文科高考数学圆锥曲线试题汇编
- 格式:doc
- 大小:687.00 KB
- 文档页数:6
2011-2017新课标(文科)圆锥曲线分类汇编一、选择填空[2011新课标]4.椭圆的离心率为〔 D 〕A.B.CD[解析]cea===2228111162,be ea=-=-=∴=,故选D.[2011新课标]9.已知直线l过抛物线C的焦点,且与C的对称轴垂直. l与C交于A, B两点,|AB|=12,P为C的准线上一点,则ABP的面积为〔 C 〕A.18B.24C.36D.48[解析]易知2P=12,即AB=12,三角形的高是P=6,所以面积为36,故选C.[2012新课标]4.设F1、F2是椭圆E:22221x ya b+=(a>b>0)的左、右焦点,P为直线32ax=上一点,△F1PF2是底角为30°的等腰三角形,则E的离心率为〔C〕A.12B.23C.34D.45[解析]∵△F2PF1是底角为30º的等腰三角形,260PF A∴∠=︒,212||||2PF F F c==,∴2||AF=c,322c a∴=,34e∴=,故选C.[2012新课标]10.等轴双曲线C的中心在原点,焦点在x轴上,C与抛物线y2=16x的准线交于A,B两点,||AB=C的实轴长为〔〕A..4D.8[解析]由题设知抛物线的准线为:4x=,设等轴双曲线方程为:222x y a-=,将4x=代入等轴双曲线方程解得y=∵||AB=∴a=2,∴C的实轴长为4,故选C.[2013新课标1]4. 已知双曲线C:2222=1x ya b-(a>0,b>0),则C的渐近线方程为( )A.y=±14x B.y=±13x C.y=±12x D.y=±x[解析]∵e=∴ca=2254ca=,∵c2=a2+b2,∴2214ba=.∴12ba=.∵双曲线的渐近线方程为by xa=±,∴渐近线方程为12y x=±,故选C。
[2013新课标1]8. O为坐标原点,F为抛物线C:y2=的焦点,P为C上一点,若|PF|=,则△POF的面积为(C).A.2 B...4[解析]利用|PF|=Px=可得x P=∴y P=±∴S△POF=12|OF|·|y P|=221168x y+=1312∆[2013新课标2]5. 设椭圆C :2222=1x y a b+(a >b >0)的左、右焦点分别为F 1,F 2,P 是C 上的点,PF 2⊥F 1F 2,∠PF 1F 2=30°,则C 的离心率为(D ) A .6 B . 13 C . 12D .3[解析]如图所示,在Rt △PF 1F 2中,|F 1F 2|=2c ,设|PF 2|=x ,则|PF 1|=2x ,由tan 30°=212||||2PF x F F c ==3x =, 而由椭圆定义得,|PF 1|+|PF 2|=2a =3x ,∴32a x ==,∴3c e a ===[2013新课标2]10. 抛物线C :y 2=4x 的焦点为F ,直线l 过F 且与C 交于A ,B 两点.若|AF|=3|BF|,则l 的方程为(C).A .y =x -1或y =-x +1B .y =(x -1)或y = -(x -1)C .y = 3(x -1)或y = -3(x -1)D .y = 2(x -1)或y = -2(x -1)[解析]由题意可得抛物线焦点F(1,0),准线方程为x =-1,当直线l 的斜率大于0时,如图所示,过A ,B 两点分别向准线x =-1作垂线, 垂足分别为M ,N ,则由抛物线定义可得,|AM|=|AF|,|BN|=|BF|. 设|AM|=|AF|=3t(t >0),|BN|=|BF|=t ,|BK|=x ,而|GF|=2, 在△AMK 中,由||||||||NB BK AM AK =,得34t xt x t=+, 解得x =2t ,则cos ∠NBK=||1||2NB t BK x ==, ∴∠NBK =60°,则∠GFK =60°,即直线AB 的倾斜角为60°. ∴斜率k =tan 60°y 1)x -. 当直线l 的斜率小于0时,如图所示, 同理可得直线方程为y=1)x -,故选C.[2014新课标1]〔4〕已知双曲线)0(13222>=-a y a x 的离心率为2,则=a 〔 D 〕 A. 2 B.26C. 25D. 1 [解析]2=,解得1a =,选D. [2014新课标2]10. 设F 为抛物线2:3C y x =的焦点,过F 且倾斜角为°30的直线交于C 于,A B 两点,则AB =〔 C 〕 〔A 〔B 〕6 〔C 〕12 〔D 〕[2014新课标2]12. 设点0(,1)M x ,若在圆22:1O x y +=上存在点N ,使得°45OMN ∠=,则0x 的取值X 围是〔 A 〕〔A 〕[]1,1-〔B 〕1122⎡⎤-⎢⎥⎣⎦,〔C〕⎡⎣〔D 〕22⎡-⎢⎣⎦,[2015新课标1]〔5〕已知椭圆E 的中心在坐标原点,离心率为12,E 的右焦点与抛物线C :y²=8x 的焦点重合,A ,B 是C 的准线与E 的两个焦点,则|AB|=〔B 〕 〔A 〕3 〔B 〕6 〔C 〕9 〔D 〕12[2015新课标1]16. 已知F 是双曲线C :x 2-82y=1的右焦点,P 是C 的左支上一点,A 〔0,66〕.当△APF 周长最小是,该三角形的面积为12√6[2015新课标2]15.已知双曲线过点()34,,且渐近线方程为x y 21±=,则该双曲线的标准方程x 24-y 2=1。
高考数学圆锥曲线试题汇编(21)(本小题满分12分,(Ⅰ)小问4分,(Ⅱ)小问8分)如题(21)图,倾斜角为a 的直线经过抛物线x y 82=的焦点F ,且与抛物线交于A 、B 两点。
题(21)图 (Ⅰ)求抛物线的焦点F 的坐标及准线l 的方程;(Ⅱ)若a 为锐角,作线段AB 的垂直平分线m 交x 轴于点P ,证明|FP|-|FP|cos2a 为定值,并求此定值。
重庆理(21)(本题15分)如图,直线y =kx +b 与椭圆2214x y +=交于A 、B 两点,记△AOB 的面积为S .(I)求在k =0,0<b <1的条件下,S 的最大值; (Ⅱ)当|AB |=2,S =1时,求直线AB 的方程.浙江理 (22)(本小题满分14分)设椭圆22221(0)x y a b a b+=>>的左、右焦点分别为12F F A ,,是椭圆上的一点,212AF F F ⊥,原点O 到直线1AF 的距离为113OF .(Ⅰ)证明2a b =;(Ⅱ)求(0)t b ∈,使得下述命题成立:设圆222x y t +=上任意点00()M x y ,处的切线交椭圆于1Q ,2Q 两点,则12OQ OQ ⊥.yxOAB天津理 22.(本小题满分14分)设椭圆22221(0)x y a b a b +=>>的左、右焦点分别为12F F A ,,是椭圆上的一点,212AF F F ⊥,原点O 到直线1AF 的距离为113OF .(Ⅰ)证明a =;(Ⅱ)设12Q Q ,为椭圆上的两个动点,12OQ OQ ⊥,过原点O 作直线12Q Q 的垂线OD ,垂足为D ,求点D 的轨迹方程.