垂线1
- 格式:ppt
- 大小:270.00 KB
- 文档页数:10
5.1.2垂线(1)教学目标:1.知道垂直是相交的特殊情况,理解垂线的概念.2.会用三角尺或量角器过一点画已知直线的垂线.3、通过操作、探究等活动,培养学生的动手能力,并通过活动使学生对知识的学习从感性认识上升到理性认识.4、通过生动、有趣的活动,使学生积极参与到数学活动中,并在活动中感受成功的快乐.教学重难点:【重点】垂线的定义,用三角尺或量角器过一点画已知直线的垂线.【难点】过一点画已知直线的垂线.教学设计导入一:出示意大利比萨斜塔图片.师:同学们,你们认识这个世界著名的建筑吗?对!是意大利的比萨斜塔.那么这个斜塔倾斜多少度呢?如图所示,直线AB可以看成地平面,射线OC可以看成塔身所在的直线.要回答这个问题,就涉及我们要学习的垂线问题.[设计意图]从学生比较熟悉的事物中抽象出数学问题,更能唤起学生探求新知的欲望.导入二:(学生事先准备宽约为1 cm,长约为20 cm的两张硬纸条,图钉一个)课堂操作:学生用图钉在中间把两张纸条订在一起,提示学生可以把两张纸条看作是两条直线,观察两条直线相交有几个交点?如图所示,可以看到,直线AB与CD相交,只有一个交点,可以说明直线AB,CD相交于点O.【思考】两条直线相交所构成的四个角能否相等?[设计意图]用现实生活中的例子,引入相交线所成的角,为理解垂直的定义做认知准备,同时也会激发学生的学习兴趣,有利于进入新的知识学习.导入三:如图所示,直线AB,CD相交于点O,若∠1=90°,求其他三个角.教师出示问题,学生独立解决问题,并在练习本上书写解答过程.在这一过程中,教师应当关注学生是否能够独立完成问题,并且能否较规范地写出解答过程.然后学生口述过程并说明理由.[设计意图]通过练习,一是复习上节课的邻补角和对顶角的概念及性质,二是逐步培养学生的推理论证能力.一、探究垂线的概念思路一教师出示相交线模型,如图(1)所示,固定其中一个木条a,转动另一个木条b,在这一过程中,它们的交角∠α在不停地变化,这一过程中,一定会出现它们的交角等于90°的情况,这时我们说a与b互相垂直,这时其中一条直线叫另一条直线的垂线,记作a⊥b,它们的交点叫做垂足,如图(2)所示,可记作:AB⊥CD,垂足为O.推理过程如下:因为∠AOC=90°(已知),所以AB⊥CD(垂直定义).[设计意图]通过模型的展示让学生认识到,垂直是相交的一种特殊情形,使学生对垂直首先有一个感性的认识,进而引入相关的概念.同时通过教师对图形的描述,使学生逐步学习用几何语言描述图形的语句.[知识拓展](1)垂直是相交线中一种特殊形式,当垂直时,这个公共点即为垂足.(2)线段与线段、线段与射线、射线与射线、线段与直线或射线与直线垂直,特指它们所在的直线互相垂直.(3)根据两条直线互相垂直的定义可知:若两条直线互相垂直,则所成的四个角都为直角;反之,若两条直线相交所成的四个角中的任意一个角等于90°,则这两条直线互相垂直.2.感受生活中互相垂直的实例.【思考】生活中有许多垂直的例子,你能举出一些例子吗?教师出示图片:(提示学生观察铁轨和枕木之间的位置关系)学生从中观察相互垂直的直线,然后举出一些互相垂直的例子.[设计意图]通过对实物的感知,使学生认识到生活中处处有数学图形,在感受生活中的数学的同时加深对垂线的理解与掌握.3.例题讲解(自设).如图所示,三条直线相交于点O.若CO⊥AB,∠1=56°,则∠2等于()A.30°B.34°C.45°D.56°〔解析〕∠1和∠2既不是对顶角也不是邻补角,这就需要根据给出的∠1的度数和相关位置进行思考.根据已知条件,把CO⊥AB转化为∠AOC=∠COB=90°是关键.发现∠AOD,∠DOB 分别是∠2的邻补角和对顶角后,问题即可解决.方法1:因为CO⊥AB,所以∠COB=90°,所以∠DOB=90°-∠1=90°-56°=34°.所以∠2=∠DOB=34°(对顶角相等).方法2:因为CO⊥AB,所以∠COB=90°,所以∠AOD=90°+∠1=90°+56°=146°.所以∠2=180°-146°=34°(邻补角互补).故选B.[设计意图]角度计算题,目的是考查学生利用垂直定义以及对顶角性质解决问题的能力.思路二1.实验探究.