利用bode图求传递函数例题
- 格式:doc
- 大小:250.00 KB
- 文档页数:2
6-1试求图示有源网络的传递甫数和Bode 图,并说明其网络特性。
6-2已知单位反馈控制系统的开环传递函数为G(f)二 105(0.25 +1)当串联校正装置的传递函数G c ($)如下所示时:(1) G c (5)= 0.2s +10.05s +1 2($ +1) (10s+ 1)1・试绘出两种校正时校正前和校正后系统Bode 图;2.试比较两种校正方案的优缺点。
6-3已知单位反馈系统的对数幅频特性Illi 线如图屮厶)@),串联校正装置G c (s)的对数幅频特性如图中&9),要求: 1. 在图小画出系统校止后的对数幅频特性厶(e);2. 写出校正后系统的开环传递函数;3. 分析校止装置G c (5)对系统的作用。
6-4系统的结构图如图所示,试利用根轨迹法设计超前校止装置,使系统满足下列性 能指标:=0.7 , t s =1.45, K v = 。
6—5已知一单位反馈系统的开环传递函数为习题6— 1图试设计一•校正装置,使系统的相角裕量厂> 45° ,剪切频率0. > 50$ j 06-6单位反馈系统的开环传递函数为设计一串联滞后校正装置,使系统相角裕量/ > 40° ,并保持原有的开环增益。
6-7设单位反馈系统的开环传递函数为G(s)= --------------- ------------ 5(0.15 + 1)(0.255 + 1)试设计--校正装置,使系统满足下列性能指标,速度误差系数K,, 相角裕量 / > 40° ,剪切频率 > 0.5s~} o6-8单位反馈系统的开环传递函数为若耍求校正后系统的谐振峰值=1.4,谐振频率> lor 1,试确定校正装置的形 式与参数。
6-9单位反馈系统的结构如图所示,现用速度反馈来校正系统,校正后系统具有临界 G(s) =2005(0.15 + 1) G() =4 s(2s +1) G(s)=10 5(0.255 +1)(0.055 +1)习题6 —3图阻尼比< 试确定校正装置参数K,。
【自我实践4-1】某单位负反馈系统的开环传递函数()(1)(2)kG s s s s =++,求(1) 当k=4时,计算系统的增益裕度,相位裕度,在Bode 图上标注低频段斜率,高频段斜率及低频段、高频段的渐近相位角。
(2) 如果希望增益裕度为16dB ,求出响应的k 值,并验证。
(1)当K=4时>> num=[4]; den=[1,3,2,0]; G=tf(num,den)[Gm,Pm,Wcg,Wcp]=margin(G) bode(num,den) gridtitle(′Bode Diagram of G(s)=4/[s(s+1)(s+2)] ′) G =4----------------- s^3 + 3 s^2 + 2 sContinuous -time transfer function.Gm =1.5000,Pm =11.4304,Wcg =1.4142,Wcp =1.1431 title(′Bode Diagram of G(s)=4/[s(s+1)(s+2)] ′)低频段斜率为-20dB/dec ,高频段斜率为-60dB/dec ,低频段渐近相位角为-90度,高频段的渐近相位角为-270度。
增益裕度GM=1.5000dB/dec ,相位裕度Pm=11.4304度 (2)当增益裕度为16dB 时,算得K=0.951,对应的伯德图为:>> num=[0.951]; den=[1,3,2,0]; G=tf(num,den)[Gm,Pm,Wcg,Wcp]=margin(G) bode(num,den) gridtitle(′Bode Diagram of G(s)=4/[s(s+1)(s+2)] ′) G = 0.951 ----------------- s^3 + 3 s^2 + 2 sContinuous -time transfer function.Gm =6.3091,Pm =54.7839,Wcg =1.4142,Wcp =0.4276 title(′Bode Diagram ′)【自我实践4-2】系统开环传递函数()(0.51)(0.11)kG s s s s =++,试分析系统的稳定性。
习 题 66-1 设控制系统的开环传递函数为:()()()s s s s G 1.015.0110++= 绘出系统的Bode 图并求出相角裕量和幅值裕量。
若采用传递函数为(1+0.23s)/(1+0.023s)的串联校正装置,试求校正后系统的幅值和相角裕度,并讨论校正后系统的性能有何改进。
6—2设控制系统的开环频率特性为()()()()ωωωωωj j j j H j G 25.01625.011++= ①绘出系统的Bode 图,并确定系统的相角裕度和幅值裕度以及系统的稳定性; ②如引入传递函数()()()0125.025.005.0++=s s s G c 的相位滞后校正装置,试绘出校正后系统的Bode 图,并确定校正后系统的相角裕度和幅值裕度。
6 3设单位反馈系统的开环传递函数为()()()8210++=s s s s G 设计一校正装置,使静态速度误差系数K v =80,并使闭环主导极点位于s=-2±j23。
6-4设单位反馈系统的开环传递函数为()()()93++=s s s K s G ①如果要求系统在单位阶跃输入作用下的超凋量σ =20%,试确定K 值;②根据所确定的K 值,求出系统在单位阶跃输入下的调节时间t s 。
,以及静态速度误差系数; ③设计一串联校正装置,使系统K v ≥20,σ≤25%,t s 减少两倍以上。
6 5 已知单位反馈系统开环传递函数为()()()12.011.0++=s s s K s G 设计校正网络,使K v ≥30,γ≥40º,ωn ≥2.5,K g ≥8dB 。