(21)(本小题满分12分)求F 1、F 2分别是椭圆2214x y +=的左、右焦点. (Ⅰ)若r 是第一象限内该数轴上的一点,221254PF PF +=-u u u r u u u u r ,求点P 的作标;(Ⅱ)设过定点M (0,2)的直线l 与椭圆交于同的两点A 、B ,且∠ADB 为锐角(其中O 为作标原点),求直线l 的斜率k 的取值范围.四川理20)(本小题满分12分)设1F 、2F 分别是椭圆1422=+y x 的左、右焦点. (Ⅰ)若P 是该椭圆上的一个动点,求1PF ·2PF 的最大值和最小值;(Ⅱ)设过定点)2,0(M 的直线l 与椭圆交于不同的两点A 、B ,且∠AOB 为锐角(其中O 为坐标原点),求直线l 的斜率k 的取值范围.21、已知半椭圆()222210x y x a b +=≥与半椭圆()222210y x x b c+=≤组成的曲线称为“果圆”,其中222,0,0a b c a b c =+>>>,012,,F F F 是对应的焦点。
卜人入州八九几市潮王学校圆锥曲线一、选择题1.〔2021理〕过双曲线22221(0,0)x y a b a b -=>>的右顶点A 作斜率为1-的直线,该直线与双曲线的两条渐近线的交点分别为,B C .假设12AB BC =,那么双曲线的离心率是()A.B答案:C【解析】对于(),0A a ,那么直线方程为x y a +-=,直线与两渐近线的交点为B ,C ,22,,(,)a ab a abB C a b a b a b a b ⎛⎫- ⎪++--⎝⎭,那么有22222222(,),,a b a b ab ab BC AB a b a b a b a b ⎛⎫=-=- ⎪--++⎝⎭,因222,4,AB BC a b e =∴=∴= 2.〔2021文〕椭圆22221(0)x y a b a b +=>>的左焦点为F ,右顶点为A ,点B 在椭圆上,且BF x ⊥轴,直线AB 交y 轴于点P .假设2AP PB =,那么椭圆的离心率是〔〕A.BC .13D .12答案:D【解析】对于椭圆,因为2AP PB =,那么12,2,2OA OF a c e =∴=∴=3.(2021卷理)设双曲线12222=-b y a x 的一条渐近线与抛物线y=x 2+1只有一个公一共点,那么双曲线的离心率为().A.45B.5C.25D.5【解析】:双曲线12222=-b y a x 的一条渐近线为xa b y =,由方程组21b y xa y x ⎧=⎪⎨⎪=+⎩,消去y,得210b x x a -+=有唯一解,所以△=2()40ba -=,所以2ba =,2c e a ====,应选D.答案:D.:此题考察了双曲线的渐近线的方程和离心率的概念,以及直线与抛物线的位置关系,只有一个公一共点,那么解方程组有唯一解.此题较好地考察了根本概念根本方法和根本技能.4.(2021卷文)设斜率为2的直线l 过抛物线2(0)y ax a =≠的焦点F,且和y 轴交于点A,假设△OAF(O 为坐标原点)的面积为4,那么抛物线方程为().A.24y x =±B.28y x =±C.24y x =D.28y x = 【解析】:抛物线2(0)y ax a =≠的焦点F 坐标为(,0)4a ,那么直线l 的方程为2()4ay x =-,它与y 轴的交点为A (0,)2a -,所以△OAF 的面积为1||||4242a a ⋅=,解得8a =±.所以抛物线方程为28y x =±,应选B.答案:B.:此题考察了抛物线的HY方程和焦点坐标以及直线的点斜式方程和三角形面积的计算.考察数形结合的数学思想,其中还隐含着分类讨论的思想,因参数a的符号不定而引发的抛物线开口方向的不定以及焦点位置的相应变化有两种情况,这里加绝对值号可以做到合二为一.5.〔2021〔A〕22124x y-=〔B〕22142x y-=〔C〕22146x y-=〔D〕221410x y-=[解析]由e=得222222331,1,222c b ba a a=+==,选B6.〔2021卷文〕以下曲线中离心率为的是A. B. C. D.【解析】根据双曲线22221x ya b-=的离心率cea=可判断得.cea==.选B。
高中数学圆锥曲线经典题型椭圆 一、选择题:1.已知椭圆方程22143x y +=,双曲线22221(0,0)x y a b a b-=>>的焦点是椭圆的顶点, 顶点是椭圆的焦点,则双曲线的离心率为D. 32.双曲线22221(0,0)x y a b a b-=>> 的左、右焦点分别为F 1,F 2,渐近线分别为12,l l ,点P 在第一象限内且在1l 上,若2l ⊥PF 1,2l //PF 2,则双曲线的离心率是 ( ) AB .2CD【答案】B【解析】双曲线的左焦点1(,0)F c -,右焦点2(,0)F c ,渐近线1:b l y x a =,2:bl y x a=-,因为点P 在第一象限内且在1l 上,所以设000(,),0P x y x >,因为2l ⊥PF 1,2l //PF 2,所以12PF PF ⊥,即1212OP F F c ==,即22200x y c +=,又00b y x a =,代入得22200()b x x c a+=,解得00,x a y b ==,即(,)P a b 。
所以1PF b k a c=+,2l 的斜率为b a -,因为2l ⊥PF1,所以()1b b a c a ⨯-=-+,即222()b a a c a ac c a =+=+=-,所以2220c ac a --=,所以220e e --=,解得2e =,所以双曲线的离心率2e =,所以选B.3.已知双曲线()0,012222>>=-b a by a x 的一条渐近线的斜率为2,且右焦点与抛物线x y 342=的焦点重合,则该双曲线的离心率等于A .2B .3C .2D .234.抛物线24y x =上的一点M 到焦点的距离为1,则点M 的纵坐标是 A.78B.1516C.34D.05.抛物线212y x =-的准线与双曲线22193x y -=的两渐近线围成的三角形的面积为B. 【答案】D【解析】抛物线212y x =-的准线为3x =,双曲线22193x y -=的两渐近线为y x =和y x =,令3x =,分别解得12y y =(=3,所以三角形的面积为132⨯=,选D. 6.过抛物线x y 42=的焦点作一条直线与抛物线相交于B A ,两点,它们到直线2-=x 的距离之和等于5,则这样的直线A .有且仅有一条B .有且仅有两条C .有无穷多条D .不存在7.已知双曲线22221(0,0)x y a b a b-=>>的两条渐近线均与22:650C x y x +-+=相切,则该双曲线离心率等于A .5 B .2C .32D .58.已知椭圆)0(12222>>=+b a by a x 的左、右焦点分别为)0,(),0,21c F c F -(,若椭圆上存在点P 使1221sin sin F PF c F PF a ∠=∠,则该椭圆的离心率的取值范围为( )A.