解决三角函数的11种方法
- 格式:doc
- 大小:2.33 MB
- 文档页数:9
三角函数十大题型三角函数是数学中的重要概念,与几何图形和三角形的关系密切相关。
在学习三角函数时,有一些常见的题型是必须要熟练掌握的。
下面将介绍三角函数的十大题型以及解题方法。
1. 求角度的正弦、余弦、正切值对于给定的三角函数值,如正弦值sinα=1/2,我们需要求出对应的角度α。
对于求解这类问题,我们可以通过查表法或使用计算器进行近似计算。
2. 求角度的值域与周期对于三角函数中的角度,不同的函数具有不同的值域和周期。
例如,正弦函数的值域是[-1, 1],周期是2π。
需要掌握各个三角函数的值域和周期,以便在解题过程中进行合理的计算和判断。
3. 角度的性质和恒等变换三角函数中的角度具有一些特殊的性质和恒等变换,如正弦函数的奇偶性、余弦函数的周期性等。
掌握这些性质和变换可以简化问题的求解过程。
4. 通过图像求解问题三角函数的图像可以帮助我们理解和解决问题。
例如,通过观察正弦函数的图像,我们可以确定其最大值、最小值、零点等信息,从而解决与角度相关的问题。
5. 解三角函数方程三角函数方程是指包含三角函数的方程,需要求解其中的未知量。
解三角函数方程时,我们可以通过恒等变换、化简和换元等方法,将其转化为简化的方程组或方程,从而求解出未知量的值。
6.求三角函数的导数求三角函数的导数是解决曲线变化问题的基础。
通过计算三角函数的导数,我们可以求解与速度、加速度等相关的问题。
7. 三角函数的图像变换通过对三角函数进行平移、伸缩和翻转等图像变换,可以得到新的三角函数图像。
掌握这些图像变换可以帮助我们更好地理解和运用三角函数。
8. 三角函数的复合运算在三角函数的求解过程中,经常会遇到要求解三角函数的复合运算,如sin(2x)、cos(2x)等。
掌握三角函数的复合运算可以帮助我们简化问题,并得到更简洁的解答。
9. 三角函数与三角恒等式的运用三角函数与三角恒等式是数学中的重要工具,可以帮助我们简化问题,并得到更方便的解答。
掌握三角函数与三角恒等式的运用可以提高解题的效率和准确性。
三角函数计算技巧与方法
1. 坐标变换法:对于一个给定的三角形,如果能够将它变换成一个新的三角形,使得新的三角形的边角关系更加简单,从而可以计算出三角函数的值,这就是坐标变换法。
2. 相似三角形法:如果两个三角形有同样的外角大小,那么他们的内角也是相同的,这就是相似三角形法,可以用来计算三角函数的值。
3. 三角函数表:有一些常用的三角函数的值是可以查表的,比如正弦函数、余弦函数、正切函数等,用户可以根据表中的值来计算三角函数的值。
4. 积分计算法:可以使用积分的方法来计算三角函数的值,这种方法需要用到数学知识,可以用来计算更复杂的三角函数的值。
高中数学三角函数知识点解题技巧总结高中数学三角函数知识点总结高中数学三角函数知识点解题方法总结一、见“给角求值”问题,运用“新兴”诱导公式一步到位转换到区间(-90o,90o)的公式.1.sin(kπ+α)=(-1)ksinα(k∈Z);2.cos(kπ+α)=(-1)kcosα(k∈Z);3.tan(kπ+α)=(-1)ktanα(k∈Z);4.cot(kπ+α)=(-1)kcotα(k∈Z).二、见“sinα±cosα”问题,运用三角“八卦图”1.sinα+cosα;0(或0(或|cosα|óα的终边在Ⅱ、Ⅲ的区域内;4.|sinα|“化弦为一”:已知tanα,求sinα与cosα的齐次式,有些整式情形还可以视其分母为1,转化为sin2α+cos2α.六、见“正弦值或角的平方差”形式,启用“平方差”公式:1.sin(α+β)sin(α-β)=sin2α-sin2β;2.cos(α+β)cos(α-β)=cos2α-sin2β.七、见“sinα±cosα与sinαcosα”问题,起用平方法则:(sinα±cosα)2=1±2sinαcosα=1±sin2α,故1.