31高斯消元法—线性代数(吴赣昌-第四版)
- 格式:ppt
- 大小:472.01 KB
- 文档页数:24
用高斯消元法求解线性代数方程组12341115-413-2823113-21041513-21719x x x x ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦ 1111X *⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦(X *是方程组的精确解)1 高斯消去法1。
1 基本思想及计算过程高斯(Gauss )消去法是解线性方程组最常用的方法之一,它的基本思想是通过逐步消元,把方程组化为系数矩阵为三角形矩阵的同解方程组,然后用回代法解此三角形方程组得原方程组的解.为便于叙述,先以一个三阶线性方程组为例来说明高斯消去法的基本思想.⎪⎩⎪⎨⎧=++II =++I =++III)(323034)(5253)(6432321321321x x x x x x x x x 把方程(I)乘(23-)后加到方程(II)上去,把方程(I)乘(24-)后加到方程(III )上去,即可消去方程(II)、(III)中的x 1,得同解方程组⎪⎩⎪⎨⎧=+-I I -=-I =++III)(20223)(445.0)(64323232321x x x x x x x将方程(II)乘(5.03)后加于方程(III ),得同解方程组: ⎪⎩⎪⎨⎧-=-I I -=-I =++III)(42)(445.0)(6432332321x x x x x x由回代公式(3.5)得x 3 = 2,x 2 = 8,x 1 = —13。
下面考察一般形式的线性方程组的解法,为叙述问题方便,将b i 写成a i , n +1,i = 1, 2,…,n .⎪⎪⎩⎪⎪⎨⎧=++++=++++=+++++++1,3322111,223232221211,11313212111n n n nn n n n n n n n n n a x a x a x a x a a x a x a x a x a a x a x a x a x a(1-1)如果a 11 ¹ 0,将第一个方程中x 1的系数化为1,得)1(1,1)1(12)1(121+=+++n n n a x a x a x其中)0(11)0()1(1aa aijj=, j = 1, …, n + 1(记ij ij a a =)0(,i = 1, 2, …, n ; j = 1, 2, …, n + 1)从其它n –1个方程中消x 1,使它变成如下形式⎪⎪⎩⎪⎪⎨⎧=++=++=++++++)1(1,)1(2)1(2)1(1,2)1(22)1(22)1(1,1)1(12)1(121n n n nn n n n n n n n a x a x a a x a x a a x a x a x(1-2)其中n i a m a aij i ij ij ,,2)1(1)1( =⋅-=,1,,3,211)1(11+==n j a a m i i由方程(1—1)到(1—2)的过程中,元素11a 起着重要的作用,特别地,把11a 称为主元素.如果(1-2)中0)1(22≠a ,则以)1(22a 为主元素,又可以把方程组(1-2)化为: ⎪⎪⎪⎩⎪⎪⎪⎨⎧=++=++=+++=+++++++)2(1,)2(3)2(3)3(1,3)2(33)2(33)2(1,2)2(23)2(232)1(1,1)1(12)1(121 n n n nn n n n n n n n n n n a x a x a a x a x a a x a x a x a x a x a x (1-3)针对(1—3) 继续消元,重复同样的手段,第k 步所要加工的方程组是:⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧=++=++=+++=+++=++++-+---+---+-----++)1(1,)1()1()1(1,)1()1()1(1,1)1()1(11)2(1,2)2(23)2(232)1(1,1)1(13)1(132)1(121 k n n n k nn k k nk k n k n k nn k k kk k n k n k kn k k k k n n n n n n a x a x a a x a x a a x a x a x a x a x a x a x a x a x a x设0)1(≠-k kk a ,第k 步先使上述方程组中第k 个方程中x k 的系数化为1:)(1,)()(1,k n k n k kn k k k k k a x a x a x ++=++然后再从其它(n — k )个方程中消x k ,消元公式为:⎪⎪⎪⎩⎪⎪⎪⎨⎧+=++=⋅-=++==----nk i n k j a a a a n k k j a a a k kjk ik k ij k ij k kkk kjk kj ,11,,11,,1,)()1()1()()1()1()( (1—4)按照上述步骤进行n 次后,将原方程组加工成下列形式:⎪⎪⎪⎩⎪⎪⎪⎨⎧==+=+++=+++++-+---++)(1,)1(1,1)1(1)2(1,2)2(23)2(232)1(1,1)1(13)1(132)1(121 n n n n n n n n n nn n n n n n n n a x a x a x a x a x a x a x a x a x a x 回代公式为:⎪⎩⎪⎨⎧-=-==∑+=++1,,11)()(1,)(1, n k x a a x a x nk j j k kjk n k k n n nn (1-5)综上所述,高斯消去法分为消元过程与回代过程,消元过程将所给方程组加工成上三角形方程组,再经回代过程求解。
