解:(4)
例 在括号中填入适当的整式
(1)(b+a(a -b)=a²-b²; (2)(m-n(-n -m)=n²-m²;
(3)(=1-3x)(=1
+3x)=1-9x²;(4)(a²+b²)(a²-b²)=a⁴-b4
分析:观察此题的结果,是两数的平方差,再对比左侧已知的 因式,分析出谁是相同项,谁是相反项.
=9996
例 计算:
(3)(x"+4)(x"-4);
分析:(3)xn 可以看成公式中的a,4 可以看成公式中的b, 根据平方差公式,结果为(xn)²-42.
解:
(3) (x”+4)(xn-4)
=(x”)²-4²
=x²n-16.
例 计算: (3)(x”+4)(x”-4);
分析:(4)需要先把前两项利用平方差公式计算出来,然 后利用结果二次利用平方差公式,从而得到最终结果.
平方差公式
阅读小故事,并回答问题:
小明和小兰分别负责两块区域的值日工作.小明负责一块边长为a 米 的正方形空地,小兰则负责一块长方形空地,长为正方形空地边长加5 米,宽度是正方形空地边长减5米.有一天,小明对小兰说:“咱们换 一下值日的区域吧,反正这两块地大小都一样. ”你觉得小明说的对吗? 为什么?
符号语言: (a+b)(a-b)=a²-b²
atb(a-b)=a²-b²→ 平方差公式
代数推导:(a+b)(a-b)=a²-ab+ab-b²
=a²-b².
文字描述:两个数的和与这两个数差的积,等于这两个数的 平方差.
结构特点:左边:a 符号相同,b 符号相反. 右边:符号相同项a的平方减去符号相反项b的平方.