若sinα+cosα=t,(且t2≤2),则2sinαcosα=t2-1=sin2α;2.若sinα-cosα=t,(且t2≤2),则2sinαcosα=1-t2=sin2α.八、见“tanα+tanβ与tanαtanβ”问题,启用变形公式:tanα+tanβ=tan(α+β)(1-tanαtanβ).思考:tanα-tanβ=???九、见三角函数“对称”问题,启用图象特征代数关系:(A≠0)1.函数y=Asin(wx+φ)和函数y=Acos(wx+φ)的图象,关于过最值点且横向于y轴的直线分别成直线型;2.函数y=Asin(wx+φ)和函数y=Acos(wx+φ)的图象,关于其中间零点分别成中心对称;3.同样,利用图象也可以得到向量y=Atan(wx+φ)和函数y=Acot(wx+φ)的对称性质。
高中数学中三角函数解题错误的成因分析及解决方法高中数学中的三角函数是学习数学时的一个重要内容,对于学生来说可能会遇到一些解题错误的情况。
本文将对高中数学中三角函数解题错误的成因进行分析,并提出解决方法,希望能帮助学生提高解题能力。
一、成因分析1. 概念理解不清三角函数的概念对于学生来说可能有一定的难度。
学生可能会忽略或者混淆三角函数的定义和性质,导致在解题中出现错误。
学生可能会混淆正弦函数与余弦函数的定义及性质,导致在计算中出现错误。
2. 公式运用不当在解题过程中,学生可能会对三角函数的相关公式理解不够深刻,容易在运用上出现偏差。
在使用三角函数的相关公式进行化简或者计算时,可能会出现数学符号运用错误,导致计算结果不准确。
3. 解题思路不清晰解题思路不清晰是导致解题错误的另一个重要因素。
学生可能在解题过程中跳跃性思维、计算错误、逻辑混乱等,导致最终的解题结果出现错误。
二、解决方法1. 加强基础知识的学习学生在学习三角函数之前,应该先夯实数学基础知识。
对于三角函数的定义、性质、相关公式等内容,需要有一个全面深入的理解。
只有夯实了基础知识,才能在解题中避免出现一些低级错误。
2. 多做练习在学习三角函数的过程中,学生需要多做一些相关的练习题。
通过不断的练习,可以更好地巩固所学内容,提高解题能力。
在解题过程中遇到错误,也要及时总结反思,找出解题错误的原因,避免下次再犯同样的错误。
3. 注意解题过程细节在解题过程中,需要注意细节处理。
对于三角函数的运用和计算,需要谨慎对待,不可粗心大意。
在解题过程中,可以逐步化简、代入计算、反复检查,尽量避免出现解题错误。
4. 多与他人讨论在学习三角函数时,可以多与同学或者老师进行讨论,互相交流解题经验。
通过他人的解题思路和方法,可以帮助自己更好地理解和掌握三角函数的相关知识。
在讨论过程中,也可以及时发现自己解题中的错误,及时进行纠正。
在解题过程中,要善于梳理解题思路。
首先要明确解题目标和要求,然后逐步展开解题步骤,将解题过程梳理清楚。
解决三角函数各类问题的十种方法1 凑角法一些求值问题通过观察角之间的关系,并充分利用角之间的关系,往往是凑出特殊角,可以实现顺利解答. 例1 求tan 204sin 20︒+︒的值.解析 原式sin 202sin 40sin 202sin(6020)cos 20cos 20︒+︒︒+︒-︒==︒︒sin 202(sin 60cos 20cos 60sin 20)cos 20︒+︒︒-︒︒==︒评注 三角求值主要借助消除三个方面的差异解答,即消除函数名称差异,或者式子结构的差异,或者角度之间的差异,凑角法体现的就是消除非特殊角与特殊角之间的差异.本题注意若将第一步中的分子化为sin(6040)2sin 40︒-︒+︒,或者化为sin(3010)2sin(3010)︒-︒+︒+︒,都没有上面的方法简捷,请同学们进行操作比较,分析原因,并注意凑角也需谨慎选择!2 降幂法一些涉及高次三角式的求值问题,往往借助已知及22sin cos 1αα+=,或降幂公式221cos 21cos 2sin ,cos 22αααα-+==等借助降幂策略解答. 