华中科技大学材料加工工程简介

  • 格式:doc
  • 大小:46.00 KB
  • 文档页数:5

下载文档原格式

  / 5
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

华中科技大学材料加工工程简介

2005-12-31 12:58:14 华中科技大学考研共济网

·[考研一站式]华中科技大学硕士招生相关文章索引

·[考研一站式]华中科技大学硕士专业课试题、[订购]考研参考书、专业目录学科概况kaoyantj

112室

华中科技大学国家重点学科材料加工工程简介济

该学科由铸、压、焊及热处理组成。1988年评为国家重点学科,1990年建立了塑性成形模拟与模具技术国家重点实验室,1996年列入国家“211工程”重点学科,1998年被批准建立科技部快速原型制造技术生产力促进中心,同年,获国家一级学科博士点授予权和博士后流动站。该学科自1988年以来共完成国家及省部级科研项目168项,获国际奖3项,获国家及省部级奖72项,发明专利16项,实用新型专利27 项,发表论文1400余篇,被三大索引检索收录170篇。目前共承担国家及省部级科研项目126项,在研项目经费共2098万元。学科研究设施先进,拥有一支由院士和知名教授率领的整体水平高、结构合理的师资队伍、国内外博士占37%。021-

主要研究方向及学术带头人48号

①现代模具技术,以CAD/CAE/CAM技术为基础,包括塑性成形模拟及模具技术、塑料成型模拟及模具技术、铸造凝固过程模拟、新型模具材料及表面处理等面向新产品开发的模具快速设计与制造。学术带头人:李志刚、李德群、崔崑。彰武

②快速成形与制模,包括快速原型制造系列技术、快速金属硬模制造,对薄材叠层、粉末激光烧结、光固化等成形的材料、工艺、数据处理、控制等关键技术进行系统、深入的研究。学术带头人:黄树槐、张海鸥、叶升平。021-

③精密成形,包括液态金属精确成形、固态金属塑性精密成形领域的研究。学术带头人:夏巨谌、黄乃瑜、罗吉荣。辅导

④材料加工设备及其自动化,包括塑性成型设备的数控技术研究与开发、新型塑性成型设备的开发、焊接过程自动化及其在线检测设备开发、绿色铸造成套工艺设备开发等。学术带头人:李志远、莫健华、樊自田。辅导

⑥激光材料加工及其质量控制,包括激光焊接与切割理论及技术、激光加工过程实时监测技术、激光材料表面改性、激光纳米粉体制备及应用等方面的研究。学术带头人:谢长生、胡伦骥、刘建华。

正门对面

学科基地建设

共济网

拟建设的模具(零件)数字化成形实验研究基地济

随着计算机信息技术的高速发展,计算机信息技术及应用已渗入了材料学科的各个领域,材料的数

字化成形是材料成形技术的必然趋势,材料数字化成形的优势和具体表现为材料成形的精密化、轻量化、智能化、科学化。院

模具技术是材料成形技术的基础。以模具的快速设计、仿真模拟、快速精密制造以及新产品的快速开发等为研究内容的“现代模具数字化制造技术”,是当今模具技术研究的热点。而在材料的成形方面,以交通运载工具(汽车、航空航天器、武器装备等)零部件的轻量化、精确化、高强化加工成形及过程模拟为研究目标的“高性能轻合金、塑料、陶瓷等材料的数字化精确成形技术”是材料加工成形领域的研究热点。336 26038

目前,模具国家重点实验室已具有精密三坐标测量仪、多功能材料实验机、数控铣(镗、线切割、电火花加工、等离子复合)机床、双动金属挤压液压机、机器人、Ideas软件、SGI微机工作站、快型成型系统(LOM、SLS)、热等静压系统、材料的热分析系统等仪器设备。要实现跨越式的发展,具有国际领先水平还必须增强以下新的实验手段和设备。即:压力、流速、温度、位移、变形等检测与数据处理系统;数控压力成形设备、加工中心等;大型的分析计算程序,虚拟现实设备及软件;高纯度液态金属的精炼、电磁输送与充型装备;多材料(塑料、型砂、金属、陶瓷、石蜡等粉末)用途的SLS设备系统等。同济

