. 2B. 1C. 0D.【答案】D【解析】解:画出实数x,y满足表示的平面区域,如图所示;平移目标函数知,当目标函数过点A时,z取得最小值,由,解得,的最小值为.故选:D.画出不等式组表示的平面区域,平移目标函数,找出最优解,求出z的最小值.本题考查了简单的线性规划问题,是基本知识的考查.4.我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯A. 1盏B. 3盏C. 5盏D. 9盏【答案】B【解析】解:设塔的顶层共有盏灯,则数列公比为2的等比数列,,解得.故选:B.设塔的顶层共有盏灯,则数列公比为2的等比数列,利用等比数列前n项和公式能求出结果.本题考查了等比数列的通项公式与求和公式,考查了推理能力与计算能力,属于中档题.5.已知实数a,,a,b的等差中项为,设,则的最小值为A. 3B. 4C. 5D. 6【答案】C【解析】解:,,a,b的等差中项是,又当且仅当时,等号成立,取得最小值5故选:C.先由等差中项求得,又,再构造基本不等式求解.本题主要通过数列知识来考查基本不等式求最值,属于基础题.6.已知四棱锥的底面是正方形,且底面ABCD,,则异面直线PB与AC所成的角为A.B.C.D.【答案】B【解析】解:建立以点A为空间直角坐标系原点,AB,AD,AP所在直线分别为x,y,z轴的坐标系,设,则0,,1,,0,,0,,则1,,0,,设,,夹角为,则,所以,即异面直线PB与AC所成的角为,故选:B.由异面直线所成角及空间向量的坐标运算得:建立以点A为空间直角坐标系原点,AB,AD,AP所在直线分别为x,y,z轴的坐标系,设,则0,,1,,0,,0,,则1,,0,,设,,夹角为,则,即,即异面直线PB与AC所成的角为,得解.本题考查了异面直线所成角及空间向量的坐标运算,属中档题.7.若不等式对一切实数x都成立,则实数a的取值范围为A. 或B. 或C.D.【答案】C【解析】解:不等式对一切实数x都成立,则,即,解得,所以实数a的取值范围是.故选:C.根据题意得出,由此列出不等式组求出a的取值范围.本题考查了利用判别式求不等式恒成立问题,是基础题.8.过抛物线的焦点F作倾斜角为的直线交抛物线于A、B两点,若线段AB的长为8,则A. B. 1 C. 3 D. 4【答案】C【解析】解:由题意可知过焦点的倾斜角为直线方程为,与抛物线方程联立,得,消去y可得:,,,解得:.故选:C.写出过焦点的倾斜角为直线方程,与抛物线方程联立,消去y得关于x的一元二次方程,由根与系数的关系和抛物线的定义写出的值,列方程求得p的值.本题主要考查了抛物线的定义与性质的应用问题,是中档题.9.如图,已知顶角A为的三角形ABC满足,点D,E分别在线段AB和AC上,且满足,当的面积取得最大值时,DE的最小值为A. 1B.C.D.【答案】B【解析】解:的面积.当且仅当时取等号,此时三角形ABC为等边三角形,设,则,当时,取得最小值,故DE的最小值为,故选:B.易得且仅当时取等号,此时三角形ABC为等边三角形,设,则,,故DE的最小值为,本题考查了三角形面积的最值,函数思想,属于中档题.二、填空题(本大题共4小题,共20.0分)10.已知不等式的解集为,则______.【答案】3【解析】解:不等式的解集为,和b为的解,将代入方程得:,即,方程化为,将代入方程得:,解得:不合题意,舍去或,则.故答案为:3由不等式的解集,得到方程的解为1和b,将与代入求出a 与b的值,即可求出的值.此题考查了一元二次不等式的解法,根据题意得出方程的解为1和b 是解本题的关键.11.设等差数列的前n项和为,若,,则______.【答案】45【解析】解:,,所以,则.故答案为:45由减得到的值,然后利用等差数列的性质找出的和与的和即与的关系,由的值即可求出等差d的值,然后再利用等差数列的性质找出与d和的关系,把d和的值代入即可求出值.此题考查学生灵活运用等差数列的性质化简求值,是一道中档题.12.一艘轮船从港口A处出发,以15海里小时的速度沿着北偏西的方向直线航行,在港口A处测得灯塔M在北偏东方向,航行40分钟后,轮船与灯塔的距离是海里,则灯塔M与港口A的距离为______海里.【答案】5【解析】解:设轮船航行40分钟后到达B点,由题意可知海里,海里,,由正弦定理可得:,即,解得,,海里.故答案为:5.利用正弦定理计算得出是直角三角形,再计算AM即可.本题考查了解三角形的应用,属于基础题.13.如图,双曲线C:上有一点A,它关于原点的对称点为B,点F为双曲线的右焦点,且满足,,则双曲线的离心率e的值为______.【答案】【解析】解:,可得,在中,,,在直角三角形ABF中,,可得,,取左焦点,连接,,可得四边形为矩形,,.故答案为:运用三角函数的定义可得,,取左焦点,连接,,可得四边形为矩形,由双曲线的定义和矩形的性质,可得,由离心率公式,即可得到所求值.本题考查双曲线的离心率的求法,注意运用双曲线的定义和锐角三角函数的定义,考查化简整理的运算能力,属于中档题.三、解答题(本大题共6小题,共70.0分)14.已知命题p:实数x满足,命题q:实数x满足.Ⅰ当且为真命题时,求实数x的取值范围;Ⅱ若p是q的必要不充分条件,求实数m的取值范围.【答案】解:Ⅰ当时,由得得,由得,若为真命题时,则p,q同时为真命题即,得,即实数x的取值范围是Ⅱ由,得,若p是q的必要不充分条件,则,则,即,即实数m的取值范围是.【解析】Ⅰ当时,求出p,q为真命题的等价条件,结合为真命题时,则p,q同时为真命题进行求解即可Ⅱ利用充分条件和必要条件转化为对应集合关系进行求解即可本题主要考查充分条件和必要条件的应用以及复合命题真假关系的应用,根据条件转化为集合关系是解决本题的关键.15.在中,角A,B,C的对边分别为a,b,c,已知,.Ⅰ若的面积为,求a,b的值;Ⅱ若,求的面积.【答案】本题满分为12分解:Ⅰ,,由余弦定理,可得:,的面积为,解得:,由可得:,分Ⅱ,,又由余弦定理,可得:,解得:,,,分【解析】Ⅰ由余弦定理可得,利用三角形的面积公式可得,联立即可得解a,b的值.Ⅱ利用正弦定理可求,又由余弦定理可得,解得a,b的值,根据三角形的面积公式即可计算得解.本题主要考查了余弦定理,三角形的面积公式,正弦定理在解三角形中的综合应用,考查了计算能力和转化思想,属于基础题.16.设是公比为正数的等比数列,.Ⅰ求的通项公式;Ⅱ设,求证:数列的前n项和.【答案】解:Ⅰ设是公比为q的等比数列,,,,可得,解得,则,;Ⅱ证明:,则,可得前n项和,由,可得.【解析】Ⅰ设是公比为q的等比数列,,运用等比数列的通项公式,解方程可得公比q,即可得到所求通项;Ⅱ求得,再由数列的裂项相消求和,结合不等式的性质即可得证.本题考查等比数列的通项公式的运用,考查数列的裂项相消求和,考查化简整理的运算能力,属于基础题.17.某商家计划投入10万元经销甲,乙两种商品,根据市场调查统计,当投资额为万元,经销甲,乙两种商品所获得的收益分别为万元与万元,其中,,当该商家把10万元全部投入经销乙商品时,所获收益为5万元.Ⅰ求实数a的值;Ⅱ若该商家把10万元投入经销甲,乙两种商品,请你帮他制订一个资金投入方案,使他能获得最大总收益,并求出最大总收益.【答案】解:Ⅰ:依题意可得,解得,Ⅱ设投入B商品的资金为x万元,则投入A商品的资金为万元,设收入为万元,当时,,,则,当且仅当,解得时,取等号.当时,则,此时.,最大收益为17万元,答:投入甲商品的资金为8万元,投入乙商品的资金为2万元,此时收益最大,为17万元.【解析】根据条件,表示为分段函数形式,利用基本不等式或者一元二次函数的最值,进行求解即可本题主要考查函数的应用问题,利用分段函数,分别求解,利用基本不等式和一元二次函数的最值是解决本题的关键.18.如图,平面平面ADEF,其中四边形ABCD为矩形,四边形ADEF为梯形,、,,.Ⅰ求证:平面ABF;Ⅱ求二面角的正弦值.【答案】证明:Ⅰ平面平面ADEF,其中四边形ABCD为矩形,,平面ADEF,,四边形ADEF为梯形,、,,平面ABF.解:Ⅱ以F为原点,AF,FE所在的直线分别为x轴,y轴建立空间直角坐标系.平面ABF的法向量1,,,,0,,0,,,0,,,设平面BDF的法向量y,,则,取,得,设二面角的平面角为,则,,二面角的正弦值.【解析】Ⅰ推导出,平面ADEF,从而,由此能证明.Ⅱ以F为原点,AF,FE所在的直线分别为x轴,y轴建立空间直角坐标系利用向量法能求出二面角的正弦值.本题考查线面垂直的证明,考查二面角的正弦值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,考查数形结合思想,是中档题.19.已知椭圆:的一个焦点与抛物线:的焦点重合,且椭圆的离心率为.Ⅰ求的方程;Ⅱ过点的动直线l与椭圆相交于A,B两点,O为原点,求面积的最大值.【答案】解:Ⅰ抛物线:的焦点坐标为,则,又,,,故椭圆的方程为;易知直线l的斜率k存在,设其方程为.设,则由消去y得:,由,得.则,.则又原点到直线l的距离为,且,所以设,则,当且仅当,即,即时等号成立,所以面积取得最大值.【解析】Ⅰ抛物线:的焦点坐标为,则,再根据离心率求出a,即可求出b,可得椭圆的方程Ⅱ易知直线l的斜率k存在,设其方程为,设,根据韦达定理和弦长公式,原点到直线l的距离可求d从而可求,利用换元法根据基本不等式即可求出面积的最大值.本题主要考查椭圆的标准方程、直线与圆锥曲线的位置关系,考查运算能力,考查化归思想,属于中档题.。
2019-2020年高二上学期期末考试 数学理 含答案本试卷分为第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分第Ⅰ卷(选择题,共60分)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项符合题目要求。