例2 若2cos cos 1αα+=,求26sin sin αα+的值.解析 由2cos cos 1αα+=,得cos α=cos α=.由2cos cos 1αα+=,又可得22cos 1cos sin ααα=-=,则263sin sin cos cos αααα+=+,又由2c o s c o s 1αα+=,得2c o s 1c o s αα=-,故322c o s c o s c o s (1c o s )c o s (2c o s )2c o s c o s 3c o ααααααααα+=+=-=-=-,代值可得26sin sin αα+= 评注 若求出cos α的值后直接简单代入,则运算量将大得多,而主动降幂后就截然不同了.涉及非单角形式的三角函数问题,有时也需要考虑降幂进而化为一个角的三角函数形式解答,遇到“高次”问题就特别注意联想“降幂法”解答.3 配对法 根据一些三角式的特征,适当进行配对,有时可以实现问题的顺利解答. 例3 已知(0,)2x π∈,且222cos cos 2cos 31x x x ++=,求x 的值.解析 设222cos cos 2cos 3m x x x =++,令222s i n s i n 2s i n 3n x x x =++,则3m n +=,几何精练cos 2cos 4cos 6m n x x x -=++,其中,2cos62cos 31x x =-,cos2cos4cos(3)cos(3)2cos cos3x x x x x x x x +=-++=,2cos3(cos cos3)1m n x x x -=+-,又c o s c o s 3c o s (2)c o s (2)2c o s x x x x x x x x +=-++=,故4cos cos2cos31m n x x x -=-,故可解得1cos cos 2cos3(22)0(1)4x x x m m =-== .则c o s 0x =,或c o s 20x =,或c o s 30x =,又(0,)2x π∈,则6x π=或4x π=. 评注 三角函数中的正弦函数与余弦函数是一对互余函数,有很多对称的结论,如22sin cos 1θθ+=等,因此在解决一些三角求值,求证等问题时,可以构造对偶式,实施配对策略,尝试进行巧妙解答. 4 换元法很多给值求值问题都是给的单角的某一三角函数值,但有时会出现给出复合角的三角函数值求值的问题,此时,利用换元法可以将问题转化为熟悉的已知单角的三角函数值求值问题.例4 求sin 75cos 4515ααα+︒++︒+︒()()()的值.解析 令15αβ+︒=,则原式sin(60)cos(30)βββ=+︒++︒(sin cos60cos sin60)(cos cos30sin sin30)0βββββ=︒+︒+︒-︒=.评注 教材求值问题往往是已知单角三角函数值求值,而近几年的高考和期末考试试题,则青睐于已知复合角的三角函数值求值,因此备考时要特别注意此点,解答此类问题的换元法或整体思想也都十分重要.对本题,若直接将三部分借助两角和的正弦公式与余弦公式展开,则要繁杂得多.5 方程法 有时可以根据已知构造所求量的方程解答.例5 若33cos sin 1x x =+,试求sin x 的值.解析 令cos sin x x t =+,则21cos sin (1)2x x t =-,[t ∈.由已知,有 2221(cos sin )(cos sin cos sin )(1)12t x x x x x x t --++=+=,即3232(1)(2)0t t t t --=+-=,得1t =-,或2t =(舍去).即cos sin 1x x =+,又22sin cos 1x x +=,整理可得2sin sin 0x x +=,解得sin 0x =或sin 1x =-.评注 将已知转化为关于sin x 的方程是解题的关键.方程的思想方法是解答诸多三角函数问题的基本大法,如求三角函数的解析式等问题.