(0,)12-B.(122,) C.(0,22) D.(12-,1)9.过椭圆22221x y a b +=(0a b >>)的左焦点1F 作x 轴的垂线交椭圆于点P ,2F 为右焦点,若1260F PF ∠=,则椭圆的离心率为 ( )A .2 B .12D .13二、填空题:10.若圆C 以抛物线24y x =的焦点为圆心,截此抛物线的准线所得弦长为6,则该圆的标准方程是 ;11.设F 是抛物线C 1:24y x =的焦点,点A 是抛物线与双曲线C 2:22221(0,0)x y a b a b-=>>的一条渐近线的一个公共点,且AF x ⊥轴,则双曲线的离心率为【解析】抛物线的焦点为(1,0)F .双曲线的渐近线为b y x a =±,不妨取by x a=,因为AF x ⊥,所以1A x =,所以2A y =±,不妨取(1,2)A ,又因为点(1,2)A 也在b y x a =上,所以2ba=,即2b a =,所以22224b a c a ==-,即225c a =,所以25e =,即e =。
高二数学专题学案圆锥曲线部分高考试题汇编(椭圆部分)1、(2016全国I卷)(20)(本小题满分12分)设圆x2 + y2 + 2x—15 = 0的圆心为4直线l过点B (1,0)且与x轴不重合,l交圆A于C, D两点,过B作AC的平行线交AD于点E.(I)证明|EA| + |EB|为定值,并写出点E的轨迹方程;(II)设点E的轨迹为曲线C1,直线l交C1于M,N两点,过B且与l垂直的直线与圆A交于PQ两点,求四边形MPNQ面积的取值范围.x2 y22、(2015全国I卷)(14)一个圆经过椭圆7十一二1的三个顶点,且圆心在乂轴上,则该圆的标准方程16 4为。
3、(2014全国I卷)20.(本小题满分12分)已知点A(0,-2),椭圆E:上+ y2= 1(a > b > 0)的离心率为3,,F是椭圆a2 b2 2的焦点,直线AF的斜率为233,O为坐标原点.(I)求E的方程;(II)设过点A的直线l与E相交于P, Q两点,当A OPQ的面积最大时,求l的方程.4、(2016山东卷)(21)(本小题满分14分)平面直角坐标系g中,椭圆C::喙=1(a>b>°)的离心率是浮,抛物线E3x=2'的焦点F是C的一个顶点.(I)求椭圆C的方程;(II)设P是E上的动点,且位于第一象限,E在点P处的切线l与C交与不同的两点A,B,线段AB的中点为D,直线OD与过P且垂直于x轴的直线交于点M.(i)求证:点M在定直线上;(ii)直线l与y轴交于点6,记^PFG的面积为S j ^PDM的面积为S2,求S-的最大值及取得最大值2时点P的坐标.八- x 2 Y 2 一,,〜5、(2015山东卷)(20)(本小题满分13分)平面直角坐标系xOy中,已知椭圆C :— + ) =1(a > b > 0)a 2 b2的离心率为*,左、右焦点分别是F , F ,以F 为圆心,以3为半径的圆与以F 为圆心,以1为半径的 2 1212圆相交,交点在椭圆C 上. (I )求椭圆C 的方程;x 2 y 2(H )设椭圆E :江+而二1,P 为椭圆C 上的任意一点,过点P的直线厂"m 交椭圆E 于A,B 两点,射线PO 交椭圆E 于点Q.圆锥曲线部分高考试题汇编(双曲线部分)1、(2016全国I 卷)(5)已知方禾m 2+n--就工=1表示双曲线,且该双曲线两焦点间的距离为4,则n的i )求|OQ | | OP |的值;(ii )求A ABQ 面积最大值.取值范围是(2、(2015全国I 卷)(5)已知M (x 0 丫0)是双曲线C : --W= 1上的一点,F 1、F 2是C 上的两个焦点,若西 • MF 2 <0,则y 0的取值范围是(2J3(D )(一二33、(2014全国I 卷)4.已知F 是双曲线C : x 2 - my 2 = 3m (m > 0)的一个焦点,则点F 到C 的一条渐近线的距离为( ) A . <3B .3C . <3mD . 3mx 2 y 24、(2016山东卷)(13)已知双曲线E_,: ---= 1 (a >0, b >0),若矩形ABCD 的四个顶点在E 上, 1a 2b 2AB , CD 的中点为E 的两个焦点,且21AB |=3|BC |,则E 的离心率是.x 2 y 25、(2015山东卷)(15)平面直角坐标系xOy 中,双曲线C : 一--—= 1(a > 0,b > 0)的渐近线与抛物线1a 2 b2C : x 2 = 2py (p > 0)交于点O , A , B ,若A OAB 的垂心为C 的焦点,则C 的离心率为. 2 21x 2 y 2 x 2 y 26、(2014山东卷)(10)已知a > b ,椭圆C 的方程为—+ -- = 1 ,双曲线C 的方程为——^- = 1, C1 a2 b 2 2 a 2 b 2 1与C 的离心率之积为二,则C 的渐近线方程为()222(A ) x 土 <2y = 0 (B ) J2x 土 y = 0 (C ) x 土2y = 0 (D ) 2x 土 y = 0圆锥曲线部分高考试题汇编(抛物线部分)(A )(-1,3)(B )(-1八”)(C )(0,3)(D )(0,\与)2<2 (C )(-—— 32<31、(2016全国I卷)(10)以抛物线C的顶点为圆心的圆交C于A, B两点,交C的准线于D, E两点.已知| AB | = 4";2 , | DEI= 2d5,则C的焦点到准线的距离为()(A)2 (B)4 (C)6 (D)82、(2015全国I卷)(20)(本小题满分12分)x2在直角坐标系xoy中,曲线C:y =—与直线y = kx + a(a >0)交与M,N两点,(I)当k=0时,分别求C在点M和N处的切线方程;(II)y轴上是否存在点R使得当k变动时,总有N OPM =Z OPN ?说明理由。
(完整版)圆锥曲线⾼考真题(1)求M 的⽅程(2)C ,D 为M 上的两点,若四边形ACBD 的对⾓线CD ⊥AB ,求四边形ACBD 的⾯积最⼤值.2.设1F ,2F 分别是椭圆()222210y x a b a b+=>>的左右焦点,M 是C 上⼀点且2MF 与x 轴垂直,直线1MF 与C 的另⼀个交点为N.(1)若直线MN 的斜率为34,求C 的离⼼率;(2)若直线MN 在y 轴上的截距为2,且15MN F N =,求a,b .3.已知椭圆C :,直线不过原点O 且不平⾏于坐标轴,l 与C 有两个交点A ,B ,线段AB 的中点为M .(1) 证明:直线OM 的斜率与的斜率的乘积为定值;(2)若过点(),延长线段OM 与C 交于点P ,四边形OAPB 能否平⾏四边⾏?若能,求此时的斜率,若不能,说明理由.4.已知抛物线C :22y x = 的焦点为F ,平⾏于x 轴的两条直线12,l l 分别交C 于A ,B 两点,交C 的准线于P ,Q 两点.(1)若F 在线段AB 上,R 是PQ 的中点,证明AR ∥FQ ;(2)若△PQF 的⾯积是△ABF 的⾯积的两倍,求AB 中点的轨迹⽅程.5.已知抛物线C :y 2=2x ,过点(2,0)的直线l 交C 与A ,B 两点,圆M 是以线段AB 为直径的圆.(1)证明:坐标原点O 在圆M 上;(2)设圆M 过点P (4,-2),求直线l 与圆M 的⽅程.6.已知斜率为k 的直线l 与椭圆22143x y C +=:交于A ,B 两点,线段AB 的中点为()()10M m m >,.(1)证明:12k <-;(2)设F 为C 的右焦点,P 为C 上⼀点,且FP FA FB ++=0u u u r u u u r u u u r .证明:FA u u u r,FP u u u r ,FB u u u r 成等差数列,并求该数列的公差.7.已知椭圆2222:1(0)x y C a b a b +=>>的离⼼率为,且经过点(0,1),圆22221:C x y a b +=+。