) 1.下列命题正确的是A .若a 2>b 2,则a >b B .若1a >1b,则a <bC .若ac >bc ,则a >bD .若a <b , 则a <b2.抛物线28y x =-的焦点坐标是A .(2,0)B .(- 2,0)C .(4,0)D .(- 4,0)3. 设()ln f x x x =,若0'()2f x =,则0x =A. 2eB. eC.ln 22D. ln 24.某食品的广告词为:“幸福的人们都拥有”,初听起来,这似乎只是普通的赞美说词, 然而他的实际效果大哩,原来这句话的等价命题是 A .不拥有的人们不一定幸福 B .不拥有的人们可能幸福 C .拥有的人们不一定幸福 D .不拥有的人们不幸福 5.不等式21≥-xx 的解集为A .)0,1[-B .),1[∞+-C .]1,(--∞D .),0(]1,(∞+--∞6.下列有关选项正确的...是 A .若q p ∨为真命题,则p q ∧为真命题. B .“5x =”是“2450x x --=”的充要条件.C .命题“若1x <-,则2230x x -->”的否命题为:“若1x <-,则2320x x -+≤”. D .已知命题p :R x ∈∃,使得210x x +-<,则p ⌝:R x ∈∀,使得210x x +-≥7.设0,0.a b >>1133aba b+与的等比中项,则的最小值为 A . 8 B . 4 C . 1D . 148. 如图,共顶点的椭圆①、②与双曲线③、④的离心率分别为1234e e e e 、、、,其大小 关系为A.1243e e e e <<<B.1234e e e e <<<C.2134e e e e <<<D.2143e e e e <<<9.已知向量a =(1,1,0),b =(-1,0,2),且ka +b 与2a -b 互相垂直,则k 的值是A .1 B.15 C. 75 D. 3510 在等差数列{}n a 中,若4,184==S S ,则20191817a a a a +++的值为A 9B 12C 16D 1711.在正方体111111ABCD A B C D BB ACD -中,与平面的余弦值为A32B33 C 32D3612.已知点P 是ABC ∆的中位线EF 上任意一点,且//EF BC ,实数x ,y 满足PA xPB yPC ++=0.设ABC ∆,PBC ∆,PCA ∆,PAB ∆的面积分别为S ,1S ,2S ,3S , 记11S S λ=,22SS λ=,33S Sλ=.则23λλ⋅取最大值时,2x y +的值为A .32 B.12C. 1D. 2第Ⅱ卷(非选择题,共90分)二、填空题(本大题共4个小题,每小题5分,共20分) 13. 在△ABC 中,若=++=A c bc b a 则,222_14.当x y 、满足不等式组11y x y x y ≤⎧⎪≥-⎨⎪+≤⎩时,目标函数2t x y =+的最小值是 .15. 已知双曲线22221(0,0)x y a b a b-=>>的两条渐近线方程为3y x =±,若顶点到渐近线的距离为1,则双曲线方程为 .16 对正整数n ,设曲线)1(x x y n -=在2x =处的切线与y 轴交点的纵坐标为n a ,则数列1n a n ⎧⎫⎨⎬+⎩⎭的前n 项和的公式是 三、解答题求函数44313+-=x x y 在区间03⎡⎤⎣⎦,上的最大值与最小值以及增区间和减区间。
2019-2020年高二上学期期末考数学(理)试题 含答案一、选择题:(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.抛物线281x y -=的准线方程是 ( B ) A. 321=x B. 2=y C. 321=y D. 2-=y2.“5,12k k Z αππ=+∈”是“1sin 22α=”的BA.充分不必要条件B. 必要不充分条件C.充要条件D. 既不充分又不必要条件3.函数32()39f x x ax x =++-, 已知)x (f 在3x -=时取得极值, 则 a = ( D )A. 2B. 3C. 4D. 54、向高为H的水瓶中注水,注满为止,如果注水量V与水深h的函数关系的图象如图所示,那么水瓶的形状是( B ).5、已知21,F F 为椭圆)0(12222>>=+b a by a x 的两个焦点,过2F 作椭圆的弦AB ,若BAF 1∆的周长为16,离心率为23,则椭圆的方程为 ( D ) A. 13422=+y x B. 131622=+y x C. 1121622=+y x D. 141622=+y x 6.命题“2000,210x R x x ∃∈-+<”的否定是 ( C )A 、2,210x R x x ∃∈-+≥B 、2,210x R x x ∃∈-+> C 、2,210x R x x ∀∈-+≥ D 、2,210x R x x ∀∈-+<7.设1F 和2F 为双曲线22221x y a b-=(0,0a b >>)的两个焦点, 若12F F ,,(0,2)P b 是正三角形的三个顶点,则双曲线的离心率为 B A .32B .2C .52D .38、已知点P 是抛物线x y 22=上的一个动点,则点P 到点)2,0(的距离与P 到该抛物线准线的距离之和的最小值是 ( A ) A.217 B.3 C. 5 D. 29 9.已知函数()y f x =的导函数的图象如图所示, 则()y f x =的图象可能是( D )10.下列命题中正确的是 ( C ) ①“若x 2+y 2≠0,则x ,y 不全为零”的否命题 ②“正多边形都相似”的逆命题③“若m >0,则20x x m --=有实根”的逆否命题 ④“若123x -是有理数,则x 是无理数”的逆否命题A.①②③④B.②③④C.①③④D.①④11.函数f(x)的定义域为R ,f(-1)=2,对任意x R ∈,'()2f x >,则()24f x x >+的解集为B(A)(-1,1) (B)(-1,+∞) (c)(-∞,-l) (D)(-∞,+∞)12.若实数,a b 满足0,0a b ≥≥,且0ab =,则称a 与b 互补,记(,),a b a b ϕ-那么(,)0a b ϕ=是a 与b 互补的(C )A.必要而不充分条件B.充分而不必要条件C.充要条件D.既不充分也不必要条件二、填空题(每小题4分,共计16分)13. 曲线31y x x =++1x x y 3++=在点)3,1(处的切线方程A BCD是 .410x y --=14.设圆C 与圆 ()2231x y +-= 外切,与直线0y =相切.则C 的圆心轨迹为 抛物线15.已知(1)2,f '=-则0(12)(1)lim x f x f x→--= 416.已知函数ln 0()2 1 0x x f x x x >⎧=⎨--≤⎩ ,D 是由x 轴和曲线()y f x =及该曲线在点(1,0)处的切线所围成的封闭区域,则2z x y =-在D 上的最大值为_______2三、解答题(共70分)解答题应写出文字说明.证明过程或演算步骤. 17.(10分)求59623-+-=x x x y 的单调区间和极值. 解:()3226953129y x x x x x ''=-+-=-+ (2分)令0y '=,即231290x x -+=,解得31x x ==或 (2分) 当0y '>时,即231290x x -+>,解得13x x <>或,函数59623-+-=x x x y 单调递增; (2分)当0y '<时,即231290x x -+<,解得13x <<,函数59623-+-=x x x y 单调递减; (2分)综上所述,函数59623-+-=x x x y 的单调递增区间是()(),13,-∞+∞或,单调递减区间是()1,3;当1x =时取得极大值1-,当3x =时取得极小 (2分)18.(本题12分)已知双曲线2212y x -=,过点(1,1)P 能否作一条直线l ,与双曲线交于,A B 两点,且点P 是线段AB 的中点?解析:设点()()1122,,,,A x y B x y 且线段AB 的中点为(),M x y .并设经过点P 的直线l 的方程为1(1),y k x -=-即1.y kx k =+-把1.y kx k =+-代入双曲线的方程2212y x -=,得2222(2)2(12)(1)20(20)k x k k x k k ------=-≠. ( *)所以122(1).22x x k k x k +-==- 由题意得2(12)2k k k --=1 解得2k = 而当2k =时方程( *)无解,所以不能作一条直线l 与双曲线交于,A B 两点,且点P 是线段AB 的中点.19. (本题12分)已知函数d ax bx x )x (f 23+++=的图象过点P )2,0(, 且在点M ))1(f ,1(--处的切线方程为07y x 6=+-.(1) 求函数)x (f y =的解析式; (2) 求函数)x (f y =的单调区间. 解: (1) 由)x (f 的图象经过P )2,0(,知2d =, 所以,2cx bx x )x (f 23+++=c bx 2x 3)x (f 2++='.即.6)1(f ,1)1(f =-'=-由在))1(f ,1(M --处的切线方程是07y x 6=+-, 知07)1(f 6=+---,⎩⎨⎧-=-=⇒⎩⎨⎧=+-+-=+-∴3c 3b 12c b 16c b 23故所求的解析式是 .2x 3x 3x )x (f 23+--=(2) .3x 6x 3)x (f 2--='令,03x 6x 32=--即.01x 2x 2=-- 解得 .21x ,21x 21+=-= 当;0)x (f ,21x ,21x >'+>-<时或当.0)x (f ,21x 21<'+<<-时故2x 3x 3x )x (f 23+--=在)2,(--∞内是增函数, 在)21,21(+-内是减函数, 在),21(+∞+内是增函数.20. (本题12分)过抛物线焦点F 的直线交抛物线于A 、B 两点,通过点B 平行于抛物线对称轴的直线交抛物线的准线于点D ,求证:三点A 、O 、D 共线. 解析:以抛物线的对称轴为x 轴,它的顶点为原点,建立建立直角坐标系,设抛物线的方程为22(0)y px p =>,当直线AB 的斜率存在时,设AB 的斜率为(0)k k ≠,由题意直线AB 的方程为()2p y k x =-,把()2p y k x =-代入抛物线的方程得2220py y p k--=,设点()()1122,,,,A x y B x y 则2211(0)p y y y =-≠,21,2p p D y ⎛⎫- ⎪⎝⎭,以下可利用斜率相等,或用向量法证明三点共线.21、(本小题满分12分)设a 为实数,函数()22,x f x e x a x =-+∈R 。
