初三【数学(人教版)】直线和圆的位置关系(3) 练习题
- 格式:docx
- 大小:46.10 KB
- 文档页数:1
直线和圆的位置关系练习题
一、判断题
1、直线与圆最多有两个公共点()
2、若直线与圆相交,则直线上的点都在圆内 ( )
3 、若A、B是⊙O外两点,则直线AB与⊙O相离 ( )
4 、若C为⊙O内与O点不重合的一点,则直线CO与⊙O相交()
5、若线段和圆没有公共点,该圆圆心到线段的距离大于半径()
二、选择题
1.⊙O的半径为3 ,圆心O到直线l的距离为d,若直线l与⊙O没有公共点,则d为():
A.d >3 B.d<3 C.d ≤3 D.d =3
2.圆心O到直线的距离等于⊙O的半径,则直线和⊙O的位置关系是(): A.相离 B.相交 C.相切 D.相切或相交
三、填空题
1、已知⊙O的直径为12cm.
(1)若圆心O到直线l的距离为12cm,则直线l与⊙O 的位关系为________;
(2)若圆心O到直线l的距离为6cm,则直线l与⊙O 的位置关系为________;
(3)若圆心O到直线l的距离为3cm,则直线l与⊙O 的位置关系为________.2、已知⊙O的直径为10cm.
(1)若直线l与⊙O相交,则圆心O到直线l的距离为______;
(2)若直线l与⊙O相切,则圆心O到直线l的距离为______;
(3)若直线l与⊙O相离,则圆心O到直线l的距离为______。
直线与圆的位置关系练习(含答案)一.选择题(共19小题)1.如图,已知PA、PB是⊙O的切线,A、B为切点,AC是⊙O的直径,∠P=40°,则∠BAC的大小是()A.70°B.40°C.50°D.20°2.已知⊙O的半径为4cm,如果圆心O到直线l的距离为3.5cm,那么直线l与⊙O的位置关系是()A.相交B.相切C.相离D.不确定3.如图,PA、PB切⊙O于点A、B,PA=10,CD切⊙O于点E,交PA、PB于C、D两点,则△PCD的周长是()A.10 B.18 C.20 D.224.已知⊙O的半径为3,圆心O到直线L的距离为2,则直线L与⊙O的位置关系是()A.相交B.相切C.相离D.不能确定5.如图,AB是⊙O的直径,PA切⊙O于点A,OP交⊙O于点C,连接BC.若∠P=20°,则∠B的度数是()A.20°B.25°C.30°D.35°6.如图,⊙O过正方形ABCD的顶点A、B,且与CD相切,若正方形ABCD的边长为2,则⊙O的半径为()A.1 B.C.D.7.如图,已知⊙O的直径AB与弦AC的夹角为35°,过C点的切线PC与AB的延长线交于点P,则∠P等于()A.15°B.20°C.25°D.30°8.如图,PA和PB是⊙O的切线,点A和B是切点,AC是⊙O的直径,已知∠P=40°,则∠ACB的大小是()A.60°B.65°C.70°D.75°9.如图,P为⊙O外一点,PA、PB分别切⊙O于A、B,CD切⊙O于点E,分别交PA、PB于点C、D,若PA=5,则△PCD的周长为()A.5 B.7 C.8 D.1010.如图,⊙C与∠AOB的两边分别相切,其中OA边与⊙C相切于点P.若∠AOB=90°,OP=6,则OC的长为()A.12 B.C.D.11.如图,已知直线AD是⊙O的切线,点A为切点,OD交⊙O于点B,点C在⊙O上,且∠ODA=36°,则∠ACB的度数为()A.54°B.36°C.30°D.27°12.AB是⊙O的直径,PA切⊙O于点A,PO交⊙O于点C;连接BC,若∠P=40°,则∠B等于()A.20°B.25°C.30°D.40°13.把直尺、三角尺和圆形螺母按如图所示放置于桌面上,∠CAB=60°,若量出AD=6cm,则圆形螺母的外直径是()A.12cm B.24cm C.6cm D.12cm14.如图,AB是⊙O的直径,PA切⊙O于点A,连结PO并延长交⊙O于点C,连结AC,AB=10,∠P=30°,则AC的长度是()A.B.C.5 D.15.已知⊙O的半径是5,直线l是⊙O的切线,P是l上的任一点,那么()A.0<OP<5 B.OP=5 C.OP>5 D.OP≥516.如图,△ABC的边AC与⊙O相交于C,D两点,且经过圆心O,边AB与⊙O相切,切点为B.如果∠A=34°,那么∠C等于()A.28°B.33°C.34°D.56°17.如图,AB是⊙O的直径,点C在⊙O上,过点C作⊙O的切线交AB的延长线于点D,连接OC,AC.若∠D=50°,则∠A的度数是()A.20°B.25°C.40°D.50°18.如图,PA、PB是⊙O的切线,切点分别是A,B,如果∠P=60°,那么∠AOB 等于()A.60°B.90°C.120° D.150°19.如图,AB、AC是⊙O的两条弦,∠A=25°,过点C的切线与OB的延长线交于点D,则∠D的度数()A.25°B.30°C.40°D.50°二.填空题(共16小题)20.如图,⊙M与x轴相切于原点,平行于y轴的直线交⊙M于P、Q两点,P 点在Q点的下方.若点P的坐标是(2,1),则圆心M的坐标是.21.如图,Rt△ABC中,∠C=90°,若AC=4,BC=3,则△ABC的内切圆半径r=.22.如图,AB与⊙O相切于点C,∠A=∠B,⊙O的半径为6,AB=16,则OA的长为.23.如图,PA、PB分别与⊙O相切于A、B两点,若∠C=65°,则∠P的度数为.24.如图,平面直角坐标系中,⊙P与x轴分别交于A、B两点,点P的坐标为(3,﹣1),AB=2.若将⊙P向上平移,则⊙P与x轴相切时点P的坐标为.25.一直角三角形的两条直角边长分别为6和8,则它的内切圆半径为.26.若⊙O的直径是4,圆心O到直线l的距离为3,则直线l与⊙O的位置关系是.27.如图,在平面直角坐标系中,⊙M与x轴相切于点A(8,0),与y轴分别交于点B(0,4)和点C(0,16),则圆心M的坐标为.28.如图,线段AB与⊙O相切于点B,线段AO与⊙O相交于点C,AB=12,AC=8,则⊙O的半径长为.29.如图,AC是⊙O的切线,切点为C,BC是⊙O的直径,AB交⊙O于点D,连接OD,若∠A=50°,则∠COD的度数为.30.在平面直角坐标系中,O是坐标原点,A、B两点的坐标分别为(3,0)、(0,4),则△AOB的内心与外心之间的距离是.31.P是⊙O的直径AB的延长线上一点,PC与⊙O相切于点C,∠APC的平分线交AC于Q,则∠PQC=.32.如图,AB、AC、BD是⊙O的切线,P、C、D为切点,如果AB=5,AC=3,则BD的长为.33.如图,PA、PB是⊙O的切线,A、B为切点,AC是⊙O的直径,∠P=50°,则∠BAC=.34.如图,AB是⊙O的直径,直线PA与⊙O相切于点A,PO交⊙O于点C,连接BC,∠P=40°,则∠ABC的度数为.35.如图,已知⊙O的外切△PCD切⊙O于A、B、E三点,(1)若PA=5,则PB=;(2)若∠P=40°,则∠COD=度.三.解答题(共15小题)36.如图,CD是⊙O的直径,并且AC=BC,AD=BD.求证:直线AB是⊙O的切线.37.如图,已知三角形ABC的边AB是⊙O的切线,切点为B.AC经过圆心O并与圆相交于点D、C,过C作直线CE丄AB,交AB的延长线于点E.(1)求证:CB平分∠ACE;(2)若BE=3,CE=4,求⊙O的半径.38.在Rt△ABC中,∠ACB=90°,BE平分∠ABC,D是边AB上一点,以BD为直径的⊙O经过点E,且交BC于点F.(1)求证:AC是⊙O的切线;(2)若BF=6,⊙O的半径为5,求CE的长.39.如图,在Rt△ABC中,∠ABC=90°,以AB为直径的⊙O与AC边交于点D,过点D作⊙O的切线交BC于点E,连接OE(1)证明OE∥AD;(2)①当∠BAC=°时,四边形ODEB是正方形.②当∠BAC=°时,AD=3DE.40.如图所示,AB是⊙O的直径,AD与⊙O相切于点A,DE与⊙O相切于点E,点C为DE延长线上一点,且CE=CB.(1)求证:BC为⊙O的切线;(2)若AB=4,AD=1,求线段CE的长.41.如图△ABC内接于⊙O,∠B=60°,CD是⊙O的直径,点P是CD延长线上的一点,且AP=AC.(1)求证:PA是⊙O的切线;(2)若PD=,求⊙O的直径.42.如图,四边形ABCD 内接于⊙O,BD是⊙O的直径,过点A作⊙O的切线AE交CD的延长线于点E,DA平分∠BDE.(1)求证:AE⊥CD;(2)已知AE=4cm,CD=6cm,求⊙O的半径.43.如图,已知AB为⊙O的弦,C为⊙O上一点,∠C=∠BAD,且BD⊥AB于B.(1)求证:AD是⊙O的切线;(2)若⊙O的半径为3,AB=4,求AD的长.44.如图所示,以Rt△ABC的直角边AB为直径作圆O,与斜边交于点D,E为BC边上的中点,连接DE.(1)求证:DE是⊙O的切线;(2)连接OE,AE,当∠CAB为何值时,四边形AOED是平行四边形?并在此条件下求sin∠CAE的值.45.已知:如图,△ABC中,AC=BC,以BC为直径的⊙O交AB于点D,过点D 作DE⊥AC于点E,交BC的延长线于点F.求证:(1)AD=BD;(2)DF是⊙O的切线.46.