高考数学《圆锥曲线》试题汇编1.(湖北文)(19)(本小题共14分)已知椭圆2222:1(0)x y G a b a b+=>>的离心率为63,右焦点为(22,0)。
斜率为1的直线l 与椭圆G交于,A B 两点,以AB 为底边作等腰三角形,顶点为(3,2)P -。
(Ⅰ)求椭圆G 的方程;(Ⅱ)求PAB 的面积。
2.福建文11.设圆锥曲线I 的两个焦点分别为F 1,F 2,若曲线I 上存在点P 满足1PF :12F F :2PF =4:3:2,则曲线I 的离心率等于A.1322或 B.223或 C.122或 D.2332或 3.福建文18.(本小题满分12分)如图,直线l :y=x+b 与抛物线C :x2=4y 相切于点A 。
(1) 求实数b 的值;(11)求以点A 为圆心,且与抛物线C 的准线相切的圆的方程.4.上海文22.(本题满分16分,第1小题4分,第2小题6分,第3小题6分)已知椭圆222:1x C y m+=(常数1m >),P 是曲线C 上的动点,M 是曲线C 上的右顶点,定点A 的坐标为(2,0)(1)若M 与A 重合,求曲线C 的焦点坐标; (2)若3m =,求PA 的最大值与最小值;(3)若PA 的最小值为MA ,求实数m 的取值范围. 5.天津文(18) 设椭圆)0(12222>>=+b a by ax 的左右焦点分别为21,F F ,点),(b a P 满足212F F PF =。
(1)求椭圆的离心率e ;(2)设直线2PF 与椭圆相交于B A ,两点。
若直线2PF 与圆16)3()1(22=-++y x 相交于N M ,两点,且AB MN 85=,求椭圆的方程。
6.全国新课标文(20)(本小题满分12分)在平面直角坐标系xOy 中,曲线261y x x =-+与坐标轴的交点都在圆C 上(Ⅰ)求圆C 的方程;(Ⅱ)若圆C 与直线0x y a -+=交与A ,B 两点,且OA OB ⊥,求a 的值。
圆锥曲线高考真题训练题--解答题(文科)一、选择题(共12小题;共60分)1. 设椭圆的左、右焦点分别为,,是上的点,,,则的离心率为2. 已知抛物线的焦点为,是上一点,,则A. B. C. D.3. 已知是双曲线:的右焦点,是上一点,且与轴垂直,点的坐标是.则的面积为4. 已知为坐标原点,是椭圆的左焦点,,分别为的左、右顶点,为上一点,且轴.过点的直线与线段交于点,与轴交于点.若直线经过的中点,则的离心率为5. 设,是椭圆长轴的两个端点,若上存在点满足,则的取值范围是A. B.C. D.6. 设点,若在圆上存在点,使得,则的取值范围是B. D.7. 已知椭圆的左、右顶点分别为,,且以线段为直径的圆与直线相切,则的离心率为8. 直线经过椭圆的一个顶点和一个焦点,若椭圆中心到的距离为其短轴长的心率为9. 已知,,椭圆的方程为,双曲线的方程为,与的离心率之积为,则的渐近线方程为A. B. C. D.10. 已知椭圆:的左、右顶点分别为,,且以线段为直径的圆与直线相切,则的离心率为A. B. C.11. 已知椭圆与双曲线的焦点重合,,分别为,的离心率,则A. 且B. 且C. 且D. 且12. 已知直线过点,当直线与圆有两个交点时,其斜率的取值范围是A.二、填空题(共14小题;共70分)13. 设直线与圆:相交于,两点,若,则圆的面积为.14. 已知是双曲线的右焦点,是左支上一点,,当周长最小时,该三角形的面积为.15. 设是双曲线的两个焦点,是上一点,若,且的最小内角为,则的离心率为.16. 已知点和的横坐标相同,的纵坐标是的纵坐标的倍,和的轨迹分别为双曲线和.若的渐近线方程为,则的渐近线方程为.17. 如图,在平面直角坐标系中,是椭圆的右焦点,直线与椭圆交于,两点,且,则该椭圆的离心率是.18. 椭圆的左、右顶点分别是,左、右焦点分别是.若成等比数列,则此椭圆的离心率为.19. 若抛物线的焦点与椭圆的右焦点重合,则该抛物线的准线方程为.20. 一个圆经过椭圆的三个顶点,且圆心在轴的正半轴上,则该圆的标准方程为.21. 已知、是椭圆的左右焦点,为椭圆上一点,且.若的面积为,则.22. 已知椭圆的左、右焦点分别为,,若椭圆上存在点使,则该椭圆的离心率的取值范围为.23. 在平面直角坐标系中,分别为椭圆的左、右、上、下顶点,为其右焦点,直线与直线相交于点,线段与椭圆的交点恰为线段的中点,则该椭圆的离心率为.24. 若椭圆的焦点在轴上,过点作圆的切线,切点分别为,,直线恰好经过椭圆的右焦点和上顶点,则椭圆方程是.25. 已知椭圆的左焦点为,与过原点的直线相交于两点,连接,若,则椭圆的离心率.26. 在平面直角坐标系中,为双曲线右支上的一个动点,若点到直线的距离大于恒成立,则实数的最大值为.三、解答题(共12小题;共156分)27. 已知抛物线的焦点为,平行于轴的两条直线,分别交于,两点,交的准线于,两点.(1)若在线段上,是的中点,证明;(2)若的面积是的面积的两倍,求中点的轨迹方程.28. 设、分别是椭圆的左、右焦点,是上一点且与轴垂直,直线与的另一个交点为.(1)若直线的斜率为的离心率;(2)若直线在轴上的截距为,且,求,.29. 在直角坐标系中,曲线与轴交于,两点,点的坐标为,当变化时,解答下列问题:(1)能否出现的情况?说明理由;(2)证明过,,三点的圆在轴上截得的弦长为定值.30. 在平面直角坐标系中,已知圆在轴上截得线段长为,在轴上截得线段长为.(1)求圆心的轨迹方程;(2)若点到直线的距离为的方程.31. 设,为曲线:上两点,与的横坐标之和为.(1)求直线的斜率;(2)设为曲线上一点,在处的切线与直线平行,且,求直线的方程.32. 已知点,圆,过点的动直线与圆交于两点,线段的中点为,为坐标原点.(1)求的轨迹方程;(2)当时,求的方程及的面积.33. 已知过点且斜率为的直线与圆交于,两点.(1)求的取值范围;(2)若,其中为坐标原点,求.34. 在直角坐标系中,直线:交轴于点,交抛物线:于点,关于点的对称点为,连接并延长交于点.(1)求;(2)除以外,直线与抛物线是否有其它公共点?说明理由.35. 已知点是椭圆的左顶点,斜率为的直线交椭圆于,两点,点在上,.