2019-2020学年高二上学期期末考试数学试卷(理科)一、选择题(本大题共12小题,共60.0分)1. 在一次数学测试中,成绩在区间上成为优秀,有甲、乙两名同学,设命题p是“甲测试成绩优秀”,q是“乙测试成绩优秀”,则命题“甲、乙中至少有一位同学成绩不是优秀”可表示为A. ¬¬B. ¬C. ¬¬D.【答案】A【解析】解:由题意值¬是“甲测试成绩不优秀”,¬是“乙测试成绩不优秀”,则命题“甲、乙中至少有一位同学成绩不是优秀”,则用¬¬表示,故选:A.求出¬,¬,结合或且非的意义进行求解即可.本题主要考查逻辑连接词的应用,结合复合命题之间的关系是解决本题的关键.2. 抛物线的焦点坐标是A. B. C. D.【答案】C【解析】解:在抛物线--,即,,,焦点坐标是,故选:C.先把抛物线的方程化为标准形式,再求出抛物线的焦点坐标.本题考查抛物线的标准方程和简单性质的应用,比较基础.3. 的一个必要不充分条件是A. B. C. D.【答案】D【解析】解:的充要条件为对于A是的充要条件对于B,是的充分不必要条件对于C,的不充分不必要条件对于D,是的一个必要不充分条件故选:D.通过解二次不等式求出的充要条件,通过对四个选项的范围与充要条件的范围间的包含关系的判断,得到的一个必要不充分条件.解决一个命题是另一个命题的什么条件,应该先化简各个命题,再进行判断,判断时常有的方法有:定义法、集合法.4. 已知双曲线C:的离心率为,则C的渐近线方程为A. B. C. D.【答案】D【解析】解:由题意可得,即为,由,可得,即,双曲线的渐近线方程为,即为.故选:D.运用双曲线的离心率公式可得,由a,b,c的关系和双曲线的渐近线方程,计算即可得到所求方程.本题考查双曲线的渐近线方程的求法,注意运用离心率公式和双曲线的方程,考查运算能力,属于基础题.5. 四面体OABC中,M,N分别是OA,BC的中点,P是MN的三等分点靠近,若,,,则A. B. C. D.【答案】B【解析】解:根据题意得,故选:B.运用平面向量基本定理可解决此问题.本题考查平面向量基本定理的简单应用.6. 点到直线的距离为d,则d的最大值为A. 3B. 4C. 5D. 7【答案】A【解析】解:直线即,令,解得,.可得直线经过定点.则当时,d取得最大值..故选:A.直线即,令,解得直线经过定点则当时,d取得最大值.本题考查了直线经过定点、相互垂直的直线,考查了推理能力与计算能力,属于基础题.7. 如图:在直棱柱中,,,P,Q,M分别是,BC,的中点,则直线PQ与AM所成的角是A.B.C.D.【答案】D【解析】解:以A为坐标原点,分别以AB,AC,所在直线为x,y,z轴建立空间直角坐标系.设,则0,,2,,0,,1,.,..直线PQ与AM所成的角是.故选:D.以A为坐标原点,分别以AB,AC,所在直线为x,y,z轴建立空间直角坐标系,设,分别求出与的坐标,利用空间向量求解.本题考查异面直线所成角的求法,训练了利用空间向量求解空间角,是基础题.8. 《九章算术商功》:“今有堑堵,下广二丈,袤一十八丈六尺,高二丈五尺,问积几何?答曰:四万六千五百尺”所谓堑堵:就是两底面为直角三角形的直棱柱:如图所示的几何体是一个“堑堵”,,,M是的中点,过BCM的平面把该“堑堵”分为两个几何体,其中一个为三棱台,则三棱台的表面积为A. 40B.C. 50D.【答案】B【解析】解:几何体是一个“堑堵”,,,M是的中点,过BCM的平面把该“堑堵”分为两个几何体,其中一个为三棱台,取的中点N,连结MN,BN,,,三棱台的表面积为:梯形梯形梯形.故选:B.取的中点N,连结MN,BN,则三棱台的表面积为梯形梯形梯形.本题考查三棱台的表面积的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,考查数形结合思想,是中档题.9. 直线l过椭圆的左焦点F,且与椭圆交于P,Q两点,M为PQ的中点,O为原点,若是以OF为底边的等腰三角形,则直线l的斜率为A. B. C. D.【答案】B【解析】解:由,得,,.则,则左焦点.由题意可知,直线l的斜率存在且不等于0,则直线l的方程为.设l与椭圆相交于、,联立,得:.则PQ的中点M的横坐标为.是以OF为底边的等腰三角形,,解得:.故选:B.由椭圆方程求得椭圆的焦点坐标,设出直线方程和椭圆方程联立,由根与系数关系结合中点坐标公式求出M的坐标,由,求得直线l的斜率.本题考查了椭圆的简单几何性质,考查了直线与圆锥曲线的关系,是中档题.10. 已知抛物线的焦点为F,准线为l,直线m过点F,且与抛物线在第一、四象限分别交于A,B两点,过A点作l的垂线,垂足为,若,则A. B. C. D. P【答案】C【解析】解:抛物线的焦点为,准线为l:,当直线m的斜率不存在时,,不满足题意;当直线m的斜率存在时,设直线m的方程为,与抛物线联立,得,消去y整理得,,又,,,.故选:C.讨论直线m的斜率不存在时,不满足题意;直线m的斜率存在时,设直线m的方程为,与抛物线联立消去y得的值;利用求出的值,再求的值,从而求得的值.本题考查了直线与抛物线方程的应用问题,也考查了分类讨论思想应用问题,是中档题.11. 已知椭圆C的两个焦点分别是,,短轴的两个端点分别为M,N,左右顶点分别为,,若为等腰直角三角形,点T在椭圆C上,且斜率的取值范围是,那么斜率的取值范围是A. B. C. D.【答案】C【解析】解:设椭圆方程为.由为等腰直角三角形,且,得,解得,.则椭圆C的方程为.则,.设,则,得,,,,又,,解得:.斜率的取值范围是.故选:C.由已知求得椭圆方程,分别求出,的坐标,再由斜率之间的关系列式求解.本题考查椭圆的简单性质,考查运算求解能力及推理运算能力,是中档题.12. 如图:已知双曲线中,,为左右顶点,F为右焦点,B为虚轴的上端点,若在线段BF上不含端点存在不同的两点,使得构成以为斜边的直角三角形,则双曲线离心率e的取值范围是A.B.C.D.【答案】A【解析】解:由题意,,,则直线BF的方程为,在线段BF上不含端点存在不同的两点,使得构成以线段为斜边的直角三角形,,,,在线段BF上不含端点有且仅有两个不同的点,使得,可得,,,.故选:A.求出直线BF的方程为,利用直线与圆的位置关系,结合,即可求出双曲线离心率e 的取值范围.本题考查双曲线的简单性质,考查离心率,考查直线与圆的位置关系,属于中档题.二、填空题(本大题共4小题,共20.0分)13. “”是假命题,则实数m的取值范围是______.【答案】【解析】解:命题“”是假命题,则命题的否定是:,”是真命题,则,解得:故答案为:.特称命题与其否定的真假性相反,求解全称命题是真命题,求出m的范围即可.本题考查命题的真假判断与应用,考查等价转化思想与运算求解能力,属于基础题.14. 已知,若三向量共面,则实数______.【答案】【解析】解:,不平行,三向量共面,存在实数x,y,使,,解得,,.故答案为:.推导出不平行,由三向量共面,得存在实数x,y,使,列方程组能求出.本题考查的知识点是共线向量与向量及平面向量基本定理等基础知识,考查运算求解能力,是基础题.15. 如图,的二面角的棱上有A,B两点,直线AC,BD分别在这个二面角的两个半平面内,且都垂直于AB,已知,,,则CD的长为______.【答案】【解析】解:由条件,知,.所以所以.故答案为:.由已知可得,,利用数量积的性质即可得出.本题考查面面角,考查空间距离的计算,熟练掌握向量的运算和数量积运算是解题的关键.16. 椭圆有如下光学性质:从椭圆的一个焦点射出的光线,经椭圆反射,其反射光线必经过椭圆的另一焦点,已知椭圆C,其长轴的长为2a,焦距为2c,若一条光线从椭圆的左焦点出发,第一次回到焦点所经过的路程为5c,则椭圆C的离心率为______.【答案】或或【解析】解:依据椭圆的光线性质,光线从左焦点出发后,有如图所示三种路径:图1中:,则;图2中:,则;图3中,,则.椭圆C的离心率为或或,故答案为:或或.由题意画出图形,分类求解得答案.本题考查椭圆的简单性质,考查数形结合的解题思想方法,是中档题.三、解答题(本大题共6小题,共70.0分)17. 已知命题p:方程表示双曲线;命题q:,若¬是¬的充分不必要条件,求实数k的取值范围.【答案】解:p真:得或,q真:,¬是¬的充分不必要条件,若¬是¬的充分不必要条件,则q是p的充分不必要条件,,则有或,或,即实数k的取值范围是或.【解析】求出命题p,q为真命题的等价条件,结合充分条件和必要条件的定义进行转化即可.本题主要考查充分条件和必要条件的应用,求出p,q为真命题的等价条件以及利用逆否命题的等价性进行转化是解决本题的关键.18. 在直角坐标系xOy中,直线:,圆:,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系.Ⅰ求,的极坐标方程;Ⅱ若直线的极坐标方程为,设与的交点为M,N,求的面积.【答案】解:Ⅰ由于,,:的极坐标方程为,故C:的极坐标方程为:,化简可得.Ⅱ把直线的极坐标方程代入圆:,可得,求得,,,由于圆的半径为1,,的面积为.【解析】Ⅰ由条件根据,求得,的极坐标方程.Ⅱ把直线的极坐标方程代入,求得和的值,结合圆的半径可得,从而求得的面积的值.本题主要考查简单曲线的极坐标方程,点的极坐标的定义,属于基础题.19. 如图:直三棱柱中,,,,D为棱上的一动点,M,N分别是,的重心,求证:;若点C在上的射影正好为M,求DN与面ABD所成角的正弦值.