如图,AC是⊙O的直径,PA切⊙O于点A,点B是⊙O上的一点,且∠BAC=30°,∠APB=60°.(1)求证:PB是⊙O的切线;(2)若⊙O的半径为2,求弦AB及PA,PB的长.47.如图,AB为⊙O的直径,D为的中点,连接OD交弦AC于点F,过点D 作DE∥AC,交BA的延长线于点E.(1)求证:DE是⊙O的切线;(2)连接CD,若OA=AE=4,求四边形ACDE的面积.48.如图,在Rt△ABC中,∠C=90°,以BC为直径的⊙O交AB于点D,切线DE 交AC于点E.(1)求证:∠A=∠ADE;(2)若AD=16,DE=10,求BC的长.49.如图,已知AB是⊙O的直径,CD与⊙O相切于C,BE∥CO.(1)求证:BC是∠ABE的平分线;(2)若DC=8,⊙O的半径OA=6,求CE的长.50.如图,AB是⊙O的直径,点D在AB的延长线上,点C在⊙O上,CA=CD,∠CDA=30°.(1)试判断直线CD与⊙O的位置关系,并说明理由;(2)若⊙O的半径为4,求点A到CD所在直线的距离.直线与圆的位置关系练习参考答案一.选择题(共19小题)1.D;2.A;3.C;4.A;5.D;6.D;7.B;8.C;9.D;10.C;11.D;12.B;13.D;14.A;15.D;16.A;17.A;18.C;19.C;二.填空题(共16小题)20.(0,2.5);21.1;22.10;23.50°;24.(3,2);25.2;26.相离;27.(8,10);28.5;29.80°;30.;31.45°;32.2;33.25°;34.25°;35.5;110;三.解答题(共15小题)36.;37.;38.;39.45;30;40.;41.;42.;43.;44.;45.;46.;47.;48.;49.;50.;。
人教版九年级上册数学24.2.2直线和圆的位置关系同步训练一、单选题1.如果⊙O 的半径为6cm ,圆心O 到直线l 的距离为d ,且7cm d =,那么⊙O 和直线l 的位置关系是( )A .相离B .相切C .相交D .不确定 2.如图,AB 是圆O 的直径,D 是BA 延长线上一点,DC 与圆O 相切于点C ,连接BC ,⊙ABC =20°,则⊙BDC 的度数为( )A .50°B .45°C .40°D .35° 3.如图,AB 是⊙O 的直径,点P 是⊙O 外一点,PO 交⊙O 于点C ,连接BC ,P A .若⊙P =36°,且P A 与⊙O 相切,则此时⊙B 等于( )A .27°B .32°C .36°D .54° 4.如图,点A 为O 上一点,点P 为AO 延长线上一点,PB 切O 于点B ,连接AB .若40APB ∠=︒,则A ∠的度数为( )A .20︒B .25︒C .40︒D .50︒ 5.如图,⊙ABC 的内切圆⊙O 与AB ,BC ,CA 分别相切于点D ,E ,F ,且AD =BD =2,EC =3,则⊙ABC 的周长为( )A .10B .10C .14D .16 6.如图,P 为⊙O 外一点,P A 、PB 分别切⊙O 于点A 、B ,CD 切⊙O 于点E ,分别交P A 、PB 于点C 、D ,若P A =8,则⊙PCD 的周长为( )A .8B .12C .16D .20 7.如图,AC 是⊙O 的切线,切点为C ,BC 是⊙O 的直径,AB 交⊙O 于点D ,连接OD ,若⊙COD =80°,则⊙BAC =( )A .100°B .80°C .50°D .40° 8.如图,AB 是⊙O 的直径,P A 与⊙O 相切于点A ,⊙ABC =25°,OC 的延长线交P A 于点P ,则⊙P 的度数是( )A .25°B .35°C .40°D .50°二、填空题 9.设⊙O 的半径为4cm ,直线L 上一点A 到圆心的距离为4cm ,则直线L 与⊙O 的位置关系是______.10.如图,AB 是⊙O 的直径,AC 是⊙O 的切线,A 为切点,BC 与⊙O 交于点D ,连接OD .若55C ∠=︒,则⊙AOD 的度数为___.11.将直尺、有60︒角的直角三角板和光盘如图摆放,A为60︒角与直尺的交点,B为AB=,则光盘表示的圆的半径r=__________.光盘与直尺的交点,若 3.512.如图,⊙ABC内接于圆,⊙ACB=90°,过点C的切线交AB的延长线于点P,⊙P =26°,则⊙CAB=____.13.如图,AB、AC是O的弦,过点A的切线交CB的延长线于点D,若∠=___________°.∠=︒,则CBAD3514.如图,⊙O为⊙ABC的内切圆,NC=5.5,点D,E分别为BC,AC上的点,且DE 为⊙O的切线,切点为Q,则⊙CDE的周长为___________.15.如图,P A,PB分别切⊙O于点A,B,⊙P=70°,则⊙ABO=________.16.如图,P A 、PB 分别与⊙O 相切于A 、B ,C 为⊙O 上一点,⊙ACB =126°,则⊙P 的度数为________.三、解答题17.已知:ABC ∆中,90ACB ∠=︒,E 在AB 上,以AE 为直径的⊙O 与BC 相切于D ,与AC 相交于F ,连接AD .求证:AD 平分BAC ∠.18.如图,以AB 为直径作O ,在O 上取一点C ,延长AB 至点D ,连接DC ,DCB DAC ∠=∠,过点A 作AE AD ⊥交DC 的延长线于点E .(1)求证:CD 是O 的切线;(2)若4CD =,2DB =,求AE 的长.19.如图,AB为⊙O的直径,点C在⊙O上,点P在BA的延长线上,连接BC,OC,PC.若AB=6,AC的长为π.(1)求⊙AOC的度数;(2)若BC=PC,求证:直线PC与⊙O相切.20.如图,点E是⊙ABC的内心,AE的延长线和⊙ABC的外接圆相交于点D.(1)求证:BD=DE;(2)连接OD交BC于点G,若OD⊙BC,DG=2,BC=10,求圆的半径.参考答案:1.A2.A3.A4.B5.C6.C7.C8.C9.相切或相交10.70°1112.32°13.3514.1115.35°16.72°18.(2)AE=619.(1)6020.(2)294答案第1页,共1页。
点、直线、圆与圆的位置关系_知识点+例题+练习1.点和圆的位置关系2.(1)点与圆的位置关系有3种.设⊙O的半径为r,点P到圆心的距离OP=d,则有:3.①点P在圆外⇔d>r4.②点P在圆上⇔d=r5.①点P在圆内⇔d<r6.(2)点的位置可以确定该点到圆心距离与半径的关系,反过来已知点到圆心距离与半径的关系可以确定该点与圆的位置关系.7.(3)符号“⇔”读作“等价于”,它表示从符号“⇔”的左端可以得到右端,从右端也可以得到左端.2.确定圆的条件不在同一直线上的三点确定一个圆.注意:这里的“三个点”不是任意的三点,而是不在同一条直线上的三个点,而在同一直线上的三个点不能画一个圆.“确定”一词应理解为“有且只有”,即过不在同一条直线上的三个点有且只有一个圆,过一点可画无数个圆,过两点也能画无数个圆,过不在同一条直线上的三点能画且只能画一个圆.3.三角形的外接圆与外心(1)外接圆:经过三角形的三个顶点的圆,叫做三角形的外接圆.(2)(2)外心:三角形外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心.(3)(3)概念说明:(4)①“接”是说明三角形的顶点在圆上,或者经过三角形的三个顶点.(5)②锐角三角形的外心在三角形的内部;直角三角形的外心为直角三角形斜边的中点;钝角三角形的外心在三角形的外部.(6)③找一个三角形的外心,就是找一个三角形的两条边的垂直平分线的交点,三角形的外接圆只有一个,而一个圆的内接三角形却有无数个.4.反证法(了解)(1)对于一个命题,当使用直接证法比较困难时,可以采用间接证法,反证法就是一个间接证法.反证法主要适合的证明类型有:①命题的结论是否定型的.②命题的结论是无限型的.③命题的结论是“至多”或“至少”型的.(2)(2)反证法的一般步骤是:(3)①假设命题的结论不成立;(4)②从这个假设出发,经过推理论证,得出矛盾;(5)③由矛盾判定假设不正确,从而肯定原命题的结论正确.5.直线和圆的位置关系(1)直线和圆的三种位置关系:①相离:一条直线和圆没有公共点.②相切:一条直线和圆只有一个公共点,叫做这条直线和圆相切,这条直线叫圆的切线,唯一的公共点叫切点.③相交:一条直线和圆有两个公共点,此时叫做这条直线和圆相交,这条直线叫圆的割线.(2)判断直线和圆的位置关系:设⊙O的半径为r,圆心O到直线l的距离为d.①直线l和⊙O相交⇔d<r②直线l和⊙O相切⇔d=r③直线l和⊙O相离⇔d>r.6.切线的性质(1)切线的性质(2)①圆的切线垂直于经过切点的半径.(3)②经过圆心且垂直于切线的直线必经过切点.(4)③经过切点且垂直于切线的直线必经过圆心.(5)(2)切线的性质可总结如下:(6)如果一条直线符合下列三个条件中的任意两个,那么它一定满足第三个条件,这三个条件是:①直线过圆心;②直线过切点;③直线与圆的切线垂直.