(1)当时,求三角形的面积;(2)当时,证明:.36. 已知圆,圆,动圆与圆外切并与圆内切,圆心的轨迹为曲线.(1)求的方程;(2)是与圆,圆都相切的一条直线,与曲线交于,两点,当圆的半径最长时,求.37. 设为坐标原点,动点在椭圆上,过作轴的垂线,垂足为,点满足.(1)求点的轨迹方程;(2)设点在直线上,且.证明:过点且垂直于的直线过的左焦点.38. 已知椭圆的离心率为,,,,的面积为.(1)求椭圆的方程;(2)设是椭圆上的一点,直线与轴交于点,直线与轴交于点,求证:为定值.答案第一部分1. D2. C3. D4. A 【解析】,,,,中点,,.5. A【解析】假设椭圆的焦点在轴上,则时,当位于短轴的端点时,取最大值,要使椭圆上存在点满足,则,,,解得:.当椭圆的焦点在轴上时,,当位于短轴的端点时,取最大值,要使椭圆上存在点满足,则,,,解得:,所以的取值范围是.6. A 【解析】点在直线上,过作圆的两条切线,记该点对圆的张角为,则圆上存在点使得.由此知只需在直线上寻找对圆的张角等于的两点,,则线段上的点的横坐标范围即为所求.事实上,张角等于时,点与圆心及切点构成的四边形为正方形,易知.7. A 【解析】以线段为直径的圆与直线相切,所以原点到直线的距离,化为:.所以椭圆的离心率.8. B 【解析】由题可设椭圆方程为,直线的方程为,整理为,椭圆中心到直线的距离,所以,,所以.9. C10. A【解析】以线段为直径的圆与直线相切,所以原点到直线的距离,化为:.所以椭圆的离心率.11. A 【解析】由题意知,即,,代入,得,.12. C 【解析】设的直线方程为,将直线方程与圆方程联立消得,直线与圆有两个交点,即,所以的取值范围为.第二部分13.【解析】将圆方程化简为标准方程为,即圆心,半径,圆心到直线的距离为,所以,解得,,所以圆面积.14.【解析】由已知得,,,所以,设双曲线的左焦点为,则的周长为(当点、、共线时取等号),直线方程为,代入得,解得或(舍去),所以,直线,可得点到直线的距离为,所以.15.【解析】设为右支上的点,根据双曲线定义可知,又,所以,而,所以,由余弦定理,解得.16.17.【解析】由题意,得.直线的方程与椭圆方程联立,解得,,则.由,得,即,再结合可得,则.19.20.【解析】由题意,圆经过椭圆的三点为,,,故设圆心为.从而有,解得,半径为.故圆的标准方程为.21.【解析】设,则.根据题意,得于是解得,.【解析】根据题意知,,,,,直线的方程为①,直线的方程为②.由①②可得,所以.又因为在椭圆上,所以,即,所以,又因为,所以.【解析】当斜率存在时,设过点的直线方程为,根据直线与圆相切,圆心到直线的距离等于半径,可以得到,直线与圆方程联立,可以得到切点的坐标.当斜率不存在时,直线方程为,则得.根据,,可得直线的方程为,与轴的交点,即为上顶点坐标.与轴的交点,即为焦点坐标,,故椭圆方程为.【解析】双曲线的渐近线方程为,其与直线质知,右支上任意一点到直线的距离都大于.第三部分27. (1)连接,.由,及,得,所以,因为是中点,所以.所以,所以,.又,所以,所以(等角的余角相等),所以.(2)设,.,准线为,,设直线与轴焦点为,,因为,所以,所以,即.设中点为,由得,又,,即.所以中点轨迹方程为.28. (1)设为第一象限内的点.根据及题设知将代入,解得故的离心率为.(2)由题意,原点为的中点,轴,所以直线与轴的交点是线段的中点,故即由得设,由题意知,则即代入的方程,得将及代入得解得故29. (1)曲线与轴交于,两点,可设,,则,是方程的两根,有,由韦达定理可得,若,则,,即为这与矛盾,故不出现的情况.(2)设过,,三点的圆的方程为,由题意可得时,与等价.可得,,圆的方程即为,由圆过,可得,可得,则圆的方程即为,再令,可得,解得.即有圆与轴的交点为,,则过,,三点的圆在轴上截得的弦长为,所以过,,三点的圆在轴上截得的弦长为定值.30. (1)设,圆的半径为.由题设从而故点的轨迹方程为(2)设,由已知得又点在双曲线上,从而得由得此时,圆的半径由得此时,圆的半径故圆的方程为31. (1)设,为曲线:上两点,则直线的斜率为;(2)设直线的方程为,代入曲线:,可得,即有,,,再由的导数为,设,可得处切线的斜率为,由在处的切线与直线平行,可得,解得,即,由可得,,即为,化为,即为,解得,满足,则直线的方程为.32. (1)圆的标准方程设,圆心,则由题设知故即由于点在圆内部,所以的轨迹方程为(2)由(1)可知的轨迹是以点为圆心,为半径的圆.由于,故在线段的垂直平分线上.又在圆上,从而.因为的斜率为,所以的斜率为故的方程为.又,到,所以的面积为.33. (1)由题设,可知直线的方程为.因为直线与圆交于两点,所以,解得.所以的取值范围为.(2)设,.将代入方程,整理得.所以,..由题设可得,解得,所以的方程是.故圆心在上,所以.34. (1)设点为,点为,点为.由题意,因为点在抛物线上,所以,所以.因为点是点关于点的对称点,且点为,所以得即点.所以直线的方程为:.因为点为直线与的交点,所以联立解得:(舍)或,所以,所以点的坐标为,.(2)由(1)可知,点,,所以直线的方程为:,联立消去得,,即.所以此方程组有两组相同的解,即直线与抛物线仅有一个交点.35. (1)由题意知,因为,且,所以为等腰直角三角形,所以,设点,由题意得,把代入椭圆方程得:解得:(舍),,所以.(2)设;;得.设,,所以,,,所以;同理;由,得;整理得:,得;即;设,,所以在递增;,,根据零点存在定理可知:.36. (1)因为圆与圆外切并且与圆内切,所以由椭圆的定义可知,曲线是以,为左,右焦点,长半轴长为,短半轴长为的椭圆(左顶点除外),其方程为(2)对于曲线上任意一点,由于所以,当且仅当圆的圆心为时,,所以当圆的半径最长时,其方程为若的倾斜角为,则与轴重合,可得若的倾斜角不为,由知不平行于轴,设与轴的交点为,则可求得,所以可设.由与圆相切得解得当时,将代入并整理得解得所以当时,由图形的对称性可知.综上,37. (1)设,由题意可得,设,由点满足,可得,可得,,即有,,,可得,即有点的轨迹方程为圆.(2)设,,,可得,即为,解得,即有,的左焦点为,由,,由,可得过点且垂直于的直线过的左焦点.38. (1)由题意,得,.又因为,解得,,.故方程为.(2)由题意得不在顶点处,设,,即.又因为,,则直线,令,得.直线,令,得,,。
直线AE 旳方程为11(1)(2)y y x -=--.令3x =,得1(3,2)M y -. 因此直线BM 旳斜率112131BM y y k -+==-.17.(安徽文)设椭圆E 旳方程为22221(0),x y a b a b+=>>点O 为坐标原点,点A 旳坐标为(,0)a ,点B 旳坐标为(0,b ),点M 在线段AB 上,满足2,BM MA =直线OM 旳斜率为510。
(1)求E 旳离心率e;(2)设点C 旳坐标为(0,-b ),N 为线段AC 旳中点,证明:MN ⊥AB 。