在我校国家模具重点实验室的基础上,建设“模具(零件)数字化成形实验研究基地”具有很好条件,它是保障我校在这一领域处于国内领先地位的重要措施。

kaoyangj

主要研究方向

“材料加工”主要研究方向kaoyantj

1.现代模具技术

336 26038

材料成形过程模拟处于国内领先水平;研究开发的汽车覆盖件模具、塑料模具、铸造模具和多工位级进模CAD/CAE/CAM系统产生了广泛社会影响。112室

2.快速成形与制模33623 037

开发的薄材叠层快速成形系统达到国际先进水平,金属硬模等离子熔射制造、金属模具快速精密铸造技术系国内外先进水平。

3.精密成形

在金属零部件的铸、锻精密成形理论及工艺装备技术的研究方面形成突出的综合优势。

4.材料加工设备及其自动化

将先进数控技术应用于材料加工设备,开发出具有节能、环保和智能化特点的新型锻压、铸造及焊接设备,社会经济效益大,系国内领先水平。

5.激光材料加工及其质量控制

在国内率先开展激光加工技术研究,在激光焊接、激光表面改性、激光加工过程实时监测、激光制备纳米金属粉体等方面具有明显的优势。

部分成果介绍

一、塑料成形过程仿真系统的开发和应用

塑料注射成形过程仿真既具有理论意义又有很好的实用价值,仿真的结果能直接指导注射成形工艺参数的选定、优化模具浇注系统、大大缩短试模和修模的时间、显著地提高塑料制品的质量、降低成本、减少模具的进口、推动模具行业的科技进步。“九五”期间,在国家自然科学基金和其它课题基金的资助下,该项目不断地改进、应用和推广,经历了从二维分析到三维分析,从局部试点到大面积推广应用的历程。以李德群教授为代表的科研组经过十余年的努力,开发出独具特色、具有当前国际先进水平的三维注塑成形仿真系统,该系统的开发与应用,为注塑制品与模具的虚拟制造奠定了坚实的理论和技术基础,构成了注塑制品成形质量全面控制的核心技术。塑性成形过程仿真系统的开发和应用,2002年获国家科技进步二等奖。

目前,该系统已形成商品化软件产品,并在50多家用户中推广应用,产生了可观的经济效益。还在上海交通大学、郑州大学、华东理工大学、厦门大学、汕头大学等十多所院校成功应用,培养了大批掌握了模具CAD/CAE的专门人才。围绕着该项目的研究开发,在国内外共发表学术论文150余篇,其中英文论文10余篇,15篇为三大索引所收录,出版教材和专著8本。

二、薄材叠层、选择性激光烧结快速成形技术及系统

本项目属先进制造技术领域。

我国加入WTO后,能否对市场需求快速响应,关系到民族制造业的生存。快速成形技术是解决这一问题的有力手段。华中科技大学快速制造中心得到了湖北省科委、863/CIMS重大目标产品等项目资助,选择了薄材叠层(LOM)和选择性激光烧结(SLS)两种方法作为研究方向,从主机、成形材料、软件、控制系统、国产激光器等方面进行了研究,取得以下创新成果:(1)实施了无拉力叠层材料送进装置等9 项发明和实用新型专利,使LOM和SLS成形系统主机工作可靠,LOM制件精度从国外的±0.25mm提高到±0.10mm,SLS制件精度达到国际先进水平,主机成本大幅度下降;(2)开发出综合指标超过国内外产品的LOM材料, 制作出壁厚1mm、局部壁厚0.3mm的复杂薄壁件,扩大了LOM技术的应用范围;开发成功3种低成本SLS材料;(3)解决了国产CO2激光器功率不稳定问题,替代进口,激光器由16万元降低到0.5万元;(4)开发成功国外系统尚未具备的软件;(5)开发成功基于网络通讯和基于软件芯片的两种多任务、大数据量、多轴、高速实时控制系统;(6)开发成功HRP和HRPS 系列快速成形系统,可靠性和技术指标达到和超过国外同类产品水平,价格仅为国外同类产品的1/4~1/3。HRP型快速成形系统在两次国际招标中中标,标志该设备已具备国际竞争能力。到目前为止,累计生产HRP和HRPS系统24台,产值1760万元,销售收入1160万元,利税434万元,替代进口节约外汇折合人民币3480万元。部分使用单位新增产值 1.06亿元,新增利税2264万元。薄材叠层、选择性激光烧结快速成形技术及系统,2001年获国家科技进步二等奖。

三、快速制造中心

华中科技大学快速制造中心自1991年开展快速成形技术研究以来,就将目标定位于在保证高可靠和高性能前提下,研究和开发能大幅度降低成本的快速成形技术。近年来,为实现上述目标,投入了大量人力物力,在快速成形机主机、计算机控制系统及数据处理和控制软件、成形材料、快速制模和快速