(7)(3)切线性质的运用(8)由定理可知,若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.简记作:见切点,连半径,见垂直.7.切线的判定8.(1)切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线.9.(2)在应用判定定理时注意:10.①切线必须满足两个条件:a、经过半径的外端;b、垂直于这条半径,否则就不是圆的切线.11.②切线的判定定理实际上是从”圆心到直线的距离等于半径时,直线和圆相切“这个结论直接得出来的.12.③在判定一条直线为圆的切线时,当已知条件中未明确指出直线和圆是否有公共点时,常过圆心作该直线的垂线段,证明该线段的长等于半径,可简单的说成“无交点,作垂线段,证半径”;当已知条件中明确指出直线与圆有公共点时,常连接过该公共点的半径,证明该半径垂直于这条直线,可简单地说成“有交点,作半径,证垂直”.8.切线的判定与性质(1)切线的性质①圆的切线垂直于经过切点的半径.②经过圆心且垂直于切线的直线必经过切点.③经过切点且垂直于切线的直线必经过圆心.(2)切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线.(3)常见的辅助线的:①判定切线时“连圆心和直线与圆的公共点”或“过圆心作这条直线的垂线”;②有切线时,常常“遇到切点连圆心得半径”.9.切线长定理(1)圆的切线定义:经过圆外一点作圆的切线,这点和切点之间的线段的长,叫做这点到圆的切线长.(2)(2)切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线,平分两条切线的夹角.(3)(3)注意:切线和切线长是两个不同的概念,切线是直线,不能度量;切线长是线段的长,这条线段的两个端点分别是圆外一点和切点,可以度量.(4)(4)切线长定理包含着一些隐含结论:(5)①垂直关系三处;(6)②全等关系三对;(7)③弧相等关系两对,在一些证明求解问题中经常用到.10.三角形的内切圆与内心(1)内切圆的有关概念:与三角形各边都相切的圆叫三角形的内切圆,三角形的内切圆的圆心叫做三角形的内心,这个三角形叫做圆的外切三角形.三角形的内心就是三角形三个内角角平分线的交点.(2)任何一个三角形有且仅有一个内切圆,而任一个圆都有无数个外切三角形.(3)三角形内心的性质:三角形的内心到三角形三边的距离相等;三角形的内心与三角形顶点的连线平分这个内角.11.圆与圆的五种位置关系(1)圆与圆的五种位置关系:①外离;②外切;③相交;④内切;⑤内含.如果两个圆没有公共点,叫两圆相离.当每个圆上的点在另一个圆的外部时,叫两个圆外离,当一个圆上的点都在另一圆的内部时,叫两个圆内含,两圆同心是内含的一个特例;如果两个圆有一个公共点,叫两个圆相切,相切分为内切、外切两种;如果两个圆有两个公共点叫两个圆相交.(2)圆和圆的位置与两圆的圆心距、半径的数量之间的关系:①两圆外离⇔d>R+r;②两圆外切⇔d=R+r;③两圆相交⇔R-r<d<R+r(R≥r);④两圆内切⇔d=R-r(R>r);⑤两圆内含⇔d<R-r(R>r).12.相切两圆的性质相切两圆的性质:如果两圆相切,那么连心线必经过切点.这说明两圆的圆心和切点三点共线,为证明带来了很大方便.13.相交两圆的性质(1)相交两圆的性质:(2)相交两圆的连心线(经过两个圆心的直线),垂直平分两圆的公共弦.(3)注意:在习题中常常通过公共弦在两圆之间建立联系.(4)(2)两圆的公切线性质:(5)两圆的两条外公切线的长相等;两圆的两条内公切线的长也相等.(6)两个圆如果有两条(内)公切线,则它们的交点一定在连心线上.4. 判断圆的切线的方法及应用判断圆的切线的方法有三种:(1)与圆有惟一公共点的直线是圆的切线;(2)若圆心到一条直线的距离等于圆的半径,则该直线是圆的切线;(3)经过半径外端,并且垂直于这条半径的直线是圆的切线.【例4】如图,⊙O的直径AB=4,∠ABC=30°,BC=34,D是线段BC的中点.(1)试判断点D与⊙O的位置关系,并说明理由.(2)过点D作DE⊥AC,垂足为点E,求证:直线DE是⊙O的切线.【例5】如图,已知O为正方形ABCD对角线上一点,以O为圆心,OA的长为半径的⊙O与BC相切于M,与AB、AD分别相交于E、F,求证CD与⊙O相切.【例6】如图,半圆O为△ABC的外接半圆,AC为直径,D为劣弧上一动点,P在CB 的延长线上,且有∠BAP=∠BDA.求证:AP 是半圆O 的切线.【知识梳理】1. 直线与圆的位置关系:2. 切线的定义和性质:3.三角形与圆的特殊位置关系:4. 圆与圆的位置关系:(两圆圆心距为d ,半径分别为21,r r )相交⇔2121r r d r r +<<-; 外切⇔21r r d +=;内切⇔21r r d -=; 外离⇔21r r d +>; 内含⇔210r r d -<<【注意点】与圆的切线长有关的计算.【例题精讲】例1.⊙O 的半径是6,点O 到直线a 的距离为5,则直线a 与⊙O 的位置关系为( )A .相离B .相切C .相交D .内含例 2. 如图1,⊙O 内切于ABC △,切点分别为D E F ,,.50B ∠=°,60C ∠=°,连结OE OF DE DF ,,,,则EDF ∠等于( )A .40°B .55°C .65°D .70°例3. 如图,已知直线L 和直线L 外两定点A 、B ,且A 、B 到直线L 的距离相等,则经过A 、B 两点且圆心在L 上的圆有( )A .0个B .1个C .无数个D .0个或1个或无数个例4.已知⊙O 1半径为3cm ,⊙O 2半径为4cm ,并且⊙O 1与⊙O 2相切,则这两个圆的圆心距为( ) A.1cm B.7cm C.10cm D. 1cm 或7cm例5.两圆内切,圆心距为3,一个圆的半径为5,另一个圆的半径为 例6.两圆半径R=5,r=3,则当两圆的圆心距d 满足___ ___•时,•两圆相交;•当d•满足___ ___时,两圆不外离.例7.⊙O 半径为6.5cm ,点P 为直线L 上一点,且OP=6.5cm ,则直线与⊙O•的位置关系是____例8.如图,PA 、PB 分别与⊙O 相切于点A 、B ,⊙O 的切线EF 分别交PA 、PB 于点E 、F ,切点C 在弧AB 上,若PA 长为2,则△PEF 的周长是 _.例9. 如图,⊙M 与x 轴相交于点(20)A ,,(80)B ,,与y 轴切于点C ,则圆心M 的坐标是例10. 如图,四边形ABCD 内接于⊙A ,AC 为⊙O 的直径,弦DB ⊥AC ,垂足为M ,过点D 作⊙O 的切线交BA 的延长线于点E ,若AC=10,tan ∠DAE=43,求DB 的长.【当堂检测】1.如果两圆半径分别为3和4,圆心距为7,那么两圆位置关系是( )A .相离B .外切C .内切D .相交2.⊙A 和⊙B 相切,半径分别为8cm 和2cm ,则圆心距AB 为( )A .10cmB .6cmC .10cm 或6cmD .以上答案均不对3.如图,P 是⊙O 的直径CB 延长线上一点,PA 切⊙O 于点A ,如果PA =3,PB =1,那么∠APC 等于( )A. 15B. 30C. 45D. 60O O2O14. 如图,⊙O 半径为5,PC 切⊙O 于点C ,PO 交⊙O 于点A ,PA =4,那么PC 的长等于( ) A )6 (B )25 (C )210 (D )2145.如图,在10×6的网格图中(每个小正方形的边长均为1个单位长).⊙A 半径为2,⊙B 半径为1,需使⊙A 与静止的⊙B 相切,那么⊙A 由图示的位置向左平移 个单位长.6. 如图,⊙O 为△ABC 的内切圆,∠C = 90,AO 的延长线交BC 于点D ,AC =4,DC =1,,则⊙O 的半径等于( )A. 45B. 54C. 43D. 657.⊙O 的半径为6,⊙O 的一条弦AB 长63,以3为半径⊙O 的同心圆与直线AB 的位置关系是( )A.相离B.相交C.相切D.不能确定8.如图,在ABC △中,12023AB AC A BC =∠==,°,,A ⊙与BC 相切于点D ,且交AB AC 、于M N 、两点,则图中阴影部分的面积是 (保留π).9.如图,B 是线段AC 上的一点,且AB :AC=2:5,分别以AB 、AC 为直径画圆,则小圆的面积与大圆的面积之比为_______.10. 如图,从一块直径为a+b 的圆形纸板上挖去直径分别为a 和b 的两个圆,则剩下的纸板面积是___.11. 如图,两等圆外切,并且都与一个大圆内切.若此三个圆的圆心围成的三角形的周长为18cm .则大圆的半径是______cm .12.如图,直线AB 切⊙O 于C 点,D 是⊙O 上一点,∠EDC=30º,弦EF ∥AB ,连结OC 交EF 于H 点,连结CF ,且CF=2,则HE 的长为_________.13. 如图,PA 、PB 是⊙O 的两条切线,切点分别为A 、B ,若直径AC=12cm ,∠P=60°.求弦AB 的长. 【中考连接】 一、选择题 1. 