【答案】证明:有题意知,,,两两互相垂直,以为原点建立空间直角坐系如图所示,则0,,2,,0,,2,设0,,0,,N分别为和,的重心,,,.解:在上的射影为M,面ABD,,又,,得,解得得,或舍,,,设面ABD的法向量为y,,则,取,得1,,设DN与平面ABD所成角为则,与平面ABD所成角的正弦值为.【解析】由,,两两互相垂直,以为原点建立空间直角坐系,利用向量法能证明.求出面ABD的法向量,利用向量法能求出DN与平面ABD所成角的正弦值.本题考查线线垂直的证明,考查线面角的正弦值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题.20. 设抛物线C:,点,过点P作直线l,若l与C只有一个公共点,求l的方程过C的焦点F,交C与A,B两点,求:弦长;以A,B为直径的圆的方程.【答案】解:若l的斜率不存在,则l:,符合题意;分若l的斜率存在,设斜率为k,则l:;分由,消去y得,由,解得或,直线l的方程为:或;分综上所述,直线l的方程为:或或;分抛物线的焦点为,直线l的方程为:;设,,由,消去x得,;又,;分以AB为直径的圆的半径为;设AB的中点为,则,,圆心为,所求圆的方程为;综上所述,,所求圆的方程为分.【解析】讨论l的斜率不存在和斜率存在时,分别求出直线l的方程即可;写出直线l的方程,与抛物线方程联立求得弦长,再求以AB为直径的圆的方程.本题考查了直线与圆以及抛物线方程的应用问题,是中档题.21. 如图,在等腰梯形CDEF中,CB,DA是梯形的高,,,现将梯形沿CB,DA折起,使且,得一简单组合体ABCDEF如图示,已知M,N分别为AF,BD 的中点.Ⅰ求证:平面BCF;Ⅱ若直线DE与平面ABFE所成角的正切值为,则求平面CDEF与平面ADE所成的锐二面角大小.【答案】证明:Ⅰ连AC,四边形ABCD是矩形,N为BD中点,为AC中点.在中,M为AF中点,故.平面BCF,平面BCF,平面BCF.Ⅱ依题意知,且平面ABFE,在面ABFE上的射影是AE.就是DE与平面ABFE所成的角.故在中:.设且,分别以AB,AP,AD所在的直线为x,y,z轴建立空间直角坐标系,则设分别是平面ADE与平面CDFE的法向量令,即取则平面ADE与平面CDFE所成锐二面角的大小为.运用椭圆的性质,合理地进行等价转化.【解析】连结AC,通过证明,利用直线与平面平行的判定定理证明平面BCF.先由线面垂直的判定定理可证得平面ABFE,可知就是DE与平面ABFE所成的角,解,可得AD及DE的长,分别以AB,AP,AD所在的直线为x,y,z轴建立空间直角坐标系,求出平面ADE与平面CDFE的法向量,代入向量夹角公式,可得答案.本题考查的知识点是用空间向量求平面间的夹角,直线与平面垂直的判定与性质,直线与平面平行的判定,线面夹角,是立体几何知识的综合考查,难度较大.22. 已知椭圆E的中心在原点,焦点在x轴上,椭圆上的点到焦点的距离的最小值为,离心率.Ⅰ求椭圆E的方程;Ⅱ过点作直线l交E于P、Q两点,试问在x轴上是否存在一定点M,使为定值?若存在,求出定点M的坐标;若不存在,请说明理由.【答案】解:Ⅰ,所求椭圆E的方程为:分Ⅱ当直线l不与x轴重合时,可设直线l的方程为:,把代入整理得:,分假设存在定点,使得为定值当且仅当,即时,为定值这时分再验证当直线l的倾斜角时的情形,此时取,,存在定点使得对于经过点的任意一条直线l均有恒为定值.【解析】Ⅰ,由此能导出所求椭圆E的方程.Ⅱ当直线l不与x轴重合时,可设直线l的方程为:,由,整理得:,,假设存在定点,使得为定值由此入手能够推导出存在定点,使得对于经过点的任意一条直线l均有恒为定值.本题考查椭圆方程的求法和点M的存在性质的判断解题时要认真审题,注意挖掘题设中的隐含条件,灵活。
2019-2020学年高二上学期期末考试数学试题(理科)一、选择题(本大题共12小题,共60.0分)1.已知集合0,,,则A. B. 0, C. D.【答案】C【解析】解:;.故选:C.可求出B,然后进行并集的运算即可.考查描述法、列举法的定义,绝对值不等式的解法,以及并集的运算.2.已知数列中,,则A. 4B. 9C. 12D. 13【答案】D【解析】解:数列中,,则.故选:D.利用通项公式即可得出.本题考查了数列的通项公式,考查了推理能力与计算能力,属于基础题.3.已知椭圆C:中,,,则该椭圆标准方程为A. B. C. D.【答案】A【解析】解:根据题意,椭圆C:,其焦点在x轴上,若,,则,则椭圆的方程为;故选:A.根据题意,分析椭圆的焦点位置,由椭圆的几何性质可得b的值,代入椭圆的方程即可得答案.本题考查椭圆的标准方程,注意掌握椭圆标准方程的形式,属于基础题.4.若向量,,则A. B. C. 3 D.【答案】D【解析】解:向量,,0,,.故选:D.利用向量坐标运算法则求解0,,由此能求出的值.本题考查向量的模的求法,考查向量坐标运算法则、向量的模等基础知识,考查函数与方程思想,考查运算求解能力,是基础题.5.设a,,则“”是“”的A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分又不必要条件【答案】C【解析】解:若,,不等式等价为,此时成立.,不等式等价为,即,此时成立.,不等式等价为,即,此时成立,即充分性成立.若,当,时,去掉绝对值得,,因为,所以,即.当,时,.当,时,去掉绝对值得,,因为,所以,即即必要性成立,综上“”是“”的充要条件,故选:C.根据不等式的性质,结合充分条件和必要条件的定义进行判断即可得到结论.本题主要考查充分条件和必要条件的判断,利用不等式的性质结合分类讨论是解决本题的关键.6.若x,y满足,则的最小值为A. B. C. D.【答案】B【解析】解:x,y满足的区域如图:设,则,当此直线经过时z最小,所以z的最小值为;故选:B.画出平面区域,利用目标函数的几何意义求最小值.本题主要考查线性规划的应用,利用数形结合是解决本题的关键,比较基础.7.设抛物线上一点P到y轴的距离是2,则点P到该抛物线焦点的距离是A. 1B. 2C. 3D. 4【答案】C【解析】解:由于抛物线上一点P到y轴的距离是2,故点P的横坐标为2.再由抛物线的准线为,以及抛物线的定义可得点P到该抛物线焦点的距离等于点P到准线的距离,故点P到该抛物线焦点的距离是,故选:C.由题意可得点P的横坐标为2,抛物线的定义可得点P到该抛物线焦点的距离等于点P 到准线的距离,由此求得结果.本题主要考查抛物线的定义、标准方程,以及简单性质的应用,属于中档题.8.设是等差数列的前n项和,若,,则A. B. 2017 C. 2018 D. 2019【答案】D【解析】解:设等差数列的公差为d,,,,化为:,解得.则.故选:D.设等差数列的公差为d,根据,,利用求和公式可得d,即可得出.本题考查了等差数列的求和公式,考查了推理能力与计算能力,属于中档题.9.下列各组两个向量中,平行的一组向量是A. ,2,B. ,1,C. ,1,D. ,【答案】B【解析】解:在A中,,2,,,故A中两个向量不平行,故A错误;在B中,,1,,,故B中两个向量平行,故B正确;在C中,,1,,,故C中两个向量不平行,故C错误;在D中,,,,故D中两个向量不平行,故D错误.故选:B.利用向量平行的性质直接求解.本题考查平行向量的判断,考查向量与向量平行的性质等基础知识,考查运算求解能力,考查化归与转化思想,是基础题.10.的内角A,B,C的对边分別为a,b,c,已知,,,则的面积是A. B. C. 1 D.【答案】B【解析】解:的内角A,B,C的对边分別为a,b,c,已知,利用正弦定理得:,整理得:,由于:,所以:,由于:,则:.由于:,,则:.故选:B.首先利用三角函数关系式的恒等变换和正弦定理求出B的值,进一步利用三角形的面积公式求出结果.本题考查的知识要点:三角函数关系式的恒等变换,正弦定理和三角形面积公式的应用.11.设,是双曲线C:的左,右焦点,O是坐标原点过作C的一条渐近线的垂线,垂足为P,若,则C的离心率为A. B. 2 C. D.【答案】C【解析】解:双曲线C:的一条渐近线方程为,点到渐近线的距离,即,,,,,在三角形中,由余弦定理可得,,即,即,,故选:C.先根据点到直线的距离求出,再求出,在三角形中,由余弦定理可得,代值化简整理可得,问题得以解决.本题考查了双曲线的简单性质,点到直线的距离公式,余弦定理,离心率,属于中档题.12.已知正方体的棱长为1,若P点在正方体的内部,且满足,则平面PAB与平面ABCD所成二面角的余弦值为A. B. C. D.【答案】B【解析】解:以A为坐标原点,AB,AD,分别为x,y,z轴,由,可得,0,,1,,则,0,,设平面PAB的法向量为y,,由,且,可得,且,可取,而平面ABCD的法向量为0,,则平面PAB与平面ABCD所成二面角的余弦值为.故选:B.以A为坐标原点,AB,AD,分别为x,y,z轴,求得P、A、B的坐标,可得向量AP,向量AB的坐标,设平面PAB的法向量为y,,由向量数量积为0,可得平面PAB的一个法向量,再由平面ABCD的法向量为0,,运用两个向量的夹角公式计算可得所求值.本题考查平面和平面所成角的求法,注意运用坐标法和平面的法向量,考查化简整理的运算能力,属于中档题.二、填空题(本大题共4小题,共20.0分)13.已知等比数列中,,,则______.【答案】【解析】解:等比数列中,,,,解得,.故答案为:.由等比数列中,,,得到,由此能求出.本题考查等比数列的第7项的求法,考查等比数列的性质等基础知识,考查运算求解能力,是基础题.14.已知,,,则的最小值为______.【答案】8【解析】解:当且仅当,时取等故答案为:8先变形:,然后根据基本不等式可求得最小值.本题考查了基本不等式及其应用,属基础题.15.已知,1,,则,______.【答案】【解析】解:,1,,,.故答案为:.利用空间向量夹角公式直接求解.本题考查向量夹角的余弦值的求法,考查空间向量夹角公式等基础知识,考查运算求解能力,考查化归与转化思想,是基础题.16.设,若时均有成立,则______.