∴a b 3231=5525451511052222222=⇒=⇒=-⇒=⇒e a c a c a a b (Ⅱ)由题意可知N 点旳坐标为(2,2b a -)∴a b a ba a bb K MN 56652322131==-+= abK AB-=∴1522-=-=⋅a b K K AB MN ∴MN ⊥AB18.(福建文)已知椭圆2222:1(0)x y E a b a b+=>>旳右焦点为F .短轴旳一种端点为M ,直线:340l x y -=交椭圆E 于,A B 两点.若4AF BF +=,点M 到直线l 旳距离不不不小于45,则椭圆E 旳离心率旳取值范围是( A ) A . 3(0,]2 B .3(0,]4 C .3[,1)2 D .3[,1)4119.(新课标2文)已知双曲线过点()4,3,且渐近线方程为12y x =±,则该双曲线旳原则方程为 .2214x y -= 20.(陕西文)已知抛物线22(0)y px p =>旳准线通过点(1,1)-,则抛物线焦点坐标为( B ) A .(1,0)- B .(1,0) C .(0,1)- D .(0,1) 【解析】试题分析:由抛物线22(0)y px p =>得准线2px =-,由于准线通过点(1,1)-,因此2p =, 因此抛物线焦点坐标为(1,0),故答案选B 考点:抛物线方程.21.(陕西文科)如图,椭圆2222:1(0)x y E a b a b+=>>通过点(0,1)A -,且离心率为22.(I)求椭圆E 旳方程;2212x y += 22.(天津文)已知双曲线22221(0,0)x y a b ab 旳一种焦点为(2,0)F ,且双曲线旳渐近线与圆222y 3x 相切,则双曲线旳方程为( D )(A)221913x y (B) 221139x y (C)2213x y(D) 2213y x23.(广东文)已知中心在原点旳椭圆C 旳右焦点为(1,0)F ,离心率等于21,则C 旳方程是( D )30旳等腰三角形,则122文) 设椭圆221y b 0,0a b 旳一条渐近线平行于直线210x ,双曲线旳上,则双曲线旳方程为( A )2120y (B )221205x y (C )2331100y D )223310025x y 1) 已知双曲线C :221x y (0,0a b >>)旳离心率为52,则C 14x B .13y =±12x ± D .y x[9,)+∞ [9,)+∞ [4,)+∞[4,)+∞【解析】当0m <上存在点M 满足120,则603ab=即33m≥,得01m <≤;当3m >,焦点在y 轴上,要使C 上存在点M 满足120AMB ∠=,则tan 603a b ≥=,即33m ≥,得9m ≥,故m 旳取值范围为(0,1][9,)⋃+∞,选A. 41、(·全国Ⅱ文,5)若a >1,则双曲线x 2a 2-y 2=1旳离心率旳取值范围是( )A .(2,+∞)B .(2,2)C .(1,2)D .(1,2)3.【答案】C 【解析】由题意得双曲线旳离心率e =a 2+1a .∴e 2=a 2+1a 2=1+1a 2.∵a >1,∴0<1a 2<1,∴1<1+1a2<2,∴1<e < 2.故选C.42.(·全国Ⅱ文,12)过抛物线C :y 2=4x 旳焦点F ,且斜率为3旳直线交C 于点M (M 在x 轴上方),l 为C 旳准线,点N 在l 上且MN ⊥l ,则M 到直线NF 旳距离为( )A. 5 B .2 2 C .2 3 D .3 34.【答案】C 【解析】抛物线y 2=4x 旳焦点为F (1,0),准线方程为x =-1.由直线方程旳点斜式可得直线MF旳方程为y =3(x -1).联立得方程组⎩⎨⎧y =3(x -1),y 2=4x ,解得⎩⎨⎧x =13,y =-233或⎩⎨⎧x =3,y =2 3.∵点M 在x 轴旳上方,∴M (3,23).∵MN ⊥l ,∴N (-1,23).∴|NF |=(1+1)2+(0-23)2=4, |MF |=|MN |=3-(-1)=4.∴△MNF 是边长为4旳等边三角形.∴点M 到直线NF 旳距离为2 3. 故选C.43.(·全国Ⅲ文,11)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)旳左、右顶点分别为A 1,A 2,且以线段A 1A 2为直径旳圆与直线bx -ay +2ab =0相切,则椭圆C 旳离心率为( ) A .63 B .33 C .23 D .135.【答案】A 【解析】由题意知以A 1A 2为直径旳圆旳圆心坐标为(0,0),半径为a . 又直线bx -ay +2ab =0与圆相切,∴圆心到直线旳距离d =2aba 2+b 2=a ,解得a =3b , ∴b a =13,∴e =c a =a 2-b 2a = 1-⎝⎛⎭⎫b a 2=1-⎝⎛⎭⎫132=63.44.(·天津文,5)已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)旳右焦点为F ,点A 在双曲线旳渐近线上,△OAF 是边长为2旳等边三角形(O 为原点),则双曲线旳方程为( ) A .x 24-y 212=1B .x 212-y 24=1C .x 23-y 2=1D .x 2-y 23=16.【答案】D 【解析】根据题意画出草图如图所示⎝⎛⎭⎫不妨设点A 在渐近线y =ba x 上.由△AOF 是边长为2旳等边三角形得到∠AOF =60°,c =|OF |=2.又点A 在双曲线旳渐近线y =b a x 上,∴ba =tan 60°= 3.又a 2+b 2=4,∴a =1,b =3,∴双曲线旳方程为x 2-y 23=1.故选D. 45.(·全国Ⅲ文,14)双曲线x 2a 2-y 29=1(a >0)旳一条渐近线方程为y =35x ,则a =________.1.【答案】5【解析】∵双曲线旳原则方程为x 2a 2-y 29=1(a >0),∴双曲线旳渐近线方程为y =±3a x .又双曲线旳一条渐近线方程为y =35x ,∴a =5.46、(·北京文,10)若双曲线x 2-y 2m=1旳离心率为3,则实数m =________. 【答案】2【解析】由双曲线旳原则方程知a =1,b 2=m ,c =1+m ,故双曲线旳离心率e =ca =1+m =3,∴1+m =3,∴m =2.47、(·全国Ⅱ理,16)已知F 是抛物线C :y 2=8x 旳焦点,M 是C 上一点,FM 旳延长线交y 轴于点N .若M 为FN 旳中点,则|FN |=________.【解析】如图,不妨设点M 位于第一象限内,抛物线C 旳准线交x 轴于点A ,过点M 作准线旳垂线,垂足为点B ,交y 轴于点P ,∴PM ∥OF .由题意知,F (2,0),|FO |=|AO |=2.∵点M 为FN 旳中点,PM ∥OF ,∴|MP |=12|FO |=1.1212121111442222BMy y K x x x x ----==---- (1x +=()12200x x ++= 又设AB :y=x +m 代入2x +20=0∴m=7故AB :x +y=7新课标Ⅱ文)设O 为坐标原点,动点M 在椭圆C :x 22+。