正三角形的内切圆半径为1,那么三角形的边长为( )A.2B.32C.3D.3 2.⊙O 是等边ABC △的外接圆,⊙O 的半径为2,则ABC △的边长为( )A .3B .5C .23D .253. 已知⊙O 的直径AB 与弦AC 的夹角为 30,过C 点的切线PC 与AB 延长线交于P 点.PC =5,则⊙O 的半径为 ( )A. 335 B. 635 C. 10 D. 54. AB 是⊙O 的直径,点P 在BA 的延长线上,PC 是⊙O 的切线,C 为切点,PC =26,PA =4,则⊙O 的半径等于( )A. 1B. 2C. 23D. 265.某同学制做了三个半径分别为1、2、3的圆,在某一平面内,让它们两两外O D C B ABPA OC 第3题图 第4题图 第5题图 第6题图 第8题图 第9题图 第11题图 第10题图 第12题图切,该同学把此时三个圆的圆心用线连接成三角形.你认为该三角形的形状为( )A.钝角三角形B.等边三角形C.直角三角形D.等腰三角形6.关于下列四种说法中,你认为正确的有( )①圆心距小于两圆半径之和的两圆必相交 ②两个同心圆的圆心距为零③没有公共点的两圆必外离 ④两圆连心线的长必大于两圆半径之差A.1个B.2个C.3个D.4个二、填空题 6. 如图,AB 、AC 是⊙O 的两条切线,切点分别为B 、C ,D 是优弧BC 上的一点,已知∠BAC =80°,那么∠BDC =__________度.7. 如图,AB 是⊙O 的直径,四边形ABCD 内接于⊙O ,,,的度数比为3∶2∶4,MN 是⊙O 的切线,C 是切点,则∠BCM 的度数为________.8.如图,在△ABC 中,5cm AB AC ==,cos B 35=.如果⊙O 的半径为10cm ,且经过点B 、C ,那么线段AO = cm .9.两个等圆⊙O 与⊙O ′外切,过点O 作⊙O ′的两条切线OA 、OB ,A 、B 是切点,则∠AOB = .10.如图6,直线AB 与⊙O 相切于点B ,BC 是⊙O 的直径,AC 交⊙O 于点D ,连结BD ,则图中直角三角形有 个.11.如图,60ACB ∠=°,半径为1cm 的O ⊙切BC 于点C ,若将O ⊙在CB 上向右滚动,则当滚动到O ⊙与CA 也相切时,圆心O 移动的水平距离是__________cm .12.如图, AB 与⊙O 相切于点B ,线段OA 与弦BC 垂直于点D ,∠AOB =60°,B C=4cm ,则切线AB = cm.13.如图,⊙A 和⊙B 与x 轴和y 轴相切,圆心A 和圆心B 都在反比例函数1y x =图象上,则阴影部分面积等于 .14. Rt △ABC 中,9068C AC BC ∠===°,,.则△ABC的内切圆半径r =______.15.⊙O 的圆心到直线l 的距离为d ,⊙O 的半径为r ,当d 、r 是关于x 的方程x 2-4x+m=0的两根,且直线l 与⊙O 相切时,则m 的值为_____.16.已知:⊙A 、⊙B 、⊙C 的半径分别为2、3、5,且两两相切,则AB 、BC 、CA 分别为 .17.⊙O 的圆心到直线l 的距离为d ,⊙O 的半径为r ,当d 、r 是关于x 的方程x 2-4x+m=0的两根,且直线l 与⊙O 相切时,则m 的值为_____.三、解答题18. 如图,AB 是⊙O 的弦,OA OC ⊥交AB 于点C ,过B 的直线交OC 的延长线于点E ,当BE CE =时,直线BE 与⊙O 有怎样的位置关系?请说明理由. 第3题图 第6题图 第7题图 第8题图 第10题图 第11题图 第12题图 第13题图19.如图1,在⊙O 中,AB 为⊙O 的直径,AC 是弦,4OC =,60OAC ∠=. (1)求∠AOC 的度数;(2)在图1中,P 为直径BA 延长线上的一点,当CP 与⊙O 相切时,求PO 的长;(3)如图2,一动点M 从A 点出发,在⊙O 上按A 照逆时针的方向运动,当MAO CAO S S =△△时,求动点M 所经过的弧长.第18题图。
人教版九年级数学上册《24.2 点和圆直线和圆的位置关系》同步练习题-附答案学校:___________班级:___________姓名:___________考号:___________考点1点与圆的位置关系1. 点与圆的位置关系:设⊙O的半径为r点P到圆心的距离为OP=d点P在⇔d>r点P在⇔d=r点P在⇔d<r。
2.三点圆:不在直线上的三个点一个圆。
3.三角形的外接圆:经过三角形的三个顶点可以作一个圆这个圆叫做三角形的圆.外接圆的圆心是三角形三条边的的交点叫做这个三角形的外心。
考点2直线和圆的位置关系1.直线与圆的位置关系:(1)直线和圆有两个公共点时我们说这条直线和圆.这条直线叫做圆的线。
(2)直线和圆只有一个公共点时我们说这条直线和圆.这条直线叫做圆的线这个点叫做点。
(3)直线和圆没有公共点时我们说这条直线和圆。
(4)设⊙O的半径为r圆心O到直线l的距离d直线l和⊙O⇔d<r直线l和⊙O⇔d=r直线l和⊙O⇔d>r。
2.切线的判定定理和性质定理(1)切线的判定定理:经过半径的外端并且于这条半径的直线是圆的切线。
(2)切线的性质定理:圆的切线于过切点的半径。
3.切线长定理:(1)切线长:经过圆外一点的圆的切线上这点和点之间线段的长叫做这点到圆的切线长。
(2)切线长定理:从圆外一点可以引圆的两条切线它们的切线长这一点和圆心的连线两条切线的夹角。
4.内切圆:与三角形各边都相切的圆叫做三角形的.内切圆的圆心是三角形三条的交点叫做三角形的内心。
限时训练:一选择题:在每小题给出的选项中只有一项是符合题目要求的。
1.(2024·全国·同步练习)以点P(1,2)为圆心r为半径画圆与坐标轴恰好有三个交点则r应满足( )A. r=2或√ 5B. r=2C. r=√ 5D. 2≤r≤√ 52.(2024·全国·同步练习)如图在△ABC中O是AB边上的点以O为圆心OB为半径的⊙O与AC相切于点D BD平分∠ABC AD=√ 3OD AB=12CD的长是( )A. 2√ 3B. 2C. 3√ 3D. 4√ 33.(2024·江苏省·同步练习)下列命题中真命题的个数是( ) ①经过三点可以作一个圆②一个圆有且只有一个内接三角形③一个三角形有且只有一个外接圆④三角形的外心到三角形的三个顶点的距离相等⑤直角三角形的外心是三角形斜边的中点。
九年级数学上册《第二十四章直线和圆的位置关系》练习题附答案-人教版一、选择题1.直线l与半径为r的⊙O相交,且点O到直线l的距离为6,则r的取值范围是( )A.r<6B.r=6C.r>6D.r≥62.圆的直径为13cm,如果圆心与直线的距离是d,则( )A.当d=8cm时,直线与圆相交B.当d=4.5cm时,直线与圆相离C.当d=6.5cm时,直线与圆相切D.当d=13cm时,直线与圆相切3.如图,在Rt△ABC中,∠C=90°,CB=3cm,AB=4cm,若以点C为圆心,以2cm为半径作⊙C,则AB与⊙C的位置关系是( )A.相离B.相切C.相交D.相切或相交4.如图,已知⊙O上三点A,B,C,半径OC=1,∠ABC=30°,切线PA交OC延长线于点P,则PA的长为( )A.2B. 3C. 2D.1 25.如图,两个圆的圆心都是点O,AB是大圆的直径,大圆的弦BC所在直线与小圆相切于点D.则下列结论不一定成立的是( )A.BD=CDB.AC⊥BCC.AB=2ACD.AC=2OD6.如图,⊙P内含于⊙O,⊙O的弦AB切⊙P于点C,且AB∥OP,若阴影部分的面积为9π,则弦AB的长为( )A.3B.4C.6D.97.如图,⊙B的半径为4 cm,∠MBN=60°,点A、C分别是射线BM、BN上的动点,且直线AC ⊥BN.当AC平移到与⊙B相切时,AB的长度是( )A.8 cmB.6 cmC.4 cmD.2 cm8.如图,在△ABC中,∠A=66°,点I是△ABC的内心,则∠BIC的大小为( )A.114°B.122°C.123°D.132°9.如图,正方形网格中的每个小正方形边长都相等,△ABC的三个顶点A,B,C都在格点上.若格点D在△ABC外接圆上,则图中符合条件的格点D(点D与点A,B,C均不重合)有( )A.3个B.4个C.5个D.6个10.如图,△ABC内心为I,连接AI并延长交△ABC的外接圆于D,则线段DI与DB的关系是( )A.DI=DBB.DI>DBC.DI<DBD.不确定二、填空题11.⊙O的半径为R,点O到直线l的距离为d,R,d是关于x的方程x2﹣4x+m=0的两根,当直线l与⊙O相切时,m的值为________.12.如图,已知∠BOA=30°,M为OB边上一点,以M为圆心、2cm为半径作⊙M.点M在射线OB上运动,当OM=5cm时,⊙M与直线OA的位置关系是 .13.如图,在以O为圆心的两个同心圆中,大圆的弦AB是小圆的切线,P为切点,如果AB=8cm,小圆半径为3cm,那么大圆半径为 cm.14.当宽为3 cm的刻度尺的一边与圆相切时,另一边与圆的两个交点处的读数如图所示(单位:cm),那么该圆的半径为________cm.15.在△ABC中,点I是内心,若∠A=80°,则∠DEF= .16.