【答案】【解析】解:若,则当时,,由二次函数的性质可知,不等式不可能在时恒成立,故当时不可能都有成立,故,故当时,,当时,,当时均有成立,故当时,,当时,,故是方程的实数根,故,解得:舍或,综上:,故答案为:.通过讨论a的范围以及函数恒成立问题,求出,进而得到是方程的实数根,求出a的值即可.本题考查了函数恒成立问题,考查分类讨论思想,转化思想,是一道中档题.三、解答题(本大题共6小题,共70.0分)17.解关于x的不等式【答案】解:当时,不等式化为,;分当时,原不等式化为,当时,不等式的解为或;当时,不等式的解为;当时,不等式的解为或;分综上所述,得原不等式的解集为:当时,解集为;当时,解集为或;当时,解集为;当时,解集为或.【解析】根据a的范围,分a等于0和a大于0两种情况考虑:当时,把代入不等式得到一个一元一次不等式,求出不等式的解集;当a大于0时,把原不等式的左边分解因式,再根据a大于1,及a大于0小于1分三种情况取解集,当a大于1时,根据小于1,利用不等式取解集的方法求出解集;当时,根据完全平方式大于0,得到x不等于1;当a大于0小于1时,根据大于1,利用不等式取解集的方法即可求出解集,综上,写出a不同取值时,各自的解集即可.此题考查了一元二次不等式的解法,考查了分类讨论及转化的数学思想根据a的不同取值,灵活利用不等式取解集的方法求出相应的解集是解本题的关键.18.如图,已知椭圆的中心在原点,焦点在x轴上,长轴长是短轴长的2倍且经过点,平行于OM的直线l在y轴上的截距为,直线l交椭圆于A,B 两个不同点.求椭圆的方程;求m的取值范围.【答案】解:设椭圆方程为则分解得,分椭圆方程为;分直线l平行于OM,且在y轴上的截距为m又,的方程为:由直线方程代入椭圆方程,分直线l与椭圆交于A、B两个不同点,,分解得,且分【解析】设出椭圆的方程,利用长轴长是短轴长的2倍且经过点,建立方程,求出a,b,即可求椭圆的方程;由直线方程代入椭圆方程,利用根的判别式,即可求m的取值范围.本题考查椭圆的方程与性质,考查直线与椭圆的位置关系,考查学生的计算能力,属于中档题.19.设数列的前n项和为,且满足,求数列的通项公式;若,求数列的前n项和.【答案】解:,当时,,得,,时,得,,符合上式.数列的通项公式为;,,得..【解析】由求得,验证成立后得数列的通项公式;把数列的通项公式代入,然后利用错位相减法求数列的前n项和.本题考查由数列的前n项和求数列的通项公式,训练了错位相减法求数列的和,是中档题.20.在中,角A,B,C的对边分别为a,b,c,,.求A的大小;若,求.【答案】解:,可得:,可得:,解得:,,,,.,.由可得:,,由三角形的面积公式可得:.【解析】由已知利用余弦定理可求,,联立解得,,利用余弦定理可求的值,结合范围,可求A的值.由已知及可得:,,由三角形的面积公式即可计算得解.本题主要考查了余弦定理,三角形的面积公式在解三角形中的综合应用,考查了计算了和转化思想,属于中档题.21.如图,已知四棱锥,是以AD为斜边的等腰直角三角形,,,,E为PD的中点.Ⅰ证明:平面PAB;Ⅱ求直线CE与平面PBC所成角的正弦值.【答案】证明:Ⅰ取AD的中点F,连结EF,CF,为PD的中点,,在四边形ABCD中,,,F为中点,,平面平面ABP,平面EFC,平面PAB.解:Ⅱ连结BF,过F作于M,连结PF,,,推导出四边形BCDF为矩形,,平面PBF,又,平面PBF,,设,由,得,,,,又平面PBF,,平面PBC,即点F到平面PBC的距离为,,D到平面PBC的距离应该和MF平行且相等,为,E为PD中点,E到平面PBC的垂足也为垂足所在线段的中点,即中位线,到平面PBC的距离为,在中,由余弦定理得,设直线CE与平面PBC所成角为,则.【解析】Ⅰ取AD的中点F,连结EF,CF,推导出,,从而平面平面ABP,由此能证明平面PAB.Ⅱ连结BF,过F作于M,连结PF,推导出四边形BCDF为矩形,从而,进而平面PBF,由,得,再求出,由此能求出.本题考查线面平行的证明,考查线面角的正弦值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查推理论证能力、运算求解能力、空间想象能力,考查数形结合思想、化归与转化思想,是中档题.22.已知中心在原点O,焦点在x轴上,离心率为的椭圆过点设不过原点O的直线l与该椭圆交于P,Q两点,且直线OP,PQ,OQ的斜率依次成等比数列,求面积的取值范围.【答案】解:由题意可设椭圆方程为,由得,所以,椭圆方程为分由题意可知,直线l的斜率存在且不为0,故可设直线l的方程为,,,则由,消去y得.,且,.分因为直线OP,PQ,OQ的斜率依次成等比数列,所以,,即,又,所以,即分由于直线OQ的斜率存在,且,得且.设d为点O到直线l的距离,则,所以的取值范围为分【解析】根据中心在原点O,焦点在x轴上,离心率为的椭圆过点,利用待定系数法,求出几何量,可得椭圆的方程设直线l的方程为,代入椭圆方程,利用韦达定理,结合直线OP,PQ,OQ的斜率依次成等比数列,求出k的值,表示出面积,即可求出面积的取值范围.本题考查椭圆的方程,考查直线与椭圆的位置关系,考查韦达定理的运用,考查三角形面积的计算,考查学生分析解决问题的能力,综合性强.。
2019-2020年高二上学期期末考试数学理试题含答案一、选择题:共8题,每小题3分,共24分。
1.命题“若则”的逆命题是(A)若则(B)若则(C)若则(D)若则【答案】:A2. 已知向量,,则等于(A)(B)(C)(D)【答案】:D3.已知命题,使得:命题,下列命题为真的是(A)(B)(C)(D)【答案】:A4. 已知椭圆的左右焦点为,离心率为,过的直线交于两点,若的周长为,则的方程为(A)(B)(C)(D)【答案】:B5. 在长方体中,(A)(B)(C)(D)【答案】:D6. 已知双曲线2222:1(0,0)x yC a ba b-=>>的离心率为,则的渐近线方程为()。
A、 B、 C、 D、【答案】:C7. 给定两个命题、,若是的必要而不充分条件,则是的()。
A、充分而不必要条件B、必要而不充分条件C、充要条件D、既不充分也不必要条件【答案】:A8. 已知为坐标原点,为抛物线的焦点,为上一点,若,则的面积为()。
A、 B、 C、 D、【答案】:C二、填空题:共6小题,每题4分,共24分。
9. 命题“”的否定是10. 方程表示焦点在轴上的椭圆,则的取值范围是【答案】:11已知)1,4,1(),4,2,2(),1,5,2(---C B A ,则向量与的夹角为_________.【答案】:12直三棱柱中,,M,N 分别是的中点,,则BM 与AN 所成角的余弦值为_________.【答案】:13已知双曲线的两条渐近线与抛物线的准线分别交于A,B 两点,O 为坐标原点,若双曲线的离心率为2,的面积为,则p 的值为_________.【答案】:214已知3221:,0)1)(1(:<<<--+-x q m x m x p ,若p 是q 的必要不充分条件,则实数m 的取值范围是________.【答案】:三、解答题:本大题共6小题,共52分。
15.(本小题满分8分)已知(1)若,求实数k 的值(2)若,求实数k 的值【答案】:(1)(2)【解析】:(1))16,4,7(3),5,35,2(--=--+-=+k k k k(2)16.(本小题满分8分)求经过点,焦点为的双曲线的标准方程,并求出该双曲线的实轴长,虚轴长,离心率,渐近线方程【答案】:x y e 55,530252±==,, 【解析】:焦点在轴上,且,,带入点即可解得方程为17. (本小题满分8分)已知:函数在内单调递增,函数大于零恒成立,若或为真,且为假,求的取值范围【答案】:【解析】:为真,则,为真则,和一真一假,真假,假真,算出来之后取并集可得答案18.(本小题满分8分)如图,在直三棱柱ABC ﹣A 1B 1C 1中,AC=3,BC=4,AA 1=4,AB=5,点D 是AB 的中点.(1)求证:AC ⊥BC 1;(2)求证:AC 1∥平面CDB 1.【解析】解:(1)∵ABC ﹣A 1B 1C 1为直三棱柱,∴CC 1⊥平面ABC ,AC ⊂平面ABC ,∴CC 1⊥AC∵AC=3,BC=4,AB=5,∴AB 2=AC 2+BC 2,∴AC ⊥CB又C 1C ∩CB=C ,∴AC ⊥平面C 1CB 1B ,又BC 1⊂平面C 1CB 1B ,∴AC ⊥BC 1(2)设CB 1∩BC 1=E ,∵C 1CBB 1为平行四边形,∴E 为C 1B 的中点又D 为AB 中点,∴AC 1∥DEDE ⊂平面CDB 1,AC 1⊄平面CDB 1,∴AC1∥平面CDB 119.(本小题满分10分)设A (x 1,y 1).B (x 2,y 2)两点在抛物线y=2x 2上,l 是AB 的垂直平分线.(1)当且仅当x 1+x 2取何值时,直线l 经过抛物线的焦点F ?证明你的结论;(2)当直线l 的斜率为2时,求l 在y 轴上截距的取值范围.【答案】:(1)x 1+x 2=0 (2)(,+∞)【解析】(Ⅰ)∵抛物线y=2x 2,即,∴,∴焦点为F(1)直线l 的斜率不存在时,显然有x 1+x 2=0(2)直线l 的斜率存在时,设为k ,截距为b ,即直线l :y=kx+b 由已知得:即l 的斜率存在时,不可能经过焦点F (0,)所以当且仅当x 1+x 2=0时,直线l 经过抛物线的焦点F(II )解:设直线l 的方程为:y=2x+b ′,故有过AB 的直线的方程为,代入抛物线方程有,得由A 、B 是抛物线上不同的两点,于是上述方程的判别式,也就是:,由直线AB 的中点为=则,于是:329321165165=->+='m b 即得l 在y 轴上的截距的取值范围是(,+∞).20.(本小题满分10分)已知点A (0,﹣2),椭圆E :(a >b >0)的离心率为,F 是椭圆E 的右焦点,直线AF 的斜率为,O 为坐标原点.(Ⅰ)求E 的方程;(Ⅱ)设过点A 的动直线l 与E 相交于P ,Q 两点,当△OPQ 的面积最大时,求l 的方程.【答案】:(Ⅰ)椭圆E 的方程为;(Ⅱ)△OPQ 的面积最大时直线l 的方程为:.【解答】解:(Ⅰ)设F (c ,0),∵直线AF 的斜率为,∴,解得c=.又,b 2=a 2﹣c 2,解得a=2,b=1.∴椭圆E 的方程为;(Ⅱ)设P (x1,y1),Q (x2,y2).由题意可设直线l 的方程为:y=kx ﹣2.联立,化为(1+4k2)x2﹣16kx+12=0,当△=16(4k2﹣3)>0时,即时, ,.∴|PQ|= ==,点O 到直线l 的距离d=.∴S △OPQ==,设>0,则4k2=t2+3, ∴142444442=≤+=+=tt t t S OPQ △,当且仅当t=2,即,解得时取等号. 满足△>0,∴△OPQ 的面积最大时直线l 的方程为:.。