教师自制教具,将两根木条钉在一起(如图所示),固定其中一根木条a,转动木条b,请学生观察:问题:在木条b的转动过程中,哪个量也随之发生改变?师生活动:学生发言,相互补充.教师借机和学生一起回忆上节课学习的内容:对顶角和邻补角的概念和性质.教师追问(1):当a与b所成角α为90°时,其余各角分别为多少度?师生活动:教师引导学生发现,当a与b所成角α为90°时,其余各角都为90°,是木条相交中最特殊的一种情况.教师追问(2):这时木条a与b有何位置关系呢?师生活动:学生根据小学已学的知识可以知道,此时木条a与b互相垂直.[设计意图]让学生借助已有的知识发现数学问题,并解决问题,进一步提高对垂直概念的认识.2.变换角度,认识垂直.仔细观察下图,当两条直线相交时所形成的4个角中,有一个角为90°,可以得出这两条直线有何位置关系呢?师生活动:学生回答,并归纳概括出垂直的定义.教师补充指出垂线和垂足的概念,并给出垂直的符号表示.教师追问(1):如图所示,如何用符号语言表示垂直的定义呢?师生活动:学生观察图形,独立完成用符号语言表示垂直的定义,教师点拨,规范学生的书写过程.如图所示,若AB和CD相交,且∠1=90°,则直线AB和CD互相垂直,记作“AB⊥CD”(或CD⊥AB),读作“AB垂直于CD”.如果垂足是O,记作“AB⊥CD,垂足为O”.一般地,垂直在图中用“”表示,在推理计算的过程中用“⊥”表示.教师追问(2):如何判定两条射线互相垂直?两条线段呢?师生活动:学生积极踊跃发言,教师做总结,提醒学生注意:两条线段垂直、两条射线垂直、射线与直线垂直、线段与射线垂直、线段与直线垂直,都是指它们所在的直线垂直.根据两条直线互相垂直的定义可知:若两条直线互相垂直,则相交所成的四个角为直角;反之,若两条直线的交角为直角,则这两条直线互相垂直.如图所示,这个推理过程可以写成:因为AB⊥CD(已知),所以∠AOC=∠COB=∠BOD=∠AOD=90°(垂直的定义);反之,因为∠AOC=90°(已知),所以AB⊥CD.[设计意图]教师引导学生用几何语言描述图形的位置关系,并学会用符号语言表示,培养学生表达几何图形的能力.教师追问(3):你能举出一些生活中与垂直有关的实例吗?[设计意图]学生列举身边的实物,能由实物的形状想象出直线的垂直关系,将新知识应用到对周围环境的直接感知中,有利于学生建立直观、形象的数学模型.1.用三角尺或量角器画已知直线l的垂线,这样的垂线能画出几条?2.经过直线l上一点A画l的垂线,这样的垂线能画出几条?3.经过直线l外一点B画l的垂线,这样的垂线能画出几条?画法点拨:过一点画已知直线的垂线,可以用直角三角板来画,具体步骤为:(1)贴:将三角板的一条直角边紧贴在已知直线上;(2)过:使三角板的另一直角边经过已知点;(3)画:沿已知点所在直角边画出所求的直线.如图所示,图(1)是点在直线l上,图(2)是点在直线l外.两直线垂直的概念中的核心内容是直角,所以在画垂线时这个直角的位置就显得相当重要了,画错了位置,已知直线的垂线也就画错了.在画垂线时要注意让直角的一边与已知直线重合,而另一边要过已知点(即过此点画已知直线的垂线),在画垂线时要注意只有满足上述条件时,这两条直线才是垂直的.另外要画的已知直线的垂线是一条直线,千万不要画成线段或射线.提示:(1)过一点画射线或线段的垂线,是指画它们所在直线的垂线,垂足有时在延长线上.(2)过一点包括两种情况:①点在直线外;②点在直线上.活动方式:教师出示问题,学生分小组讨论尝试,然后找学生回答讨论的结果,并找学生到黑板上画一画.师生共同归纳结论:经过一点,能画出已知直线的一条垂线,并且只能画出一条垂线,即在同一平面内,过一点有且只有一条直线与已知直线垂直.[设计意图]通过尝试、讨论、探究,找到画已知直线垂线的方法,使学生手脑并用,加深印象.通过师生的共同总结,培养学生的归纳总结能力,同时让学生认识到作已知直线的垂线的两种情况.(补充)如图(1)所示,在三角形ABC中,∠BCA为钝角.(1)画出过点C且与线段BA垂直的直线;(2)画出过点A且与线段BC垂直的直线.〔解析〕利用三角尺的直角正确画出图形,注意垂足的位置.(1)过点C作AB的垂线,垂足在线段AB上.(2)因为∠BCA是钝角,过点A画BC的垂线时,垂足在BC的延长线上.解:(1)过点C画AB的垂线,交AB于D,CD就是所求,如图(2)所示.