在边长为3cm、4cm、5cm的三角形白铁皮上剪下一个最大的圆,此圆的半径为cm.三、解答题17.如图,在Rt△ABC中,∠C=90°,∠B=60°,若AO=x cm,⊙O的半径为1 cm,当x在什么范围内取值时,直线AC与⊙O相离、相切、相交?18.如图,AB为⊙O的直径,PD切⊙O于点C,交AB的延长线于点D,且∠D=2∠CAD.(1)求∠D的度数;(2)若CD=2,求BD的长.19.在Rt△ABC中,∠ACB=90°,BE平分∠ABC,D是边AB上一点,以BD为直径的⊙O经过点E,且交BC于点F.(1)求证:AC是⊙O的切线;(2)若BF=6,⊙O的半径为5,求CE的长.20.已知AB是⊙O的直径,弦CD与AB相交,∠BAC=38°(1)如图①,若D为弧AB的中点,求∠ABC和∠ABD的大小;(2)如图②,过点D作⊙O的切线,与AB的延长线交于点P,若DP∥AC,求∠OCD的大小.21.如图,在⊙O中,点C是直径AB延长线上一点,过点C作⊙O的切线,切点为D,连结BD.(1)求证:∠A=∠BDC;(2)若CM平分∠ACD,且分别交AD、BD于点M、N,当DM=1时,求MN的长.22.如图,在△ABC中,∠C=90°,点O在AC上,以OA为半径的⊙O交AB于点D,BD的垂直平分线交BC于点E,交BD于点F,连接DE.(1)判断直线DE与⊙O的位置关系,并说明理由;(2)若AC=6,BC=8,OA=2,求线段DE的长.参考答案1.C.2.C.3.C.4.B.5.C.6.C7.A.8.C.9.C.10.A.11.答案为:4.12.答案为:相离.13.答案为:5.14.答案为:25615.答案为:50°.16.答案为:1.17.解:作OD ⊥AC 于点D.∵∠C =90°,∠B =60°,∴∠A =30°.∵AO =x cm ,∴OD =12x cm. (1)若⊙O 与直线AC 相离,则有OD>r ,即12x >1,解得x >2; (2)若⊙O 与直线AC 相切,则有OD =r ,即12x =1,解得x =2; (3)若⊙O 与直线AC 相交,则有OD<r ,即12x <1,解得x <2,∴0<x<2. 综上可知:当x >2时,直线AC 与⊙O 相离;当x =2时,直线AC 与⊙O 相切; 当0<x <2时,直线AC 与⊙O 相交.18.解:(1)∵∠COD=2∠CAD,∠D=2∠CAD∴∠D=∠COD.∵PD与⊙O相切于点C∴OC⊥PD,即∠OCD=90°∴∠D=45°(2)由(1)可知△OCD是等腰直角三角形∴OC=CD=2由勾股定理,得OD=22+22=2 2∴BD=OD-OB=22-219.(1)证明:连接OE.∵OE=OB∴∠OBE=∠OEB∵BE平分∠ABC∴∠OBE=∠EBC∴∠EBC=∠OEB∴OE∥BC∴∠OEA=∠C∵∠ACB=90°∴∠OEA=90°∴AC是⊙O的切线;(2)解:连接OE、OF,过点O作OH⊥BF交BF于H由题意可知四边形OECH为矩形∴OH=CE∵BF=6∴BH=3在Rt△BHO中,OB=5∴OH=4∴CE=4.20.解:(1)∵AB是⊙O的直径,弦CD与AB相交,∠BAC=38°∴∠ACB=90°∴∠ABC=∠ACB﹣∠BAC=90°﹣38°=52°∵D为弧AB的中点,∠AOB=180°∴∠AOD=90°∴∠ABD=45°;(2)连接OD∵DP切⊙O于点D∴OD⊥DP,即∠ODP=90°由DP∥AC,又∠BAC=38°∴∠P=∠BAC=38°∵∠AOD是△ODP的一个外角∴∠AOD=∠P+∠ODP=128°∴∠ACD=64°∵OC=OA,∠BAC=38°∴∠OCA=∠BAC=38°∴∠OCD=∠ACD﹣∠OCA=64°﹣38°=26°.21.解:(1)如图,连接OD,∵AB为⊙O的直径∴∠ADB=90°,即∠A+∠ABD=90°又∵CD与⊙O相切于点D∴∠CDB+∠ODB=90°∵OD=OB∴∠ABD=∠ODB∴∠A=∠BDC;(2)∵CM平分∠ACD∴∠DCM=∠ACM又∵∠A=∠BDC∴∠A+∠ACM=∠BDC+∠DCM,即∠DMN=∠DNM∵∠ADB=90°,DM=1∴DN=DM=1∴MN=2.22.解:(1)直线DE与⊙O相切,理由如下:连接OD ∵OD=OA∴∠A=∠ODA∵EF是BD的垂直平分线∴EB=ED∴∠B=∠EDB∵∠C=90°∴∠A+∠B=90°∴∠ODA+∠EDB=90°∴∠ODE=180°﹣90°=90°∴直线DE与⊙O相切;(2)连接OE,设DE=x,则EB=ED=x,CE=8﹣x∵∠C=∠ODE=90°∴OC2+CE2=OE2=OD2+DE2∴42+(8﹣x)2=22+x2,解得:x=4.75 则DE=4.75.。
九年级数学直线与圆的位置关系练习题及答案一、单选题1. 给定直线l :3x-4y=12,圆C:(x-1)^2+(y+3)^2=25,则l与C的位置关系是:A. 相切B. 相离C. 相交于两点D. 相交于一个点2. 若直线l的方程为x-2y+1=0,圆C的方程为(x-3)^2+(y+4)^2=16,则l与C的位置关系是:A. 相切B. 相离C. 相交于两点D. 相交于一个点3. 在直角坐标系中,直线l:y=2x+1与圆C:(x-4)^2+(y+2)^2=36的位置关系是:A. 相切B. 相离C. 相交于两点D. 相交于一个点二、填空题1. 直线y=3x+2与圆(x-1)^2+(y-3)^2=16的位置关系可以用___________表示。
2. 若直线l :2x+3y=6与圆C:(x-2)^2+(y-3)^2=9相交于点A(1,2),则点A到直线l的距离为_________。
三、解答题1. 已知直线l的方程为y=2x-1,圆C的方程为(x-2)^2+(y-1)^2=r^2,求当r=3时,l与C的位置关系。
2. 某圆C的圆心坐标为(3,-2),半径为4,直线l的方程为2x-y=5,则求l与C的位置关系并证明。
答案:一、单选题1. C2. A3. D二、填空题1. 相交于两点2. 3三、解答题1. 当r=3时,圆C的方程为(x-2)^2+(y-1)^2=9。
将直线l的方程代入圆C的方程,得到4x^2-4x+1+4x-4+y^2-2y+1=9,简化后为4x^2+y^2-2y-3=0。
该方程与圆C相交于两个点,故位置关系为相交于两点。
2. 圆C的圆心坐标为(3,-2),半径为4。
直线l的斜率为2,l的方程可以改写为y=2x-5,将直线l的方程代入圆C的方程,得到(x-3)^2+(2x-5+2)^2=16。
化简后得到5x^2-35x+60=0,解得x=2和x=6。
将x的值代入直线l的方程,得到相应的y值,分别为y=-1和y=7。
人教版数学九年级上册:24.2.2 直线和圆的位置关系同步练习(附答案)第1课时直线和圆的位置关系1.已知半径为5的圆,其圆心到直线的距离是3,此时直线和圆的位置关系为() A.相离 B.相切 C.相交 D.无法确定2.已知一条直线与圆有公共点,则这条直线与圆的位置关系是() A.相离 B.相切C.相交 D.相切或相交3.如图,∠O=30°,C为OB上一点,且OC=6,以点C为圆心,半径为3的圆与OA的位置关系是()A.相离B.相交C.相切D.以上三种情况均有可能4.⊙O的半径为6,一条弦长63,以3为半径的同心圆与这条弦的关系是() A.相切 B.相交C.相离D.相切或相交5.在Rt△ABC中,∠C=90°,AB=4 cm,BC=2 cm,以C为圆心,r为半径的圆与AB有何种位置关系?请你写出判断过程.(1)r=1.5 cm;(2)r= 3 cm;(3)r=2 cm.6.设⊙O的半径为4,点O到直线a的距离为d,若⊙O与直线a至多只有一个公共点,则d的取值范围为()A.d≤4 B.d<4C.d≥4 D.d=47.如图,在平面直角坐标系xOy中,半径为2的⊙P的圆心P的坐标为(-3,0),将⊙P沿x轴正方向平移,使⊙P与y轴相切,则平移的距离为()A.1B.1或5C.3D.58.⊙O的半径为R,点O到直线l的距离为d,R,d是方程x2-4x+m=0的两根,当直线l与⊙O相切时,m的值为.9.如图,在Rt△ABC中,∠A=90°,∠C=60°,BO=x,⊙O的半径为2,当x在什么范围内取值时,AB所在的直线与⊙O相交、相切、相离?10.已知⊙O的半径为2,直线l上有一点P满足PO=2,则直线l与⊙O的位置关系是11.如图,⊙O的半径OC=5 cm,直线l⊥OC,垂足为H,且l交⊙O于A,B两点,AB=8 cm.若l沿OC所在直线平移与⊙O相切,则平移的距离是.12.如图,在Rt△ABC中,∠B=90°,∠A=60°,BC=4 cm,以B为圆心,2 cm长为半径作圆,则⊙B与AC的位置关系是()A.相离B.相切C.相交D.外切13.以坐标原点O为圆心,作半径为2的圆,若直线y=-x+b与⊙O相交,则b的取值范围是()A.0≤b<2 2 B.-22≤b≤2 2C.-23<b<2 3 D.-22<b<2 214.已知如图,∠BOA=30°,M是OB上一点,以M为圆心、2 cm为半径作⊙M,点M在射线OB上运动,当OM=5 cm时,⊙M与直线OA的位置关系是.15.