高斯消元法解线性方程组 在工程技术和工程管理中有许多问题经常可以归结为线性方程组类型的数学模型,这些模型中方程和未知量个数常常有多个,而且方程个数与未知量个数也不一定相同。
那么这样的线性方程组是否有解呢?如果有解,解是否唯一?若解不唯一,解的结构如何呢?这就是下面要讨论的问题。
一、线性方程组 设含有n 个未知量、有m 个方程式组成的方程组(3.1)a x a x a x b a x a x a x b a x a x a x b n n n n m m mn n m11112211211222221122+++=+++=+++=⎧⎨⎪⎪⎩⎪⎪ 其中系数,常数都是已知数,是未知量(也称为未知数)。
当右端常数项a ij b j x i , , …, 不全为0时,称方程组(3.1)为非齐次线性方程组;当== … =b 1b 2b m b 1b 2= 0时,即b m (3.2)a x a x a x a x a x a x a x a x a x n n n n m m mn n 111122121122221122000+++=+++=+++=⎧⎨⎪⎪⎩⎪⎪ 称为齐次线性方程组。
由n 个数, , …, 组成的一个有序数组(, , …, ),如果将它们k 1k 2k n k 1k 2k n 依次代入方程组(3.1)中的, , …, 后,(3.1)中的每个方程都变成恒等式,x 1x 2x n 则称这个有序数组(, , …, )为方程组(3.1)的一个解。
显然由=0, k 1k 2k n x 1=0, …, =0组成的有序数组(0, 0, …, 0)是齐次线性方程组(3.2)的一个解,x 2x n 称之为齐次线性方程组(3.2)的零解,而当齐次线性方程组的未知量取值不全为零时,称之为非零解。
(利用矩阵来讨论线性方程组的解的情况或求线性方程组的解是很方便的。
因此,我们先给出线性方程组的矩阵表示形式。
)非齐次线性方程组(3.1)的矩阵表示形式为:AX = B其中A = ,X = ,B = ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡mn m m n n a a a a a a a a a 212222111211⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡n x x x 21⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡n b b b 21称A 为方程组(3.1)的系数矩阵,X 为未知矩阵,B 为常数矩阵。
高斯消元法(完整)高斯消元法解线性方程组在工程技术和工程管理中有许多问题经常可以归结为线性方程组类型的数学模型,这些模型中方程和未知量个数常常有多个,而且方程个数与未知量个数也不一定相同。
那么这样的线性方程组是否有解呢?如果有解,解是否唯一?若解不唯一,解的结构如何呢?这就是下面要讨论的问题。
一、线性方程组设含有n 个未知量、有m 个方程式组成的方程组a x a x a xb a x a x a x b a x a x a x b n n n n m m mn n m11112211211222221122+++=+++=+++=⎧⎨⎪⎪⎩⎪⎪ (3.1) 其中系数a ij ,常数b j 都是已知数,x i 是未知量(也称为未知数)。
当右端常数项b 1,b 2, …, b m 不全为0时,称方程组(3.1)为非齐次线性方程组;当b 1=b 2= … =b m = 0时,即a x a x a x a x a x a x a x a x a x n n n n m m mn n 111122121122221122000+++=+++=+++=⎧⎨⎪⎪⎩⎪⎪ (3.2) 称为齐次线性方程组。
由n 个数k 1, k 2, …, k n 组成的一个有序数组(k 1, k 2, …, k n ),如果将它们依次代入方程组(3.1)中的x 1, x 2, …, x n 后,(3.1)中的每个方程都变成恒等式,则称这个有序数组(k 1, k 2, …, k n )为方程组(3.1)的一个解。
显然由x 1=0,x 2=0, …, x n =0组成的有序数组(0, 0, …, 0)是齐次线性方程组(3.2)的一个解,称之为齐次线性方程组(3.2)的零解,而当齐次线性方程组的未知量取值不全为零时,称之为非零解。
(利用矩阵来讨论线性方程组的解的情况或求线性方程组的解是很方便的。