(2)过点A画BC的垂线,交BC的延长线于E点,AE就是要求的垂线,如图(2)所示.[知识拓展](1)在同一平面内,经过直线上一点或直线外一点画已知直线的垂线,只能画出一条.(2)经过一点画射线或线段的垂线,是指画它们所在直线的垂线,垂足有时在射线的反向延长线或线段的延长线上(如图所示).(3)画垂线时是实线,此时如需延长线段或反向延长射线,要用虚线延长或反向延长.课堂小结:1.垂线的概念:当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直,其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足.2.垂线的性质:(1)在同一平面内,过一点有且只有一条直线与已知直线垂直.(2)“有且只有”中,“有”指“存在性”,“只有”指“唯一性”.(3)“过一点”中的“点”在直线上或直线外都可以.课堂检测:1.下列说法中,正确的个数是()①相等的角是对顶角;②在同一平面内,过一点有且只有一条直线和已知直线垂直;③两条直线相交有且只有一个交点;④两条直线相交成直角,则这两条直线互相垂直.A.1B.2C.3D.4解析:两角相等指的是数量关系上的相等,对顶角是特殊位置关系的相等的角,故①错误;在同一平面内,过一点有且只有一条直线和已知直线垂直,故②正确;两条直线相交有且只有一个交点,故③正确;两条直线相交成直角,则这两条直线互相垂直,故④正确.即正确的个数是3.故选C.2.下列四个条件中能判断两条直线互相垂直的有()①两条直线相交所成的四个角中,有一个角是直角;②两条直线相交所成的四个角相等;③两条直线相交所成的四个角中,有一组相邻的角相等;④两条直线相交所成的四个角中,有一组对顶角的和为180°.A.4个B.3个C.2个D.1个解析:①两条直线相交所成的四个角中有一个角是直角,是定义,能判断;②两条直线相交所成的四个角相等,则四个角都是直角,能判断;③两条直线相交所成的四个角中有一组相邻的角相等,根据邻补角的定义能求出这两个角都是直角,能判断;④两条直线相交所成的四个角中有一组对顶角的和为180°,根据对顶角相等求出这两个角都是直角,能判断.所以四个条件都能判断两条直线互相垂直.故选A.3.如图所示,过P点,画出射线OA,OB的垂线.解析:图(1)的P点在射线OA,OB之外,图(2)的P点在射线OA之外,在射线OB之上.图(2)过点P作射线OA的垂线时,要注意垂足在射线OA的反向延长线上,需要用虚线表示延长线.解:如图所示.4.如图所示,直线AB,CD相交于点O,OE⊥CD,OF⊥AB,∠BOD=25°,求∠AOE和∠DOF的度数.解:因为OE⊥CD,OF⊥AB,∠BOD=25°,所以∠AOE=90°-25°=65°,∠DOF=90°+25°=115°.布置作业:【必做题】教材第5页练习第1,2题.【选做题】教材第8页习题5.1第3,4题.。
课题:垂线(1)作业设计
【A 层】:1、当两条直线相交所成的四个角中有一个角是90°时,这两条直线互相____,其中一条直线叫做另一条直线的____,两条直线的交点叫____,垂直用符号____ 来表示,读作____,如直线AB 垂直CD ,就记作____。
2、经过直线l 上一点A 画出l 的垂线,能画出几条?
3、经过直线l 外一点B 画出l 的垂线,能画出几条?
【B 层】:1、下列说法:①一条直线只有一条垂线;②画出点P 到直线l 的距离;③两条直线相交就是垂直;④线段和射线也有垂线。
其中正确的有____。
2、A 为直线l 外一点,B 为直线l 上一点,点A 到l 距离为3cm ,则AB ____3cm,根据是____。
3、如图所示,下列说法不正确的是( )
A.点B 到AC 的垂线段是线段AB;
B.点C 到AB 的垂线段是线段AC
C.线段AD 是点D 到BC 的垂线段;
D.线段BD 是点B 到AD 的垂线段
D C
B A
4、如图,点O 在直线AB 上,且O C ⊥OD,若∠COA=36°则∠DOB 的大小为( )
A.36°
B.54°
C.64°
D.72°
【C 层】5、如图所示,直线AB,CD,EF 交于点O,OG 平分∠BOF,且CD ⊥EF,∠AOE=70°,•求∠DOG 的度数.