如图,在Rt△ABC中,∠C=90°,AC≠BC,点M是边AC上的动点.过点M 作MN∥AB交BC于点N,现将△MNC沿MN折叠,得到△MNP.若点P在AB上,则以MN为直径的圆与直线AB的位置关系是16.如图所示,半径为2的⊙P的圆心在直线y=2x-1上运动.(1)当⊙P和x轴相切时,写出点P的坐标;并判断此时y轴与⊙P的位置关系;(2)当⊙P和y轴相切时,写出点P的坐标;并判断此时x轴与⊙P的位置关系;(3)⊙P是否能同时与x轴和y轴相切?若能,写出点P的坐标;若不能,说明理由.17.如图,给定一个半径长为2的圆,圆心O到水平直线l的距离为d,即OM =d.我们把圆上到直线l的距离等于1的点的个数记为m.如d=0时,l为经过圆心O的一条直线,此时圆上有四个到直线l的距离等于1的点,即m=4,由此可知:(1)当d=3时,m=;(2)当m=2时,d的取值范围是.第2课时切线的判定与性质1.下列说法中,正确的是()A.AB垂直于⊙O的半径,则AB是⊙O的切线B.经过半径外端的直线是圆的切线C.经过切点的直线是圆的切线D.圆心到直线的距离等于半径,那么这条直线是圆的切线2.如图,AB是半圆的直径,O为圆心,AD,BD是半圆的弦,且∠PDA=∠PBD.判断直线PD是否为⊙O的切线,并说明理由.3.如图,直线AB与⊙O相切于点A,⊙O的半径为2,若∠OBA=30°,则OB 的长为()A.4 3 B.4 C.2 3 D.24.如图,已知直线AD是⊙O的切线,点A为切点,OD交⊙O于点B,点C在⊙O 上,且∠ODA=36°,则∠ACB的度数为()A.54°B.36°C.30°D.27°5.如图,PA切⊙O于点A,PO交⊙O于点B,若PA=6,PB=3,则⊙O的半径是()A.5 B.4 C.4.5 D.3.56.如图,AB是⊙O的弦,AC是⊙O的切线,A为切点,BC经过圆心,若∠B=25°,则∠C等于.7.如图,AB与⊙O相切于点C,∠A=∠B,⊙O的半径为6,AB=16.求OA的长.8.如图,在平面直角坐标系第一象限内有一矩形OABC,B(4,2),现有一圆同时和这个矩形的三边都相切,则此圆的圆心P的坐标为(1,1)或(3,1)或(2,0)或(2,2).9.如图,两个同心圆的半径分别为4 cm和5 cm,大圆的一条弦AB与小圆相切,则弦AB的长为()A.3 cm B.4 cm C.6 cm D.8 cm10.如图,AB为⊙O的直径,PD是⊙O的切线,点C为切点,PD与AB的延长线相交于点D,连接AC.若∠D=2∠CAD,CD=2,则BD的长为()A.22-2 B.2- 2 C.22-1 D.2-111.如图,以△AOB的顶点O为圆心,OA为半径的⊙O交BO于点C,此时AB恰好与⊙O相切,P为⊙O上任意一点(不与A,C重合),已知BC=AO,则∠P=.12.如图,已知CD是△ABC中AB边上的高,以CD为直径的⊙O分别交CA,CB 于点E,F,点G是AD的中点.求证:GE是⊙O的切线.13.如图,已知直线AB经过⊙O上的点C,且OA=OB,CA=CB.(1)求证:直线AB是⊙O的切线;(2)若∠A=30°,AC=6,求⊙O的周长.14.如图,在⊙O中,AB为直径,OC⊥AB,弦CD与OB交于点F,过点D、A分别作⊙O的切线交于点G,并与AB延长线交于点E.求证:∠1=∠2.15.如图,等腰△ABC中,AC=BC=10,AB=12.以BC为直径作⊙O交AB于点D,交AC于点G,DF⊥AC,垂足为F,交CB的延长线于点E.(1)求证:直线EF是⊙O的切线;(2)求DF的值.第3课时切线长定理1.如图,从⊙O外一点P引⊙O的两条切线PA,PB,切点分别为A,B.如果∠APB =60°,PA=8,那么弦AB的长是( )A.4 B.8 C.4 3 D.8 32.如图,AB是⊙O的直径,点C为⊙O外一点,CA,CD是⊙O的切线,A,D为切点,连接BD,AD.若∠ACD=30°,则∠DBA的大小是( ) A.15° B.30° C.60° D.75°3.如图,AB,AC,BD是⊙O的切线,P,C,D为切点,如果AB=5,AC=3,则BD的长为 .4.如图,PA,PB是⊙O的切线,切点分别是A,B,若∠APB=60°,OA=2 cm,则OP= cm.5.为了测量一个圆形铁环的半径,某同学采用了如下办法:将铁环平放在水平桌面上,用一个锐角为30°的三角板和一个刻度尺,按如图所示的方法得到相关数据,进而可求得铁环的半径.若三角板与圆相切且测得PA=5 cm,求铁环的半径.6.如图,⊙O是△ABC的内切圆,则点O是△ABC的( )A.三条边的垂直平分线的交点 B.三条角平分线的交点C.三条中线的交点 D.三条高的交点7.如图,△ABC中,AB=7 cm,AC=8 cm,BC=6 cm,点O是△ABC的内心,过点O作EF∥AB,与AC,BC分别交于点E,F,则△CEF的周长为 cm.8.如图,△ABC的内切圆⊙O与BC,CA,AB分别相切于点D,E,F,且AB=18 cm,BC=26 cm,CA=28 cm,求AF,BD,CE的长.9.如图,△ABC是圆的内接三角形,点P是△ABC的内心,∠A=50°,则∠BPC 的度数为.10.如图,已知以直角梯形ABCD 的腰CD 为直径的半圆O 与梯形上底AD 、下底BC 以及腰AB 均相切,切点分别是D ,C ,E.若半圆O 的半径为2,梯形的腰AB 为5,则该梯形的周长是( )A .9B .10C .12D .1411.如图是油路管道的一部分,延伸外围的支路恰好构成一个直角三角形,两直角边分别为6 m 和8 m .按照输油中心O 到三条支路的距离相等来连接管道,则O 到三条支路的管道总长(计算时视管道为线,中心O 为点)是( )A .2 mB .3 mC .6 mD .9 m12.如图,菱形ABCD 的边长为10,⊙O 分别与AB ,AD 相切于E ,F 两点,且与BG 相切于点G.若AO =5,且⊙O 的半径为3,则BG 的长度为( )A .4B .5C .6D .713.如图,PA ,PB 分别与⊙O 相切于点A ,B ,⊙O 的切线EF 分别交PA ,PB 于点E ,F ,切点C 在AB ︵上,若PA 长为2,则△PEF 的周长为 .14.如图所示,点I为△ABC的内心,点O为△ABC的外心,若∠BOC=140°,求∠BIC的度数.15.如图,CD是⊙O的直径,且CD=2 cm,点P为CD的延长线上一点,过点P 作⊙O的切线PA,PB,切点分别为点A,B.(1)连接AC,若∠APO=30°,试证明△ACP是等腰三角形;(2)填空:①当DP=1cm时,四边形AOBD是菱形;②当DP=(2-1)cm时,四边形AOBP是正方形.答案:24.2.2 直线和圆的位置关系第1课时 直线和圆的位置关系1.C2.D3.C4.A5.解:过点C 作CD ⊥AB ,垂足为D.∵AB =4,BC =2,∴AC =2 3.又∵S △ABC =12AB ·CD =12BC ·AC , ∴CD =BC ·AC AB = 3. (1)r =1.5 cm 时,相离.(2)r = 3 cm 时,相切.(3)r =2 cm 时,相交.6.C7.B8.4.9.解:过点O 作OD ⊥AB ,垂足为D.∵∠A =90°,∠C =60°,∴∠B =30°.∴OD =12OB =12x. 当AB 所在的直线与⊙O 相切时,OD =r =2,∴BO =4.∴0<x<4时,相交;x =4时,相切;x>4时,相离.10.相切或相交.11.2__cm 或8__cm .12.B13.D14.相离.15. 相交.16.解:(1)∵⊙P 的圆心在直线y =2x -1上,∴圆心坐标可设为(x ,2x -1).当⊙P 和x 轴相切时,2x -1=2或2x -1=-2,解得x 1=1.5,x 2=-0.5.∴P 1(1.5,2),P 2(-0.5,-2).∵1.5<2,|-0.5|<2,∴y 轴与⊙P 相交.(2)当⊙P 和y 轴相切时,x =2或-2.得2x -1=3或2x -1=-5.∵|-5|>2,3>2,∴x轴与⊙P相离.(3)不能.∵当x=2时,y=3,当x=-2时,y=-5,|-5|≠2,3≠2,∴⊙P不能同时与x轴和y轴相切.17.(1)1;(2)1<d<3.第2课时切线的判定与性质1.D2.解:PD是⊙O的切线.理由如下:∵AB为直径,∴∠ADB=90°.∴∠ADO+∠ODB=90°.∵OD=OB,∴∠OBD=∠ODB.∵∠PDA=∠PBD,∴∠ADO+∠PDA=90°,即∠PDO=90°.又∵直线PD经过⊙O半径的外端,∴PD是⊙O的切线.3.B4.D5.C6.40°.7.解:连接OC.∵AB 与⊙O 相切于点C ,∴OC ⊥AB.∵∠A =∠B ,∴OA =OB.∴AC =BC =12AB =8. ∵OC =6,∴OA =62+82=10.8.(1,1)或(3,1)或(2,0)或(2,2).9.C10.A11.30°.12.证明:连接OE ,DE.∵CD 是⊙O 的直径,∴∠AED =∠CED =90°.