高三数学文科圆锥曲线大题训练(含详细解答)1.已知椭圆22:416C x y +=. (1)求椭圆C 的离心率;(2)设椭圆C 与y 轴下半轴的交点为B ,如果直线()10y kx k =+≠交椭圆C 于不同的两点,E F ,且,,B E F 构成以EF 为底边,B 为顶点的等腰三角形,判断直线EF 与圆2212x y +=的位置关系.2.已知椭圆的中心在坐标原点O,长轴长为离心率2e =,过右焦点F 的直线l 交椭圆于P ,Q 两点.(1)求椭圆的方程;(2)当直线l 的斜率为1时,求POQ ∆的面积;(3)若以,OP OQ 为邻边的平行四边形是矩形,求满足该条件的直线l 的方程.3.在平面直角坐标系xOy 中,椭圆C :22221(0)x y a b a b +=>>的一个顶点为(2,0)A -(1)求椭圆C 的标准方程;(2)直线l 过点A ,过O 作l 的平行线交椭圆C 于P ,Q 两点,如果以PQ 为直径的圆与直线l 相切,求l 的方程.4.已知离心率为2的椭圆2222:1(0)x y C a b a b +=>>与直线2x =相交于,P Q 两点(点P 在x 轴上方),且2PQ =.点,A B 是椭圆上位于直线PQ 两侧的两个动点,且APQ BPQ ∠=∠. (1)求椭圆C 的标准方程;(2)求四边形APBQ 面积的取值范围.5.已知椭圆的一个顶点为)1,0(-A ,焦点在x 轴上,若右焦点到直线022=+-y x 的距离为3. (1)求椭圆的标准方程;(2)设直线()0y kx m k =+≠与椭圆相交于不同的两点M 、N ,当AM AN =时,求m 的取值范围.6.已知椭圆1C 的中心在坐标原点,两焦点分别为双曲线222:12x C y -=的顶点,直线0=x 与椭圆1C 交于A ,B 两点,且点A的坐标为(1),点P 是椭圆1C 上异于点A ,B 的任意一点,点Q 满足0AQ AP ⋅=,0BQ BP ⋅=,且A ,B ,Q 三点不共线.(1)求椭圆1C 的方程; (2)求点Q 的轨迹方程;(3)求ABQ ∆面积的最大值及此时点Q 的坐标.7.如图,B A ,分别是椭圆C :)0(12222>>=+b a by a x 的左右顶点,F 为其右焦点,2是AF 与FB 的等差中项,3是AF 与FB 的等比中项. (1)求椭圆C 的方程;(2)已知点P 是椭圆C 上异于B A ,的动点,直线l 过点A 且垂直于x 轴,若过F 作直线FQ 垂直于AP ,并交直线l 于点Q .证明:B P Q ,,三点共线.8.已知椭圆()2222:10x y C a b a b +=>>()0,1.圆22221:C x y a b +=+.(1)求椭圆C 的方程;(2)若直线l ():0y kx m k =+≠与椭圆C 有且只有一个公共点M ,且l 与圆1C 相交于,A B 两点,问AM BM +=0是否成立?请说明理由.9.已知抛物线C :22(0)y px p =>的焦点为F ,若过点F 且斜率为1的直线与抛物线相交于,M N 两点,且8MN =.(1)求抛物线C 的方程;(2)设直线l 为抛物线C 的切线,且l ∥MN ,P 为l 上一点,求PM PN ⋅的最小值.10.已知动圆C 过定点)(2,0M ,且在x 轴上截得弦长为4.设该动圆圆心的轨迹为曲线C . (1)求曲线C 方程;(2)点A 为直线l :20x y --=上任意一点,过A 作曲线C 的切线,切点分别为P 、 Q ,APQ ∆面积的最小值及此时点A 的坐标.11.已知点)1,2(A 在抛物线:E 2x ay =上,直线1:l 1y kx =+(R k ∈,且0k ≠)与抛物线E 相交于C B ,两点,直线AC AB ,分别交直线2:l 1y =-于点S ,T .(1)求a 的值;(2)若S T =1l 的方程;(3)试判断以线段ST 为直径的圆是否恒过两个定点?若是,求这两个定点的坐标;若不是,说明理由.12.在平面直角坐标系xOy 中,已知椭圆C 的中心在原点O ,焦点在x 轴上,短轴长为2(1)求椭圆C 的方程;(2)B A ,为椭圆C 上满足AOB ∆E 为线段AB 的中点,射线OE 交椭圆C 于点P ,设OP tOE =,求实数t 的值.13.已知点()2,1P 在抛物线()21:20C x py p =>上,直线l 过点()0,2Q 且与抛物线1C 交于A 、B 两点。
2014年高考文科数学圆锥曲线试题汇编一、选择题1.(2014全国大纲卷)已知椭圆C :22221(0)x y a b a b +=>>的左右焦点为F 1,F 2离心率为3,过F 2的直线l 交C 与A 、B 两点,若△AF 1B 的周长为C 的方程为( ) A.22132x y += B. 2213x y += C. 221128x y += D. 221124x y += 2.(2014全国新课标2)设F 为抛物线2:+3C y x 的焦点,过F 且倾斜角为30︒的直线交C 于A ,B 两点,则 AB =(A )3(B )6 (C )12 (D )3.(2014全国新课标1)已知双曲线)0(13222>=-a y a x 的离心率为2,则=a A. 2 B.26 C. 25D. 1 4.(2013全国大纲卷)已知()()1221,0,1,0,F F C F x -是椭圆的两个焦点过且垂直于轴的直线交于A B 、两点,且3AB =,则C 的方程为(A )2212x y += (B )22132x y += (C )22143x y += (D )22154x y +=5.(2013全国新课标1)已知双曲线2222:1x y C a b-=(0,0)a b >>的离心率为2,则C的渐近线方程为( )(A )14y x =±(B )13y x =±(C )12y x =±(D )y x =±6.(2013全国新课标2)设椭圆C :2222=1x y a b+(a >b >0)的左、右焦点分别为F 1,F 2,P是C 上的点,PF 2⊥F 1F 2,∠PF 1F 2=30°,则C 的离心率为( ).A.6 B .13 C .12 D.37.(2012全国大纲卷)椭圆的中心在原点,焦距为4,一条准线为4x =-,则该椭圆的方程为A .2211612x y += B .221128x y += C .22184x y += D .221124x y +=8.(2012全国新课标卷)设F 1、F 2是椭圆E :x 2a 2+y 2b2=1(a >b >0)的左、右焦点,P 为直线x =3a2上一点,△F 1PF 2是底角为30°的等腰三角形,则E 的离心率为( ) (A )12 (B )23 (C )34 (D )459.(2014广东卷)若实数k 满足05k <<,则曲线221165x y k -=-与曲线221165x k y --=的A.实半轴长相等B.虚半轴长相等C.离心率相等D.焦距相等10.