因此,我们先给出线性方程组的矩阵表示形式。
《线性代数》(理工类,第四版)内容简介
本书根据高等院校理工类本科专业线性代数课程的最新教学大纲及考研大纲编写而成,并在第三版的基础上进行了修订和完善,注重数学概念的实际背景与几何直观的引入,强调线性的思想和方法,紧密联系实际,服务专业课程,精选了许多实际应用案例并配备了相应的应用习题,增补并调整了部分例题与习题,书中还融入了线性模型的教育和数学软件Mathematica的简单应用实例。
本次升级改版的另一重大特色是:每本教材均配有网络账号,通过它可登录作者团队为用户专门建设的网络学习空间,与来自全国的良师益友进行在线交流与讨论。
该空间包含了课程论坛、学习问答、学习软件、教学视频、名师导学、教学博客、科学搜索等功能栏目,并全面支持文字、公式与图形的在线编辑、修改与搜索。
本书内容涵盖了行列式、矩阵、线性方程组、矩阵的特征值、二次型、线性空间与线性变换等知识。
本书可作为高等学校理科、工科和技术学科等非数学类本科专业的线性代数教材,并可作为上述各专业领域读者的教学参考书。
高斯消元法解线性方程组在工程技术和工程管理中有许多问题经常可以归结为线性方程组类型的数学模型,这些模型中方程和未知量个数常常有多个,而且方程个数与未知量个数也不一定相同。
那么这样的线性方程组是否有解呢?如果有解,解是否唯一?若解不唯一,解的结构如何呢?这就是下面要讨论的问题。
一、线性方程组设含有n 个未知量、有m 个方程式组成的方程组a x a x a xb a x a x a x b a x a x a x b n n n n m m mn n m11112211211222221122+++=+++=+++=⎧⎨⎪⎪⎩⎪⎪ (3.1) 其中系数a ij ,常数b j 都是已知数,x i 是未知量(也称为未知数)。
当右端常数项b 1,b 2, …, b m 不全为0时,称方程组(3.1)为非齐次线性方程组;当b 1=b 2= … =b m = 0时,即a x a x a x a x a x a x a x a x a x n n n n m m mn n 111122121122221122000+++=+++=+++=⎧⎨⎪⎪⎩⎪⎪ (3.2) 称为齐次线性方程组。
由n 个数k 1, k 2, …, k n 组成的一个有序数组(k 1, k 2, …, k n ),如果将它们依次代入方程组(3.1)中的x 1, x 2, …, x n 后,(3.1)中的每个方程都变成恒等式,则称这个有序数组(k 1, k 2, …, k n )为方程组(3.1)的一个解。
显然由x 1=0, x 2=0, …, x n =0组成的有序数组(0, 0, …, 0)是齐次线性方程组(3.2)的一个解,称之为齐次线性方程组(3.2)的零解,而当齐次线性方程组的未知量取值不全为零时,称之为非零解。
(利用矩阵来讨论线性方程组的解的情况或求线性方程组的解是很方便的。
因此,我们先给出线性方程组的矩阵表示形式。
)非齐次线性方程组(3.1)的矩阵表示形式为:AX = B其中A = ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡mn m m n n a a a a a a a a a 212222111211,X = ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡n x x x 21,B = ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡n b b b 21 称A 为方程组(3.1)的系数矩阵,X 为未知矩阵,B 为常数矩阵。
高斯消元法解线性方程组在工程技术和工程管理中有许多问题经常可以归结为线性方程组类型的数学模型,这些模型中方程和未知量个数常常有多个,而且方程个数与未知量个数也不一定相同。
那么这样的线性方程组是否有解呢?如果有解,解是否唯一?若解不唯一,解的结构如何呢?这就是下面要讨论的问题。
一、线性方程组设含有n 个未知量、有m 个方程式组成的方程组a x a x a xb a x a x a x b a x a x a x b n n n n m m mn n m11112211211222221122+++=+++=+++=⎧⎨⎪⎪⎩⎪⎪ (3.1) 其中系数a ij ,常数b j 都是已知数,x i 是未知量(也称为未知数)。
当右端常数项b 1,b 2, …, b m 不全为0时,称方程组(3.1)为非齐次线性方程组;当b 1=b 2= … =b m = 0时,即a x a x a x a x a x a x a x a x a x n n n n m m mn n 111122121122221122000+++=+++=+++=⎧⎨⎪⎪⎩⎪⎪ (3.2) 称为齐次线性方程组。
由n 个数k 1, k 2, …, k n 组成的一个有序数组(k 1, k 2, …, k n ),如果将它们依次代入方程组(3.1)中的x 1, x 2, …, x n 后,(3.1)中的每个方程都变成恒等式,则称这个有序数组(k 1, k 2, …, k n )为方程组(3.1)的一个解。