∵G 是AD 的中点,∴EG =12AD =DG. ∴∠GED =∠GDE.∵OE =OD ,∴∠OED =∠ODE .∴∠GED +∠OED =∠GDE +∠ODE ,即∠OEG =∠ODG. ∵CD ⊥AB ,∴∠ODG =90°.∴∠OEG =90°.又∵OE 是⊙O 的半径,∴GE 是⊙O 的切线.13.解:(1)证明:连接OC.∵OA =OB ,CA =CB ,∴OC ⊥AB.∵OC 是⊙O 的半径,∴AB 是⊙O 的切线.(2)∵∠A =30°,∴OC =12OA. 根据勾股定理,得OC 2+AC 2=OA 2, 即(12OA )2+AC 2=OA 2. ∵AC =6,∴OA =4 3.∴OC =12OA =2 3. ∴⊙O 的周长为2π·23=43π. 14.证明:连接OD.∵DE 为⊙O 的切线,∴OD ⊥DE.∴∠ODE =90°,即∠2+∠ODC =90°.∵OC =OD ,∴∠C =∠ODC.∴∠2+∠C =90°.而OC⊥OB,∴∠C+∠3=90°.∴∠2=∠3. ∵∠1=∠3,∴∠1=∠2.综合题15.解:(1)证明:连接CD.∵BC为⊙O的直径,∴∠BDC=90°.∴CD⊥AB.∵AC=BC,∴∠ACD=∠BCD.∵OC=OD,∴∠BCD=∠ODC.∴∠ODC=∠ACD.∴OD∥AC.∵DF⊥AC,∴OD⊥EF.又∵OD是⊙O的半径,∴EF与⊙O相切.(2)∵△ABC是等腰三角形,∴BD=AD=6.在Rt△BDC中,CD=BC2-BD2=102-62=8.设AF=x,则CF=10-x.在Rt△ADF和Rt△CDF中,AD2-AF2=CD2-CF2.∴62-x2=82-(10-x)2.解得x=3.6.∴DF=62-3.62=4.8.第3课时切线长定理1.B2.D3.2.4.4__cm.5.解:设圆心为O,连接OA,OP.∵三角板有一个锐角为30°,∴∠PAO=60°.又∵PA与⊙O相切,∴∠OPA =90°.∴∠POA =30°.∵PA =5 cm ,∴OP =5 3 cm.∴铁环的半径为5 3 cm.6.B7.14__cm .8.解:根据切线长定理,得AE =AF ,BF =BD ,CE =CD.设AF =AE =x cm ,则CE =CD =(28-x )cm ,BF =BD =(18-x )cm. ∵BC =26 cm ,∴(18-x )+(28-x )=26.解得x =10.∴AF =10 cm ,BD =8 cm ,CE =18 cm.9.115°.10.D11.C12.C13.4.14.解:∵点O 为△ABC 的外心,∠BOC =140°, ∴∠A =70°.又∵点I 为△ABC 的内心,∴∠BIC =90°+12∠A =90°+35°=125°. 15.证明:连接OA.∵PA 为⊙O 的切线,∴∠OAP =90°.在Rt △AOP 中,∠AOP =90°-∠APO=90°-30°=60°.∴∠ACP =12∠AOP =12×60°=30°. ∴∠ACP =∠APO.∴AC =AP. ∴△ACP 是等腰三角形.。
人教版九年级上册数学24.2点和圆、直线和圆的位置关系 练习题一、学习反馈1.两个圆的圆心都是O ,半径分别是R 与r ,点A 满足R>OA>r ,则点A 在( )A. 大圆内B. 小圆内C.小圆外大圆内D.大圆外2.⊙A 与⊙B 相切,圆心距为10cm ,其中⊙A 半径为4cm,则⊙B 半径为( )cm.A. 6B. 14 C . 6或14 D .3或73. 已知两圆的半径分别为5cm 和7cm ,圆心距为9 cm ,那么这两个圆的位置关系是( )A .内切 B. 相交 C .外切 D .外离4. 已知两圆半径分别是01222=+-x x 的两根,圆心距则是方程022=-x x 的一个根,则两圆的位置关系是( )A. 外切B. 内切C.相交D. 内含5. 已知两圆半径分别为1和4,圆心距为3,则两圆的位置关系是( )A. 外离B. 相交C.外切D.内切6. ⊙O 的半径10cm ,A 、B 、C 三点到圆心的距离分别为8cm 、10cm 、12cm ,则点A 、B 、C 与⊙O 的位置关系是:点A 在 ;点B 在 ;点C 在7. ⊙O 1与⊙O 2的半径分别是2和1,若O 1 O 2=4,则两圆 ;若O 1 O 2=3,则两圆 ;若O 1 O 2=2.5,则两圆 ;若O 1 O 2=1,则两圆 ;若O 1 O 2=0.5,则两圆 .8. ⊙O 的半径6cm ,当OP=6时,点P 在 ;当OP 时点P 在圆内;当OP 时,点P 不在圆外。
9.如图1所示,在矩形ABCD 中,AB=5,BC=12,如果以A 为圆心,以12为半径作⊙A ,则D 在⊙A ,B 在⊙A ,C 在⊙A 。
10.如图2所示,AB 为⊙O 切线,且OB=6,OA=3,则∠B= ;二、课后作业1.直角三角形的两条直角边分别为12cm 和5cm ,则其外接圆的半径为( )A .5cmB .12cmC .13cmD .6.5cm2.若⊙A 的半径为5,圆心A 的坐标为(3,4),点P 的坐标(5,8),则点P 的位置为( )A .⊙A 内B .⊙A 上C .⊙A 外D .不确定3. 已知两圆的半径分别为3cm 和2cm ,圆心距为5cm ,则两圆的位置关系是( )A .外离B .相交C .外切D .内切4. 如图,国际奥委会会旗上的图案是由五个圆环组成,在这个图案中反映出的两圆位置关系有( ).A.内切、相交B. 外离、内切C.外切、外离D. 外离、相交5.如图①,AB 为⊙O 的直径,BC 为⊙O 的切线,AC 交⊙O 于点D 。
九年级数学直线与圆的位置关系专题练习一、选择题1.设⊙O的半径为3,点O到直线l的距离为d,若直线l与⊙O至少有一个公共点,则d 应满足的条件是()A.d=3 B.d≤3 C.d<3 D.d>3答案:B解析:解答:因为直线l与⊙O至少有一个公共点,所以包括直线与圆有一个公共点和两个公共点两种情况,因此d≤r,即d≤3,故选B.分析:当d=r时,直线与圆相切,直线l与圆有一个公共点;当d<r时,直线与圆相交,直线l与圆有两个公共点;当d>r时,直线与圆相离,直线L与圆没有公共点.2.在△ABC中,∠A=90°,AB=3cm,AC=4cm,若以A为圆心3cm为半径作⊙O,则BC与⊙O的位置关系是()A.相交B.相离C.相切D.不能确定答案:A解析:解答:做AD⊥BC,∵∠A=90°,AB=3cm,AC=4cm,若以A为圆心3cm为半径作⊙O,∴BC=5,∴AD×BC=AC×AB,解得:AD=2.4,2.4<3,∴BC与⊙O的位置关系是:相交.故选A.分析:首先求出点A与直线BC的距离,根据直线与圆的位置关系得出BC与⊙O的位置关系.3.在Rt△ABC中,∠C=90°,AC=6cm,则以A为圆心6cm为半径的圆与直线BC的位置关系是()A.相离B.相切C.相交D.外离解析:解答:根据题意得:点A到直线BC的距离=AC,∵AC=6cm,圆的半径=6cm,∴以A为圆心6cm为半径的圆与直线BC相切.故选B.分析:点A到直线BC的距离为线段AC的长度,正好等于圆的半径,则直线BC与圆相切.4.⊙O的半径为8,圆心O到直线l的距离为4,则直线l与⊙O的位置关系是()A.相切B.相交C.相离D.不能确定答案:B解析:解答:∵⊙O的半径为8,圆心O到直线l的距离为4,∵8>4,即:d<r,∴直线l与⊙O的位置关系是相交.故选:B.分析:根据圆O的半径和圆心O到直线L的距离的大小,相交:d<r;相切:d=r;相离:d>r;即可选出答案.5.已知⊙O的半径为5,圆心O到直线l的距离为3,则反映直线l与⊙O的位置关系的图形是()A.B.C.D.答案:B解析:解答:∵⊙O的半径为5,圆心O到直线l的距离为3,∵5>3,即:d<r,∴直线L与⊙O的位置关系是相交.故选B.分析:根据圆O的半径和圆心O到直线l的距离的大小,相交:d<r;相切:d=r;相离:d>r;即可选出答案.6.已知⊙O的半径为10cm,如果一条直线和圆心O的距离为10cm,那么这条直线和这个圆的位置关系为()A.相离B.相切C.相交D.相交或相离解析:解答:根据圆心到直线的距离10等于圆的半径10,则直线和圆相切.故选B.分析:直线和圆的位置关系与数量之间的联系:若d<r,则直线与圆相交;若d=r,则直线于圆相切;若d>r,则直线与圆相离.7.圆O与直线L在同一平面上.若圆O半径为3公分,且其圆心到直线L的距离为2公分,则圆O和直线L的位置关系为()A.不相交B.相交于一点C.相交于两点D.无法判别答案:C解析:解答:∵圆心到直线的距离是2小于圆的半径3,∴直线和圆相交,∴直线和圆有2个公共点.故选C.分析:根据圆心到直线的距离是2小于圆的半径3,则直线和圆相交,此时直线和圆有2个公共点.8.已知⊙O的半径r,圆心O到直线l的距离为d,当d=r时,直线l与⊙O的位置关系是()A.相交B.相切C.相离D.以上都不对答案:B解析:解答:根据直线和圆的位置关系与数量之间的联系:当d=r时,则直线和圆相切.故选B.分析:若d<r,则直线与圆相交;若d=r,则直线于圆相切;若d>r,则直线与圆相离.9.