2019-2020学年高二上学期期末考试数学试题(理)一、选择题(本大题共12小题,共60.0分)1.命题p:,,则¬为A. ,B. ,C. ,D. ,【答案】B【解析】解:因为特称命题的否定是全称命题,所以,命题p:,,则¬为:,.故选:B.利用特称命题的否定是全称命题,写出结果即可.本题考查命题的否定,特称命题与全称命题的否定关系,是基本知识的考查.2.已知a,,若,则A. B. C. D.【答案】D【解析】解:a,,若,对A,,若,则;,则;,则,故A错误;对B,若,则;若,则;若,则,故B错误;对C,a,,则,若a,b中有负的,则不成立,故C错误;对D,在R上递增,可得,故D正确.故选:D.讨论b的符号,即可判断A,B,C;运用在R上递增,即可判断D.本题考查两式的大小比较,考查作差法和函数的单调性的运用,考查运算能力,属于基础题.3.设等比数列的公比是q,则”是“数列是为递增数列的A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件【答案】D【解析】解:若,时,递减,数列单调递增不成立.若数列单调递增,当,时,满足递增,但不成立.“公比”是“数列单调递增”的既不充分也不必要条件.故选:D.根据等比数列递增的性质以及充分条件和必要条件的定义进行判断即可.本题主要考查充分条件和必要条件的判断,利用等比数列的性质是解决本题的关键,比较基础.4.不等式的解集是A. B.C. D.【答案】A【解析】解:不等式等价于如图,把各个因式的根排列在数轴上,用穿根法求得它的解集为,故选:A.原不等式等价于把各个因式的根排列在数轴上,用穿根法求得它的解集.本题主要考查分式不等式的解法,体现了等价转化的数学思想,属于中档题.5.在等差数列中,,则A. 3B. 6C. 9D. 12【答案】B【解析】解:在等差数列中,由,且,得,即,.故选:B.由已知结合等差数列的性质可得,则答案可求.本题考查等差数列的性质,是基础的计算题.6.某些首饰,如手镯,项链吊坠等都是椭圆形状,这种形状给人以美的享受,在数学中,我们把这种椭圆叫做“黄金椭圆”,其离心率设黄金椭圆的长半轴,短半轴,半焦距分别为a,b,c,则a,b,c满足的关系是A. B. C. D.【答案】B【解析】解:因为离心率的椭圆称为“黄金椭圆”,所以是方程的正跟,即有,可得,又,所以.即b是a,c的等比中项.故选:B.通过椭圆的离心率,构造离心率的方程,然后推出a、b、c的关系,即可得到选项.本题考查椭圆的简单性质的应用,构造法是解得本题的关键,考查计算能力.7.已知曲线的切线过原点,则此切线的斜率为A. eB.C.D.【答案】C【解析】解:设切点坐标为,,,切线的斜率是,切线的方程为,将代入可得,,切线的斜率是;故选:C.设切点坐标为,求函数的导数,可得切线的斜率,切线的方程,代入,求切点坐标,切线的斜率.本题主要考查导数的几何意义,利用切线斜率和导数之间的关系可以切点坐标.8.若函数有极大值和极小值,则实数a的取值范围是A. B.C. D.【答案】B【解析】解:,;又函数有极大值和极小值,;故或;故选:B.由题意求导;从而化函数有极大值和极小值为;从而求解.本题考查了导数的综合应用,属于中档题.9.已知平面内有一个点,的一个法向量为1,,则下列点P中,在平面内的是A. B. C. D.【解析】解:由题意可知符合条件的点P应满足,选项A,0,,,故不在平面内;同理可得:选项B,,,故在平面内;选项C,2,,,故不在平面内;选项D,,,故不在平面内;故选:B.由题意可知符合条件的点P应满足,逐个选项验证即可.本题考查平面法向量的定义,属基础题.10.设数列的前n项和为,且,为常数列,则A. B. C. D.【答案】B【解析】解:数列的前n项和为,且,,为常数列,由题意知,,当时,,从而,,当时上式成立,.故选:B.由题意知,,当时,,由此能求出.本题考查数列的通项公式的求法,是中档题,解题时要认真审题,注意累乘法的合理运用.11.下列命题正确的是若,则与、共面;若,则M、P、A、B共面;若,则A、B、C、D共面;若,则P、A、B、C共面.A. 1B. 2C. 3D. 4【答案】C【解析】解:对于,若,则由平面向量基本定理知与、共面,正确;对于,若,则、、共面,所以M、P、A、B四点共面,对于,若,则,这里系数,A、B、C、D不共面,错误;对于,若,则,所以P、A、B、C共面,正确.综上所述,正确的命题序号是,共3个.故选:C.在中,由平面向量基本定理知与、共面;在中,由平面向量基本定理判断、、共面,M、P、A、B四点共面;在中,由题意得,不能判断A、B、C、D四点共面;在中,由,能判断P、A、B、C四点共面.本题考查了平面向量基本定理的应用问题,是基础题.12.已知函数,,对任意存在使,则的最小值为A. B. C. D.【答案】D【解析】解:令,则,令,可得,则,.显然,是增函数,观察可得当时,,故有唯一零点.故当时,取得最小值为,故选:D.令,则,令,可得,利用导数求得取得最小值.本题主要考查对数函数的图象和性质的综合应用,利用导数求函数的最小值,属于中档题此题中导数零点不易用常规方法解出,解答时要会用代入特值的方法进行验证求零点二、填空题(本大题共4小题,共20.0分)13.若变量x,y满足约束条件,则取得最大值时的最优解为______【答案】【解析】解:画出约束条件的可行域,如图:由得:,显然直线过时,z最大,所以最优解为:故答案为:.作出不等式对应的平面区域,利用线性规划的知识,通过平移即可求z的最优解.本题主要考查线性规划的应用,利用图象平行求得目标函数的最大值和最小值,利用数形结合是解决线性规划问题中的基本方法.14.平面内,线段AB的长度为10,动点P满足,则的最小值为______.【答案】2【解析】解:平面内,线段AB的长度为10,动点P满足,即,则点P在以为焦点,实轴长为6的双曲线的右支上,,.因此的最小值为.故答案为:2.平面内,线段AB的长度为10,动点P满足,即,可得点P在以为焦点,实轴长为6的双曲线的右支上,即可得出答案.本题考查了双曲线的定义标准方程及其性质,考查了推理能力与计算能力,属于中档题.15.如图,为测得河对岸塔AB的高,先在河岸上选一点C,使C在塔底B的正东方向上,测得点A的仰角为,再由点C沿北偏东方向走10米到位置D,测得,则塔AB的高是______米【答案】【解析】解:设塔高为x米,根据题意可知在中,,,,从而有,在中,,,,由正弦定理可得,可得,则故答案为:设塔高为x米,根据题意可知在中,,,,从而有,在中,,,,,由正弦定理可求BC,从而可求x即塔高本题主要考查了正弦定理在实际问题中的应用,解决本题的关键是要把实际问题转化为数学问题,结合已知把题目中的数据转化为三角形中的数据,进而选择合适的公式进行求解.16.记为正项等比数列的前n项和,若,则的最小值为______.【答案】8【解析】解:设正项等比数列的公比为,,,,可得:解得.则,当且仅当时取等号.的最小值为8.故答案为:8.设正项等比数列的公比为,由,可得,可得:解得可得,再利用基本不等式的性质即可得出.本题考查了等比数列的通项公式与求和公式、单调性、基本不等式的性质,考查了推理能力与计算能力,属于中档题.三、解答题(本大题共6小题,共70.0分)17.已知数列为单调递增数列,,其前n项和为,且满足求数列的通项公式;若数列其前n项和为,若成立,求n的最小值.【答案】解:,可得时,,相减可得,即为,数列为单调递增数列,即,可得,为首项为1,公差为2的等差数列,可得;,可得前n项和为,即,解得,即n的最小值为10.【解析】由数列的递推式,结合等差数列的定义和通项公式,可得所求通项;求得,运用数列的裂项相消求和,化简计算可得所求和,解不等式可得所求最小值.本题考查数列的通项公式的求法,注意运用数列的递推式,考查等差数列的定义和通项公式,考查数列的裂项相消求和,以及化简运算能力,属于中档题.18.已知的内角A,B,C的对边分别为a,b,c,且.求角C;若,求面积的最大值.【答案】解:,由正弦定理可得:.,..由余弦定理可得:,可得,当且仅当时取等号.面积的最大值.【解析】利用正弦定理与和差公式即可得出.利用余弦定理、基本不等式的性质、三角形面积计算公式即可得出.本题考查了正弦定理余弦定理、三角形面积计算公式、和差公式、基本不等式的性质,考查了推理能力与计算能力,属于中档题.19.如图,在半径为30cm的半圆形铁皮上截取一块矩形材料点A,B在直径上,点C,D在半圆周上,并将其卷成一个以AD为母线的圆柱体罐子的侧面不计剪裁和拼接损耗.若要求圆柱体罐子的侧面积最大,应如何截取?若要求圆柱体罐子的体积最大,应如何截取?【答案】解:连接OC,设,则,其中,,当且仅当,即时,S取最大值900;取时,矩形ABCD的面积最大,最大值为.设圆柱底面半径为r,高为x,则,解得,,其中;,令,得;因此在上是增函数,在上是减函数;当时,取得最大值,取时,做出的圆柱形罐子体积最大,最大值为.【解析】设,求出AB,得出侧面积S关于x的函数,利用基本不等式得出S 的最大值;用x表示出圆柱的底面半径,得出体积关于x的函数,判断的单调性,得出的最大值.本题考查了圆柱的结构特征,圆柱的侧面积与体积计算,用不等式与函数单调性求函数最值,属于中档题.20.在中,点,,且它的周长为6,记点M的轨迹为曲线E.