显然由x 1=0, x 2=0, …, x n =0组成的有序数组(0, 0, …, 0)是齐次线性方程组(3.2)的一个解,称之为齐次线性方程组(3.2)的零解,而当齐次线性方程组的未知量取值不全为零时,称之为非零解。
(利用矩阵来讨论线性方程组的解的情况或求线性方程组的解是很方便的。
因此,我们先给出线性方程组的矩阵表示形式。
)非齐次线性方程组(3.1)的矩阵表示形式为:AX = B其中A = ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡mn m m n n a a a a a a a a a 212222111211,X = ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡n x x x 21,B = ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡n b b b 21 称A 为方程组(3.1)的系数矩阵,X 为未知矩阵,B 为常数矩阵。
高斯消元法解线性方程组在工程技术与工程管理中有许多问题经常可以归结为线性方程组类型得数学模型,这些模型中方程与未知量个数常常有多个,而且方程个数与未知量个数也不一定相同.那么这样得线性方程组就是否有解呢?如果有解,解就是否唯一?若解不唯一,解得结构如何呢?这就就是下面要讨论得问题.一、线性方程组设含有n个未知量、有m个方程式组成得方程组(3、1)其中系数,常数都就是已知数,就是未知量(也称为未知数)。
当右端常数项,,…,不全为0时,称方程组(3、1)为非齐次线性方程组;当== …== 0时,即(3、2)称为齐次线性方程组.由n个数, , …, 组成得一个有序数组(,,…,),如果将它们依次代入方程组(3、1)中得,,…, 后,(3、1)中得每个方程都变成恒等式,则称这个有序数组(,,…,)为方程组(3、1)得一个解。
显然由=0, =0, …, =0组成得有序数组(0,0,…,0)就是齐次线性方程组(3、2)得一个解,称之为齐次线性方程组(3、2)得零解,而当齐次线性方程组得未知量取值不全为零时,称之为非零解.(利用矩阵来讨论线性方程组得解得情况或求线性方程组得解就是很方便得。
因此,我们先给出线性方程组得矩阵表示形式。
)非齐次线性方程组(3、1)得矩阵表示形式为:AX =B其中A=,X=,B =称A为方程组(3、1)得系数矩阵,X为未知矩阵,B为常数矩阵。
将系数矩阵A与常数矩阵B放在一起构成得矩阵=称为方程组(3、1)得增广矩阵。
齐次线性方程组(3、2)得矩阵表示形式为:AX=O二、高斯消元法(下面介绍利用矩阵求解方程组得方法,那么矩阵初等行变换会不会改变方程组得解呢?我们先瞧一个定理。
)定理3、1若用初等行变换将增广矩阵化为,则AX= B与CX =D就是同解方程组。
证由定理3、1可知,存在初等矩阵,,…, ,使…=记…= P,则P可逆,即存在。
设为方程组A X=B得解,即A= B在上式两边左乘P,得P A = PB即C=D说明也就是方程组C X=D得解。
高斯消元法(完整)高斯消元法解线性方程组在工程技术与工程管理中有许多问题经常可以归结为线性方程组类型得数学模型,这些模型中方程与未知量个数常常有多个,而且方程个数与未知量个数也不一定相同.那么这样得线性方程组就是否有解呢?如果有解,解就是否唯一?若解不唯一,解得结构如何呢?这就就是下面要讨论得问题.一、线性方程组设含有n个未知量、有m个方程式组成得方程组(3、1)其中系数,常数都就是已知数,就是未知量(也称为未知数)。
当右端常数项,,…,不全为0时,称方程组(3、1)为非齐次线性方程组;当== …== 0时,即(3、2)称为齐次线性方程组.由n个数, , …, 组成得一个有序数组(,,…,),如果将它们依次代入方程组(3、1)中得,,…, 后,(3、1)中得每个方程都变成恒等式,则称这个有序数组(,,…,)为方程组(3、1)得一个解。
显然由=0, =0, …, =0组成得有序数组(0,0,…,0)就是齐次线性方程组(3、2)得一个解,称之为齐次线性方程组(3、2)得零解,而当齐次线性方程组得未知量取值不全为零时,称之为非零解.(利用矩阵来讨论线性方程组得解得情况或求线性方程组得解就是很方便得。
因此,我们先给出线性方程组得矩阵表示形式。
) 非齐次线性方程组(3、1)得矩阵表示形式为:AX =B其中A=,X=,B =称A为方程组(3、1)得系数矩阵,X为未知矩阵,B为常数矩阵。
将系数矩阵A与常数矩阵B放在一起构成得矩阵=称为方程组(3、1)得增广矩阵。
齐次线性方程组(3、2)得矩阵表示形式为:AX=O二、高斯消元法(下面介绍利用矩阵求解方程组得方法,那么矩阵初等行变换会不会改变方程组得解呢?我们先瞧一个定理。
)定理3、1若用初等行变换将增广矩阵化为,则AX= B与CX =D 就是同解方程组。
证由定理3、1可知,存在初等矩阵,,…, ,使…=记…= P,则P可逆,即存在。
设为方程组A X=B得解,即A= B在上式两边左乘P,得P A = PB即C=D说明也就是方程组C X=D得解。