如图,在平面直角坐标系xOy中,半径为2的⊙P的圆心P的坐标为(-3,0),将⊙P 沿x轴正方向平移,使⊙P与y轴相切,则平移的距离为()A.1 B.1或5 C.3 D.5答案:B解析:解答:当⊙P位于y轴的左侧且与y轴相切时,平移的距离为1;当⊙P位于y轴的右侧且与y轴相切时,平移的距离为5.故选:B.分析:平移分在y轴的左侧和y轴的右侧两种情况写出答案即可.10.⊙O的直径为10,圆心O到直线l的距离为6,则直线l与⊙O的位置关系是()A.相交B.相切C.相离D.无法确定答案:C解析:解答:∵⊙O的直径为10∴r=5,∵d=6∴d>r∴直线l与⊙O的位置关系是相离故选C分析:因为⊙O的直径为10,所以圆的半径是5,圆心O到直线l的距离为6即d=6,所以d>r,所以直线l与⊙O的位置关系是相离.11.已知:⊙O的半径为2cm,圆心到直线l的距离为1cm,将直线l沿垂直于l的方向平移,使l与⊙O相切,则平移的距离是()A.1cm B.2cm C.3cm D.1cm或3cm答案:D解析:解答:如图,当l经过点B时,OB=1cm,则AB=1cm;当l移动到l″时,则BC=3cm;故选D.分析:根据直线和圆相切的数量关系,可得点O到l的距离为1cm,可向上或向下平移,使l与⊙O相切,即可得出答案.12.如图,已知线段OA交⊙O于点B,且OB=AB,点P是⊙O上的一个动点,那么∠OAP 的最大值是()A.30°B.45°C.60°D.90°答案:A解析:解答:如图:根据题意知,当∠OAP取最大值时,OP⊥AP;在Rt△AOP中,∵OP=OB,OB=AB,∴OA=2OP,∴∠OAP=30°.故选A.分析:根据题意找出当OP⊥AP时,∠OAP取得最大值.所以在Rt△AOP中,利用直角三角形中锐角三角函数的定义可以求得此时∠OAP的值.13.已知⊙O的半径为2,直线l上有一点P满足PO=2,则直线l与⊙O的位置关系是()A.相切B.相离C.相离或相切D.相切或相交答案:D解析:解答:当OP垂直于直线l时,即圆心O到直线l的距离d=2=r,⊙O与l相切;当OP不垂直于直线l时,即圆心O到直线l的距离d<2=r,⊙O与直线l相交.故直线l与⊙O的位置关系是相切或相交.故选D.分析:根据直线与圆的位置关系来判定.判断直线和圆的位置关系:①直线l和⊙O相交⇔d <r;②直线l和⊙O相切⇔d=r;③直线l和⊙O相离⇔d>r.分OP垂直于直线l,OP不垂直直线l两种情况讨论.14.如图,等边△ABC的周长为6π,半径是1的⊙O从与AB相切于点D的位置出发,在△ABC 外部按顺时针方向沿三角形滚动,又回到与AB相切于点D的位置,则⊙O自转了()A.2周B.3周C.4周D.5周答案:C解析:解答:圆在三边运动自转周数:6π÷2π =3,圆绕过三角形外角时,共自转了三角形外角和的度数:360°,即一周;可见,⊙O自转了3+1=4周.故选:C.分析:该圆运动可分为两部分:在三角形的三边运动以及绕过三角形的三个角,分别计算即可得到圆的自传周数.15.同学们玩过滚铁环吗?当铁环的半径是30cm,手柄长40cm.当手柄的一端勾在环上,另一端到铁环的圆心的距离为50cm时,铁环所在的圆与手柄所在的直线的位置关系为()A.相离B.相交C.相切D.不能确定答案:C解析:解答:根据题意画出图形,如图所示:由已知得:BC=30cm,AC=40cm,AB=50cm,∵2222502500AB==,+=+=+=,22BC AC304090016002500∴222+=BC AC AB∴∠ACB=90°,即AC⊥BC,∴AC为圆B的切线,则此时铁环所在的圆与手柄所在的直线的位置关系为相切.故选C.分析:根据题意画出相应的图形,由三角形ABC的三边,利用勾股定理的逆定理得出∠ACB=90°,根据垂直定义得到AC与BC垂直,再利用切线的定义:过半径外端点且与半径垂直的直线为圆的切线,得到AC为圆B的切线,可得出此时铁环所在的圆与手柄所在的直线的位置关系为相切.二、填空题16.在△ABC中,∠C=90°,AC=6,BC=8,以C为圆心r为半径画⊙C,使⊙C与线段AB 有且只有两个公共点,则r的取值范围是.答案:245<r≤6解析:解答:如图,∵BC>AC,∴以C为圆心,r为半径所作的圆与斜边AB只有一个公共点.根据勾股定理求得AB=10.圆与AB相切时,即r=CD=6×8÷5=24 5;∵⊙C与线段AB有且只有两个公共点,∴245<r≤6.分析:根据勾股定理以及直角三角形的面积计算出其斜边上的高,再根据位置关系与数量之间的联系进行求解.17.⊙O的直径为12,圆心O到直线l的距离为12,则直线l与⊙O的位置关系是. 答案:相离解析:解答:∵⊙O的直径为12∴r=6,∵d=12∴d>r∴直线l与⊙O的位置关系是相离.分析:因为⊙O的直径为12,所以圆的半径是6,圆心O到直线l的距离为12即d=12,所以d>r,所以直线l与⊙O的位置关系是相离.18.如图,⊙O的半径OC=5cm,直线l⊥OC,垂足为H,且l交⊙O于A、B两点,AB=8cm,则l沿OC所在直线向下平移cm时与⊙O相切.答案:2解析:解答:∵直线和圆相切时,OH=5,又∵在直角三角形OHA中,HA=AB÷2 =4,OA=5,∴OH=3.∴需要平移5-3=2cm.故答案为:2.分析:根据直线和圆相切,则只需满足OH=5.又由垂径定理构造直角三角形可求出此时OH的长,从而计算出平移的距离.19.⊙O的半径为R,点O到直线l的距离为d,R,d是方程2x-4x+m=0的两根,当直线l 与⊙O相切时,m的值为.答案:4解析:解答:∵d、R是方程-4x+m=0的两个根,且直线L与⊙O相切,∴d=R,∴方程有两个相等的实根,∴△=16-4m=0,解得,m=4,故答案为:4.分析:先根据切线的性质得出方程有且只有一个根,再根据△=0即可求出m的值.20.已知三角形的三边长分别为3,4,5,则它的边与半径为1的圆的公共点个数所有可能的情况是(写出符合的一种情况即可).答案:2解析:解答:∵2223425,525+==∴三角形为直角三角形,设内切圆半径为r,则1 2(3+4+5)r=12×3×4,解得r=1,所以应分为五种情况:当一条边与圆相离时,有0个交点,当一条边与圆相切时,有1个交点,当一条边与圆相交时,有2个交点,当圆与三角形内切时,有3个交点,当两条边与圆同时相交时,有4个交点,故公共点个数可能为0、1、2、3、4个.故答案为2.分析:根据勾股定理可得三角形为直角三角形,求出三角形内切圆的半径为1,圆在不同的位置和直线的交点从没有到最多4个.三、解答题21.已知⊙O的周长为6π,若某直线l上有一点到圆心O的距离为3,试判断直线l与⊙O的位置关系.答案:相切或相交解答:∵⊙O的周长为6π,∴⊙O的半径为3,∵直线l上有一点到圆心O的距离为3,∴圆心到直线的距离小于或等于3,∴直线l与⊙O的位置关系是相交或相切.解析:分析:首先根据圆的周长求得圆的半径,然后根据圆心到直线的距离与圆的半径的大小关系得到两圆的位置关系即可.22.如图,∠O=30°,C为OB上一点,且OC=6,以点C为圆心,试判断半径为3的圆与OA 的位置关系.答案:相切解答:过点C作CD⊥AO于点D,∵∠O=30°,OC=6,∴DC=3,∴以点C为圆心,半径为3的圆与OA的位置关系是:相切.解析:分析:利用直线l和⊙O相切⇔d=r,进而判断得出即可.23.已知圆的直径为13cm,如果直线和圆心的距离为4.5cm,那么直线和圆有几个公共点.答案:2解析:解答:已知圆的直径为13cm,则半径为6.5cm,又∵圆心距为4.5cm,小于半径,∴直线与圆相交,有两个交点.答:直线和圆有2个公共点.分析:欲求圆与直线的交点个数,即确定直线与圆的位置关系,关键是把直线和圆心的距离4.5cm与半径6.5cm进行比较.若d<r,则直线与圆相交;若d=r,则直线于圆相切;若d >r,则直线与圆相离.(d为直线和圆心的距离,r为圆的半径)24.圆心O到直线L的距离为d,⊙O半径为r,若d、r是方程2x-6x+m=0的两个根,且直线L与⊙O相切,求m的值.答案:9解答:∵d、r是方程x2-6x+m=0的两个根,且直线L与⊙O相切,∴d=r,∴方程有两个相等的实根,∴△=36-4m=0,解得,m=9.解析:分析:先根据切线的性质得出方程有且只有一个根,再根据△=0即可求出m的值.25.如图,AB是⊙O的直径,点D在AB的延长线上,点C在⊙O上,CA=CD,∠CDA=30°.试判断直线CD与⊙O的位置关系,并说明理由.答案:相切解答:如图:∵△ACD是等腰三角形,∠D=30°,∴∠CAD=∠CDA=30°.连接OC,∵AO=CO,∴△AOC是等腰三角形,∴∠CAO=∠ACO=30°,∴∠COD=60°,在△COD中,又∵∠CDO=30°,∴∠DCO=90°∴CD是⊙O的切线,即直线CD与⊙O相切.解析:分析:已知点C在⊙O上,先连接OC,由已知CA=CD,∠CDA=30°,得∠CAO=30°,∠ACO=30°所以得到∠COD=60,根据三角形内角和定理得∠DCO=90°即能判断直线CD与⊙O的位置关系.。