G O F
E
D
C
B
A。
5.1.2 垂线(1)(新授课)【学习目标】 1.知识技能(1)使学生掌握垂线、垂线段、点到直线的距离等概念,理解垂线的性质,掌握过一点有且只有一条直线与已知直线垂直的结论.(2)会用三角板或量角器过一点画一条直线的垂线. 2. 解决问题通过探索垂线的性质,能解决相关的垂线问题,并能够进行适当的说理. 3. 数学思考经历观察、分析、概括、论述的学习过程,培养学生逻辑思维能力以及推理能力,进一步训练学生的作图能力. 4.情感态度通过创设情境,激发学生学习兴趣,给学生创造成功的机会,体验成功的快乐. 【学习重难点】1.重点:使学生掌握垂线,理解垂线的性质.2.难点:用垂线定义判断两条直线是否垂直及垂线的画法.课前延伸【知识梳理】1.下列说法中,不正确的是( )A .经过一点能画一条直线和已知线段垂直B .一条直线可以有无数条垂线C .过射线的端点与该射线垂直的直线只有一条D .过直线外一点并过直线上一点可画一条直线与该直线垂直 2.下列说法正确的有( )①两条直线相交,交点叫垂足;②在同一平面内,过一点有且只有一条直线与已知直线垂直;③在同一平面内,一条直线有且只有一条垂线;④在同一平面内,一条线段有无数条垂线;⑤过一点不可能向一条射线或线段所在的直线作垂线;⑥若1l ⊥2l ,则1l 是2l 的垂线,2l 不是垂线.A .2个B .3个C .4个D .5个3.过一条线段外一点,画这条线段的垂线,垂足在( )A . 这条线段上B .这条线段的端点C . 这条线段的延长线上D .以上都有可能4.如图,直线AB 与直线CD 的位置关系是__________,记作__________,此时,∠AOD =∠________=∠________=∠________=90°.5.如图,直线AB 、CD 相交于点O ,OE 为射线,若∠1=35°,∠2=55°,则OE 与AB _____(填“垂直”或“不垂直”).ABCDOADOBCE1 2第4题 第5题自主学习记录卡1. 自学本课内容后,你有哪些疑难之处?2. 你有哪些问题要提交小组讨论?课内探究一、课堂探究1(问题探究,自主学习)1.(1)现有一条已知直线AB,分别过直线外一点C和直线上一点D,作AB的垂线,你能有几种方法?CADB(2)通过上述方法画出的垂线有几条?从中你能发现什么结论?二、课堂探究2(分组讨论,合作探究)1.已知如图,直线AB、CD相交于点O,OE⊥AB,且∠DOE=3∠COE,求∠AOD的度数.OEDCBA2.如图,OA⊥OB,OC⊥OD,OE是OD的反向延长线.(1)试说明:∠AOC=∠BOD;(2)若∠BOD=32°,求∠AOE的度数.三、反馈训练1.如图,OB⊥CD,∠AOC∶∠BOC=2∶5,则∠AOB等于()A.36°B.126°C.108°D.162°CDABOABDCOABC DO第1题第2题第3题2.如图,AO⊥BO,CO⊥DO,∠AOC∶∠BOC=1∶5,则∠BOD=()A.105°B.112.5°C.135°D.157.5°3.∠A的两边分别垂直于∠B的两边,∠A比∠B大60°,则∠A是()A.120°B.35°C.40°D.38°4.如图,AO⊥BC,垂足为O,且∠COD-∠DOA=34°28′,则∠BOD=________.ADOB CAEFBCDOADO CBPSTRQ第4题第5题第6题第7题5.如图,直线AB、EF相交于点O,OC⊥AB,∠DOE=2∠AOE,∠BOF=33°,则∠AOD=__________,∠DOC=__________,∠COE=__________,∠DOF=__________.6.如图,直线AB、CD相交于点O,AD⊥CD于点D,CB⊥AB于点B,若∠A=35°,则∠C 等于____________°.7.如图,∠PQR=138°,SQ⊥QR,QT⊥PQ,则∠SQT等于____________.8.如图,直线BC与MN相交于点O,AO⊥BC,OE平分∠BON,若∠EON=21°,求∠AOM的度数.9.如图,AB、CD、EF相交于O点,EF⊥AB,OG为∠COF的平分线,OH为∠DOG的平分线,若∠AOC∶∠COG=4∶7,求∠DOF、∠DOH的大小.EF HBACGD四、布置作业:1.必做题:教科书第8页习题5.1第3、4、5、6题2.