求E的方程;设点,过点B的直线与E交于不同的两点P、Q,是否可能为直角,并说明理由.【答案】解:由题意得,,,则M的轨迹E是以,为焦点,长轴长为4的椭圆,又由M,A,B三点不共线,.的方程为;证明:设直线PQ的方程为,代入,得.设,,则,..不可能为直角.【解析】由题意得,,则,可得M 的轨迹E是以,为焦点,长轴长为4的椭圆,则E的方程可求;设直线PQ的方程为,与椭圆方程联立,化为关于y的一元二次方程,利用根与系数的关系结合向量数量积证明不可能为直角.本题考查定义法求椭圆方程,考查直线与椭圆的位置关系等基础知识,考查推理论证能力、运算求解能力,考查数形结合思想、函数与方程思想、化归与转化思想等,是中档题.21.如图,D是AC的中点,四边形BDEF是菱形,平面平面ABC,,,.若点M是线段BF的中点,证明:平面AMC;求平面AEF与平面BCF所成的锐二面角的余弦值.【答案】证明: 连接MD ,FD . 四边形BDEF 为菱形,且 , 为等边三角形. 为BF 的中点, . , ,又D 是AC 的中点, .平面 平面 ,平面 平面BDEF , 平面ABC , 平面BDEF .又 平面BDEF , . 由 , , , 平面AMC ;解: 设线段EF 的中点为N ,连接 易证 平面 以D 为坐标原点,DB ,DC ,DN 所在直线分别为x 轴,y 轴,z 轴建立如图所示的空间直角坐标系 则 ,,,0, , 1, ., ,, .设平面AEF ,平面BCF 的法向量分别为 , . 由.解得.取 , .又由解得.取,..平面AEF与平面BCF所成的锐二面角的余弦值为.【解析】连接MD,FD,可得为等边三角形又M为BF的中点,得,进一步求得,再由面面垂直的性质可证平面AMC;设线段EF的中点为N,连接易证平面以D为坐标原点,DB,DC,DN所在直线分别为x轴,y轴,z轴建立空间直角坐标系,求出平面AEF,平面BCF的法向量,即可求平面AEF与平面BCF所成的锐二面角的余弦值.本题考查面面垂直的性质,考查线面垂直,考查线面角,面面角,考查向量法的运用,正确求出平面的法向量是关键,是中档题.22.已知函数,.Ⅰ当时,讨论函数的单调性;Ⅱ若在区间上恒成立,求实数a的取值范围.【答案】解:Ⅰ0)'/>,当,即时,时,,时,0'/>,所以在区间上单调递减,在区间上单调递增;当,即时,和时,0'/>,时,,所以在区间上单调递减,在区间和上单调递增;当,即时,和时,0'/>,时,,所以在区间上单调递减,在区间和上单调递增;当,即时,,所以在定义域上单调递增;综上:当时,在区间上单调递减,在区间和上单调递增;当时,在定义域上单调递增;当时,在区间上单调递减,在区间和上单调递增;当时,在区间上单调递减,在区间上单调递增.Ⅱ令,原问题等价于在区间上恒成立,可见,要想在区间上恒成立,首先必须要,而,另一方面当时,,由于,可见0'/>,所以在区间上单调递增,故,所以在区间上单调递减,成立,故原不等式成立.综上,若在区间上恒成立,则实数a的取值范围为【解析】Ⅰ当时,求出函数的导数,求出极值点,判断极值点的大小故选,讨论导函数的符号,即可得到函数的单调性;Ⅱ利用函数恒成立,转化为函数的最值问题,构造函数求解函数的导数,求出最值即可得到结果.本题考查函数的导数的应用,函数的极值以及函数的最值的求法,考查分类讨论思想的应用,考查转化思想以及计算能力.。
2019-2020年高二上学期期末考试 数学理含答案(I)2013.1本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试时间120分钟。
注意事项:1.考生务必用黑色0.5mm 签字笔将自己的学校、班级、姓名、准考证号、座号填写在答卷纸和答题卡上,并将答题卡上的准考证号、考试科目及试卷类型用2B 铅笔涂写。
2.第Ⅰ卷每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案;第Ⅱ卷一律答在答卷纸上,答在其它地方无效。
3.试题不交,请妥善保存,只交答卷纸和答题卡。
第Ⅰ卷(选择题,共60分)一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是正确的。
1.在区间]3 1[,上任取一个实数x ,则25.1≤≤x 的概率等于A .32 B .21 C .31 D .41 2.下列命题中,真命题是A .041 2>+-∈∀x x x ,R B .1 0200-=+∈∃x x x ,R C .01 2<--∈∀x x ,R D .022 0200<++∈∃x x x ,R3.直线02=-y x 与直线042=+-a y x 的距离为5,则a 的值为A .5±B .10±C .10D .524.下列函数在其定义域内既是奇函数又是增函数的是A .31x y =B .x y tan =C .x y 3=D .x y lg =5.一个几何体的三视图如图所示,其中正视图和侧视图是腰长为1的 两个全等的等腰直角三角形,则该几何体的体积是A .61 B .31 C .21 D .16.在等差数列}{n a 中,已知1475=+a a ,则该数列前11项和=11SA .196B .132C .88D .777.若双曲线12222=-by a x 的焦距为10,点)1 2(,-P 在其渐近线上,则双曲线的方程为俯视图(第5题图)A .1208022=-y x B .1802022=-y x C .152022=-y x D .120522=-y x 8.“1=a ”是“直线012=-+y ax 与直线03)1(=+++y a x 平行”的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件9.方程0)1()(22=-+-xy y x 表示的图形是A .两条直线B .两条双曲线C .两个点D .一条直线和一条双曲线10.已知直线)0(0≠=++abc c by ax 与圆122=+y x 相离,则三条边长分别为||a 、||b 、||c 的三角形是A .锐角三角形B .直角三角形C .钝角三角形D .以上均有可能11.已知一个四面体其中五条棱的长分别为1,1,1,1,2,则此四面体体积的最大值是A .123B .122 C .42 D .33 12.已知直线)(a x k y +=)0(>a 与x 轴交于点A ,与直线c x =) 0(a c c <>,交于点M ,椭圆C 以A 为左顶点,以)0 (,c F 为右焦点,且过点M ,当2131<<k 时,椭圆C 的离心率的范围是A .)32 0(,B .)1 32(,C .)1 21(, D .)3221(,第Ⅱ卷(非选择题,共90分)二、填空题:本大题共4个小题,每小题4分,共计16分。
2019-2020学年高二年级上学期期末考试数学(理)试卷满分:150分 考试时间:120分钟第Ⅰ卷(选择题,共60分)选择题(本大题共12小题,每小题5分,共60分。
在每题给出的四个选项中,只有一个选项符合题目要求。
)1.设集合{}1,0,1,2A =-,{}|22B x x =-≤<,则A B ⋂= ( ) A. {}1,0,1- B. {}1,0- C. {}|10x x -<< D.{|10}x x -≤≤2.已知向量(1,2)a m =-,(,3)b m =-,若a b ⊥,则实数 m 等于( )A. 2-或3B. 2或3-C. 3D. 353.在ABC ∆中,若2a =,b =,30A =︒,则B 为( )A. 60B. 60或120C. 30D. 30或1504.已知命题11:,23xxp x R ⎛⎫⎛⎫∀∈> ⎪ ⎪⎝⎭⎝⎭;命题2000:,10q x R x x ∃∈--=;则下列命题为真命题的是( )A. p q ∧B. p q ∨⌝C. p q ⌝∧D. p q ⌝∧⌝5.阅读右边的程序框图,运行相应的程序,则输出S 的值 为( )A. 10-B. 6C. 14D. 186.若4cos 5α=-, α是第二象限的角,则sin 4πα⎛⎫-= ⎪⎝⎭ ( ) )A. 10-C. 10-D.107.若某多面体的三视图(单位: cm) 如图所示, 则此多面体的体积是( )A .2cm 3B .32m 3C .1cm 3D .31cm 38.抛物线214y x =的准线方程是( ) A. 1y =- B. 2y =- C. 1x =- D. 2x =-9.已知,x y 满足不等式组⎪⎩⎪⎨⎧≥-+≤-≥-04001y x y x x ,则目标函数3z x y =+的最小值是( )A.4B.6C.8D.10 10.已知数列{}n a 是递增的等比数列, 14239,8a a a a +==,则数列{}n a 的前10项和等于( )A.1024B.511C.512D.1023 11.函数3()35f x x x =-+在闭区间[3,0]-上的最大值与最小值的和是( ) A.6 B.8 C.-6 D.-812.过椭圆()222210x y a b a b+=>>的左焦点1F 作x 轴的垂线交椭圆于点P ,2F 为右焦点,若1260F PF ∠=︒,则椭圆的离心率为( )A. 2B. 3C. 12D. 13第Ⅱ卷(非选择题,共90分)二、填空题(本大题共4小题,每小题5分,共20分。
2019-2020年高二上学期期末模块考试数学(理)试题 含答案说明:本卷为发展卷,采用长卷出题、附加计分的方式。
第Ⅰ、Ⅱ卷为必做题,第Ⅲ卷为选做题,必做题满分为 120 分,选做题满分为30分。
第Ⅰ卷为第1题 页至第 10 题,第Ⅱ卷为第11 题至第18 题,第Ⅲ卷为第19 题至第22 题。
考试时间120 分钟。