6-6 由实验测得单位反馈二阶系统的单位阶跃响应如图6-38所示.要求①绘制系统的方框图,并标出参数值;②系统单位阶跃响应的超调量σ =20%,峰值时间t p =0.5s ,设计适当的校正环节并画出校正后系统的方框图。
6-7设原系统的开环传递函数为()()()15.012.010++=s s s s G 要求校正后系统的相角裕度γ=65º。
自动控制理论第五章习题汇总填空题1、系统的频率响应与正弦输入信号之间的关系称为频率响应2、在正弦输入信号的作用下,系统输入的稳态分量称为频率响应简答题:5-2、什么是最小相位系统及非最小相位系统?最小相位系统的主要特点是什么?答在s平面上,开环零、极点均为负实部的系统称为最小相位系统;反之,开环零点或极点中具有正实部的系统称为非最小相位系统。
最小相位系统的主要特点是:相位滞后最小,并且幅频特性与相频特性有惟一的确定关系。
如果知道最小相位系统的幅频特性,可惟一地确定系统的开环传递函数。
5-3、什么是系统的频率响应?什么是幅频特性?什么是相频特性?什么是频率特性?答对于稳定的线性系统,当输入信号为正弦信号时,系统的稳态输出仍为同频率的正弦信号,只是幅值和相位发生了改变,如图5-3所示,称这种过程为系统的频率响应。
图5-3称为系统的幅频特性,它是频率的函数;称为系统的相频特性,它是频率的函数:称为系统的频率特性。
稳定系统的频率特性可通过实验的方法确定。
计算题5-1、设某控制系统的开环传递函数为)()(s H s G =)10016()12.0(752+++s s s s 试绘制该系统的Bode 图,并确定剪切频率c ω的值。
解:Bode 图如下所示剪切频率为s rad c /75.0=ω。
5-2、某系统的结构图和Nyquist 图如图(a)和(b)所示,图中2)1(1)(+=s s s G 23)1()(+=s s s H 试判断闭环系统稳定性,并决定闭环特征方程正实部根的个数。
解:由系统方框图求得内环传递函数为:ss s s s s s H s G s G +++++=+23452474)1()()(1)( 内环的特征方程:04742345=++++s s s s s由Routh 稳定判据:1:0310:16:44:171:01234s s s s s由此可知,本系统开环传函在S 平面的右半部无开环极点,即P=0。
2-1若i x 为输入位移,o x 为输出位移, 试列写出下图所示机械系统的微分方程式,并求出传递函数。
2-2下图所示系统中电压1U 和位移1x 为系统输入量,电压2U 和位移2x 为输出量,k 为弹簧弹性系数,f 为阻尼器的阻尼系数,试分别列写图示系统的传递函数)()(12s U s U 和)()(12s X s X ,并将其写成典型环节相串联的形式。
2-3试求下图所示有源网络的传递函数。
2-4试用信号流图求出下图所示四端网络的传递函数)()()(12s U s U s G .2-5试绘制下图所示RC 回路的方块图,并根据方块图,并根据方块图写出传递函数)()(s U s U r c 。
2-6 试绘制下图所示电路的结构图,并求传递函数)()(12s U s U 。
2-7 给定一速度调节器的电路如图所示,试求U(s)与)(,)(0s U s U t 之间的关系式。
2-8 下图为由运算放大器组成的控制系统的模拟图,试求其闭环传递函数。
2-9 某RC 网络为下图所示,其中21U U 、分别为网络的输入量和输出量,试求:(1)画出网络相应的结构图(即函数方框图);(2)求传递函数)()(12S U S U (化成标准形式);(3)讨论元件2121,,,C C R R 参数选择是否响应网络的绝对稳定性。
2-10 本题包括以下内容:1.已知由试验得出的环节输出时间特性如下(题图(1)):(1)试确定各环节的传递函数.(2)试确定各环节在s 平面上的零点.极点分部.(3)试画出各环节的伯德(Bode)图.2.设有如下环节(题图(2)):已知: 54321,,,,R R R R R 各为电阻值, 210,,C C C 各为电容值。
(1)试确定各环节的输入与输出的关系。
(2)试画出该环节的结构图。
3.在题图(3)所示系统中,i x :输入位移,0x :输出位移,f:阻尼器的阻尼系数,21k k 、各为弹簧系数.且假定系统是集中参数系统,输出端的负载效应可乎略.试求出图中所示机械系统传递函数。
例题:已知最小相位系统开环对数频率特性曲线如图所示。
试写出开环传递函数)(s G k 。
解:
1) ω<ω1的低频段斜率为[-20],故低频段为K/s。
ω增至ω1,斜率由[-20]转为[-40],增加[-20],所以ω1应为惯性环节的转折频率,该环节为
1
1
11
+s ω 。
ω增至ω2,斜率由[–40]转为[–20],增加[+20],所以ω2应为一阶微分环节的转折频率,该环节为
11
2
+s ω 。
ω增到ω3,斜率由[-20]转为[-40],该环节为
1
1
13+s ω,ω>ω3,斜率保持不变。
故系统开环传递函数应由上述各典型环节串联组成,即
)
11
)(
11
(
)11
(
)(3
1
2
+++=
s s s s K s G k ωωω
2) 确定开环增益K
当ω=ωc 时,A(ωc )=1 。
所以 11
1
1
)1
(
)1
(
1
)1
(
)(1
2
23
21
22
=≈
+⋅+=
c
c
c
c c c c c K
K A ωωωωωωωωωωωωω
故 1
2ωωωc
K =
所以,)
11
)(
11
()11
()(3
1
2
12+++=s s s s s G c k ωωωωωω
练习:
最小相位系统的对数幅频特性如下图所示,试分别确定各系统的传递函数。
(a)
(b)
(c )
a :)
1(10
)(+=
s s s G
b :)
1)(110(100
)(++=
s s s G
c )
12.0)(15.0(100
)(++=s s s G。