选做题:(1)如图,∠A =∠ABC =∠ACB =60°,延长AC 交直线MN 于E ,作ED ⊥BC ,垂足为D ,请你找出图中5对互余的角和5对互补的角.(2)已知如图所示,直线AB ,CD ,EF 交于点O ,OG 平分∠BOF ,且CD ⊥EF ,∠AOE =70°,求∠DOG 的度数.3.【预习题】1.点到直线的距离是指( )A .直线外一点到这条直线的垂线的长度B .直线外一点到这条直线上任意一点的距离C .直线外一点到这条直线的垂线段D .直线外一点到这条直线的垂线段的长度2.和一个已知点P 的距离等于3㎝的直线可以画( )A .1条B .2条C .3条D .无数条3.P 为直线l 外一点,A 、B 、C 为直线l 上三点,PA =5Cm ,PB =3Cm ,PC =4Cm ,则点P 到直线l 的距离为( ) A .4㎝B .3㎝C .小于3㎝D .不大于3㎝4.如图,若把水渠中的水引到水池C ,挖一条沟CD 垂直于渠岸AB ,垂足为D ,这时沟CD最短,这时根据_________________________。
1A B P【学习目标】1.理解垂直的概念;2.能过一点作直线的垂线。
【重点难点】重点:两条直线互相垂直的概念、性质和画法。
难点:过一点画已知直线的垂线。
【学习过程】 一、学案自学1、自学课本。
2、如右图所示,直线AB 、CD 相交于点O ,∠AOC=90°,求其余三个角的度数,并指出它们分别是什么角。
3.如上题,如果两条直线相交所成的角为________,则称这两条直线互相垂直.其中一条直线叫做另一条直线的垂线,它们的_______叫做垂足。
如图1中,AB ⊥CD ,垂足为O.垂直 用符号“⊥”表示.(温馨提示:垂直是相交的一种特殊情形)4.垂直定义可以用几何语言表示为:∵∠AOC=90° ∵AB ⊥CD ∴AB______CD ∴∠AOC=______° 5.举出日常生活中两线互相垂直的例子: 6.过点P 画直线AB 或线段AB 的垂线7.观察上题思考:过点P 画AB 的垂线,你能画几条? 写下你的结论:______________________________________.二、小组合作1.如图,已知AB 、CD 相交于O ,OE ⊥CD 于O ,∠AOC=36°,则∠AOE= ,∠BOE= .ABPA BPBACDEOAC DO B图122.当两条直线相交,所成的四个角都相等时,这两条直线有什么位置关系?为什么?3.如图AB ⊥l ,BC ⊥l ,B 为垂足,那么A 、B 、C 三点在同一直线上吗?为什么?三、班级展示 四、质疑探究1.如图(1)找出线段BC 的中点M ,连接AM 并延长.(2)过B 、C 两点分别作AM 的垂线段,垂足是D 、E ; (3)比较BD 和CE 的大小.2.如图,O 为直线AB 上一点,∠BOC=3∠AOC ,OC 平分∠AOD. ⑴ 求∠AOC 的度数;⑵ 试确定OD 与AB 的位置关系,并说明理由。
五、测评反馈1.已知钝角∠AOB,点D 在射线OB 上.(1)画直线DE⊥OB; (2)画直线DF⊥OA,垂足为F.2.如图,AC⊥BC,C 为垂足,CD⊥AB,D 为垂足,BC=8,CD=4.8,BD=6.4,AD=3.6,AC= 6,那么点C 到AB 的距离是_______,点A 到BC 的距离是________,点B 到CD 的距离是_____,A 、B 两点的距离是_________.lB ACCBAABC D ODCBA3.如图,分别画出点A、B、C到BC、AC、AB的垂线段,再量出A到BC、点B到AC、点C到AB的距离.六、学习反思CBA3。
沙雅县托依堡镇中学集体备课课时计划
)在相交直线所形成的四个角中,按照两个角的关系分类,
)两条直线所夹角中,如果按照角的大小分类,又有哪几种?
的垂线,这样的垂线能画出几条?
的垂线,这样的垂线能画出几条?
的垂线,这样的垂线能画出几条?
(1)(2)
.达标检测。
(3分钟)
练习1,如图(1),∠B=90°,过B作AB、BC、CA的垂线.
的垂线,过C作AB的垂线.
.理解垂线的意义;
.根据垂线的意义,过一点画一条直线的垂线;
理解垂线的第一性质:过一点(直线上或直线外)有且只有一条直线与已知布置作业:练习册第页。