温馨提示:生命的意义在于不断迎接挑战,做完必做题后再挑战一下发展题吧,你一定能够成功!第I 卷(选择题,共50分)一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1. 已知在等差数列{}n a 中,若1a =4,45-=a ,则该数列的公差d 等于 A.1 B.53C. - 2D. 3 2.在ABC △中,已知4,6a b ==,60B =,则sin A 的值为3. 设a b >,c d >,则下列不等式成立的是 A. a c b d ->- B. ac bd > C.a dc b>D. b d a c +<+4.在ABC △中,60,6,10A b c ===,则ABC △的面积为A.B. C.15 D.30 5. 在等差数列{}n a 中,有67812a a a ++=,则该数列的前13项之和为 A .24 B.52 C.56 D.1046. 不等式组13y x x y y <⎧⎪+≤⎨⎪≥-⎩表示的区域为D ,点P (0,-2),Q (0,0),则A. P ∉D ,且Q ∉DB. P ∉D ,且Q ∈DC. P ∈D ,且Q ∉DD. P ∈D ,且Q ∈D7.在ABC △中,::4:3:2a b c =,那么cos C 的值为A.14 B.14- C.78 D.11168. 在各项都为正数的等比数列{}n a 中,首项31=a ,前三项和为321S =,则4a = A .32B.24C.27D .549.已知变量,x y 满足约束条件⎪⎩⎪⎨⎧≤-≥-+≤-+01033032y y x y x ,若目标函数y x z +=2的最大值是A .6B .3 C.23D .1 10. 等比数列}{n a 的前n 项和n S ,若36,963==S S ,则=++987a a a A. 72 B. 81 C. 90 D. 99提示:请将1—10题答案涂在答题卡上,11-22题写在答题纸上第Ⅱ卷(非选择题,共70分)二、填空题(本大题共4小题,每小题5分,共20分) 11. 正数,x y 满足2x y +=,则x y ⋅的最大值为______ . 12. 数列{}n a 的前n 项和n S 满足31n n S =-,则n a = . 13. 若不等式220ax bx ++>的解集是11(,)23-,则a b +的值为 . 14. 在ABC ∆中,若cos cos a B b A =,则ABC ∆的形状一定是三、解答题(本大题共4小题,共50分.解答应写出文字说明,证明过程或演算步骤) 15. (本小题满分12分) 解下列不等式 (1)2230x x +-< ; (2)203xx -≤+. 16. (本小题满分12分)已知在△ABC 中,角A,B,C 的对边分别是c b a ,,,若46,5,cos 5a b A ===-(1)求角B 的大小;(2)求边c. 17. (本小题满分13分)已知等差数列{}n a 的前n 项和为n S ,365,36a S ==,(1)求数列{}n a 的通项公式;(2) 设2n an b =,求数列{}n b 的前n 项和n T . 18. (本小题满分13分)云南省镇雄县高坡村发生山体滑坡,牵动了全国人民的心,为了安置广大灾民,救灾指挥 部决定建造一批简易房,每间简易房是地面面积为1002m ,墙高为3m 的长方体样式,已知简易房屋顶每12m 的造价为500元,墙壁每12m 的造价为400元.问怎样设计一间简易房的地面的长与宽,能使一间简易房的总造价最低?最低造价是多少?第Ⅲ卷(发展题,共30分)19、(3分)在下列函数中,最小值是22的是 A.12lg (0)lg y x x x=+> B. 2sin sin y x x =+()0,x π∈C. 2y =D.2x x y e e -=+20(3分)在锐角ABC ∆中,1,2,BC B A ==则AC 的取值范围为 . 21. (本小题满分12分)已知锐角三角形ABC 的内角A,B,C 的对边分别为a b c ,,,若2sin a b A = (1)求B 的大小;(2)求C A sin cos +的取值范围. 22. (本小题满分12分)已知各项均为正数的数列{}n a ,满足221120n n n n a a a a ++--= (*∈N n ),且21=a . (1)求数列{}n a 的通项公式;(2)设n n n a a b 21log ⋅=,若n b 的前n 项和为n S ,求n S ;(3)在(2)的条件下,求使5021>⋅++n n n S 成立的正整数n 的最小值.济南外国语学校2012-2013学年度第一学期高二期末模块考试数学试题(2013.1)理科答题纸二、填空题(每小题5分,共20分)11、12、13、14、三、解答题(共50分)15、(12分)16、(12分)17、(13分)18、(13分)发展卷19、20 、(每小题3分)21、(12分)22、(12分)2013年1月高二期末模块考试数学试卷(理科)参考答案一、选择题 1.C 2.A 3.D 4.B 5.B 6.C 7.C 8.B 9.A 10.B 二、填空题 11. 1 12. 132-⋅=n n a 13.14- 14、等腰三角形 三、解答题15.解:(1) (3)(1)0x x +-< {|31}x x ∴-<< -----------------------------------------6分(2)203x x -≥+ {|23}x x x ∴≥<-或 -----------------------------------------12分 16. 解:(1)由题知54cos -=A则53sin =A 且A 为钝角 -----------------------------------------4分由正弦定理得B b A a sin sin =,21sin =B 所以30=B -----------------------------------------8分(2)bca cb A 2cos 222-+=整理得01182=-+c c解得433-=c -----------------------------------------12分17解: (1)设{}n a 的公差为d , 则1125656362a d a d +=⎧⎪⎨⨯+=⎪⎩------------------3分 即112556a d a d +=⎧⎨+=⎩,解得112a d =⎧⎨=⎩,-----------------------------------------6分*12(1)21,()n a n n n N ∴=+-=-∈.-------------------------------8分 (2) 2122n an n b -==135212222n n T -∴=++++--------------------------------------10分2(14)2(41)143n n --==-------------------------------------------12分18. 解:设地面的长为x m,宽为m x100--------------------------------------2分 则总造价400)10066(500100⨯⨯++⨯=xx y --------------------------------------6分 2400)100(50000⨯++=xx y 9800024002050000=⨯+≥所以,当且仅当xx 100=时,即x=10m 时,y 取得最小值.--------------------------------------10分答:设计地面长宽均为10m 时,造价最低,为98000元。
------------------------12分发展卷 19.D 20.21. 解:(1)由2sin a b A =,根据正弦定理得sin 2sin sin A B A =,所以1sin 2B =, 由ABC △为锐角三角形得π6B =. --------------------------------------5分(2)cos sin cos sin A C A A π⎛⎫+=+π-- ⎪6⎝⎭cos sin 6A A π⎛⎫=++ ⎪⎝⎭1cos cos 2A A A =+3A π⎛⎫=+ ⎪⎝⎭. ----------------------------9分由ABC △为锐角三角形且π6B =知,32A ππ<< ----------------------------10分2336A ππ5π<+<,所以1sin 232A π⎛⎫<+<⎪⎝⎭. ----------------------------12分由此有232A π⎛⎫<+< ⎪⎝⎭ 所以,cos sin A C +的取值范围为322⎛⎫⎪ ⎪⎝⎭,. ----------------------13分 22 解:(1)∵221120n n n n a a a a ++--=,∴11()(2)0n n n n a a a a +++-=,∵数列{n a }的各项均为正数,∴10n n a a ++>, ∴120n n a a +-=,即12n n a a +=(*∈N n ),所以数列{n a }是以2为公比的等比数列.----------------------------3分∵12a =,∴数列{na }的通项公式2nn a =.----------------------------6分 (2)由(1)及n b =12log n na a 得,2nn b n =-⋅,----------------------------8分∵12n n S b b b =++⋅⋅⋅+,∴23422232422n n S n =--⋅-⋅-⋅-⋅⋅⋅-⋅ ○1 ∴2345122223242(1)22n n n S n n +=--⋅-⋅-⋅-⋅⋅⋅--⋅-⋅ ② ②-○1得,234512222222n n n S n +=+++++⋅⋅⋅+-⋅ =112(12)2(1)2212n n n n n ++--⋅=-⋅-- ……………………………11分(3)要使S 12+⋅+n n n >50成立,只需2n+1-2>50成立,即2n+1>52,n ≥5∴使S 12+⋅+n n n >50成立的正整数n 的最小值为5. ……………………………13分。