(2014重庆卷)设21F F ,分别为双曲线)0,0(12222>>=-b a b y a x 的左、右焦点, 双曲线上存在一点P 使得,3|)||(|2221ab b PF PF -=+则该双曲线的离心率为( ) A.2 B.15 C.4 D.1711.(2014浙江卷)已知圆02222=+-++a y x y x 截直线02=++y x 所得弦的长度为4,则实数a 的值为( )A.2-B. 4-C. 6-D.8-12.(2014天津卷)已知双曲线22221x y a b 0,0a b 的一条渐近线平行于直线l :210y x ,双曲线的一个焦点在直线l 上,则双曲线的方程为( )(A )221520x y (B )221205x y(C )2233125100x y (D )2233110025x y13.(2014四川卷)已知F 为抛物线2y x =的焦点,点A ,B 在该抛物线上且位于x 轴的两侧,2OA OB ⋅=(其中O 为坐标原点),则ABO ∆与AFO ∆面积之和的最小值是( )A 、2B 、3C 、8D 14.(2014辽林卷)已知点(2,3)A -在抛物线C :22y px =的准线上,记C 的焦点为F ,则直线AF 的斜率为( ) A .43-B .1-C .34-D .12- 15.(2014江西卷)过双曲线12222=-by a x C :的右定点作x 轴的垂线与C 的一条渐近线相交于A .若以C 的右焦点为圆心、半径为4的圆经过为坐标原点),两点(、O O A ,则双曲线C 的方程为( )112422=-y x B.19722=-y x C.18822=-y x D.141222=-y x 14.(2014上海卷) 若抛物线y 2=2px的焦点与椭圆15922=+y x 的右焦点重合,则该抛物线的准线方程为___________.15.(2014福建卷)已知直线l 过圆()2234x y +-=的圆心,且与直线10x y ++=垂直,则l 的方程是 ( ).20.20.30.30A x y B x y C x y D x y +-=-+=+-=-+=16.(2014安徽卷)抛物线241x y =的准线方程是( ) A. 1-=y B. 2-=y C. 1-=x D. 2-=x17.(2014陕西卷)抛物线24y x =的准线方程为________.18.(2014山东卷)已知双曲线22221(0,0)x y a b a b-=>>的焦距为2c ,右顶点为A ,抛物线22(0)x py p =>的焦点为F ,若双曲线截抛物线的准线所得线段长为2c ,且||FA c =,则双曲线的渐近线方程为 。
二、解答题1. (2014全国大纲卷)已知抛物线C:22(0)y px p =>的焦点为F ,直线y=4与y 轴的交点为P ,与C 的交点为Q ,且54QF PQ =. (1)求抛物线C 的方程;(2)过F 的直线l 与C 相交于A,B 两点,若AB 的垂直平分线l '与C 相交于M,N 两点,且A,M,B,N 四点在同一个圆上,求直线l 的方程.2.(2014全国新课标2)设12,F F 分别是椭圆C:22221(0)x y a b a b+=>>的左右焦点,M 是C 上一点且2MF 与x 轴垂直,直线1MF 与C 的另一个交点为N .(1)若直线MN 的斜率为34,求C 的离心率; (2)若直线MN 在y 轴上的截距为2,且1||5||MNF N =,求,a b .3.(2014全国新课标1)已知点)2,2(P ,圆C :0822=-+y y x ,过点P 的动直线l 与圆C 交于B A ,两点,线段AB 的中点为M ,O 为坐标原点.(I )求M 的轨迹方程;(II )当OM OP =时,求l 的方程及POM ∆的面积 4.(2013全国大纲卷)已知双曲线()221222:10,0x y C a b F F a b-=>>的左、右焦点分别为,,离心率为3,直线2y C =与(I )求,;a b ;(II )2F l C A B 设过的直线与的左、右两支分别相交于、两点,且11,AF BF -证明:22.AF AB BF 、、成等比数列5.(2013全国新课标1)已知圆22:(1)1M x y ++=,圆22:(1)9N x y -+=,动圆P 与圆M 外切并且与圆N 内切,圆心P 的轨迹为曲线C 。
(Ⅰ)求C 的方程;(Ⅱ)l 是与圆P ,圆M 都相切的一条直线,l 与曲线C 交于A ,B 两点,当圆P 的半径最长是,求||AB 。
6.(2013全国新课标2)(本小题满分12分)在平面直角坐标系xOy 中,已知圆P 在x 轴上截得线段长为y轴上截得线段长为(1)求圆心P 的轨迹方程; (2)若P 点到直线y =x的距离为2,求圆P 的方程. 7.(2012全国大纲卷)已知抛物线C :2(1)y x =+与圆M :2221(1)()(0)2x y r r -+-=>有一个公共点A ,且在A 处两曲线的切线为同一直线上.(Ⅰ)求r ;(Ⅱ)设,m n 是异于l 且与C 及M 都切的两条直线,,m n 的交点为D ,求D 到l 的距离。
8.(2012全国新课标卷)设抛物线C :x 2=2py (p >0)的焦点为F ,准线为l ,A 为C 上一点,已知以F 为圆心,FA 为半径的圆F 交l 于B ,D 两点。
(I )若∠BFD =90°,△ABD 的面积为42,求p 的值及圆F 的方程;(II )若A ,B ,F 三点在同一直线m 上,直线n 与m 平行,且n 与C 只有一个公共点,求坐标原点到m ,n 距离的比值。
9.(2014广东卷)已知椭圆2222:1(0,0)x y C a b a b+=>>的一个焦点为),离心率(1)求椭圆C 的标准方程;(2)若动点00(,)P x y 为椭圆C 外一点,且点P 到椭圆的两条切线相互垂直,求点P 的轨迹方程.10.(2014重庆卷)如题(21)图,设椭圆22221(0)x y a b a b +=>>的左右焦点分别为12,F F ,点D 在椭圆上,112DF F F ⊥,121||||F F DF =,12DF F ∆的面积为2.(1)求该椭圆的标准方程;(2)是否存在圆心在y 轴上的圆,使圆在x 轴的上方与椭圆两个交点,且圆在这两个交点处的两条切线相互垂直并分别过不同的焦点?若存在,求圆的方程,若不存在,请说明理由.11.(2014年天津卷)本小题满分13分)设椭圆22221x y a b+=(0a b >>)的左、右焦点为12,F F ,右顶点为A ,上顶点为B .已知1232ABF F . (Ⅰ)求椭圆的离心率;(Ⅱ)设P 为椭圆上异于其顶点的一点,以线段PB 为直径的圆经过点1F ,经过点2F 的直线l 与该圆相切于点M ,222MF ,求椭圆的方程.13.(2014四川卷)已知椭圆C :22221x y a b+=(0a b >>)的左焦点为(2,0)F -,离心6(Ⅰ)求椭圆C 的标准方程;(Ⅱ)设O 为坐标原点,T 为直线3x =-上一点,过F 作TF 的垂线交椭圆于P ,Q 。
当四边形OPTQ 是平行四边形时,求四边形OPTQ 的面积。