一般地,若题目中有n 个需要确定的未知数,则只要构造n 个方程解答即可.6 讨论法涉及含有参数或正负情形的三角问题,往往需要借助讨论法进行解答.例6 已知ABC !中,54sin ,cos 135A B ==,求cos C . 解析 由5sin 13A =,得12cos 13A =±.当12cos 13A =-时,因为,A B 是ABC !的内角,需要满足0A B π<+<,有0A B ππ<<-<,而余弦函数在区间(0,)π是减函数,得cos cos()cos A B B π>-=-,但124cos cos 135A B =-<-=,故此情形不合题意. 可以验证12cos 13A =符合题意,故33cos cos()sin sin cos cos 65C A B A B A B =-+=-=-. 评注 分类讨论是将问题化整为零,进而化难为易的重要思想方法,一般含有绝对值的三角函数问题,涉及未确定象限的角的问题等,都要首先考虑“讨论”!7 平方法分析已知和所求,有时借助“取平方”的方法可以实现顺利解题.例7 已知sin sin sin 0αβγ++=,cos cos cos 0αβγ++=,求cos()αβ-的值.解析 有sin sin sin αβγ+=-,cos cos cos αβγ+=-,两式两边平方后对应相加,可得2222(sin sin 2sin sin )(cos cos 2cos cos )αβαβαβαβ+++++22(sin )(cos )1γγ=-+-=,即1cos()2αβ-=-. 评注 学习数学要掌握一些基本的操作技能,而“取”就是其中的重要一种,除了“取平方”外,常见的还有“取对数”,“取倒数”等操作,需要注意体会.本题就是借助平方关系实现整体消元后解答的. 8 猜想法有时根据已知数据的特征进行必要的猜想,能更好的解决求值问题.例8 已知1sin cos 2αα+=,且α为第二象限角,则sin α= .解析 由sin 0,cos 0αα><及22221sin cos 1,()(12αα+=+=,可得1sin 2α=.评注 实际上,将sin cos αα+=与22sin cos 1αα+=联立所得二元二次方程组只有两组解,即1sin ,cos 2αα==1cos ,sin 2αα==,依题意只可取前者.学习数学,要培养对数据的敏感性,能根据数据特征进行积极联想,进而适当猜想,能有效提高解题速度,而且猜想是一种重要的推理形式,并不是“胡猜乱想”,要紧扣已知和所求进行.9 图象法有时候,借助图象才能更好的解决对应的三角函数问题.例9 已知函数()sin 1(1)f x A x A =+>的图象与直线y A =在x 轴右侧的与x 轴距离最近的相邻三个交点的横坐标成等比数列,求实数A 的值.解析 如右图,设三个交点的坐标为(,)B b A ,(,)C c A ,(,)D d A ,由三角函数图象的对称性,则有22b c ππ+=⨯=,3232c d ππ+=⨯=,有b c π=-,3d c π=-,又222()(3)34c b d c c c c ππππ==--=-+,解得34c π=.故函数图象经过3(,)4A π,代入可得2A =.评注 数和形是数学的两大支柱,三角函数的很多问题都有图形背景,在解决问题时,要充分借助图形进行直观分析,往往能更快捷的实现问题的解答,注意培养做草图的能力.10 比例法借助比例的性质,有时可以实现快速解答三角函数问题.例10 求证 2(cos sin )cos sin 1sin cos 1sin 1cos αααααααα-=-++++. 解析 若cos 0α=(或sin 0α=),因为sin 1(cos 1),αα≠-≠-或,故sin 1α=,或cos 1α=,验证可知等式成立.若cos 0α≠,则由2cos (1sin )(1sin )ααα=+-,2sin (1cos )(1cos )ααα=+-及比例性质a c a c b d b d +==+,可得cos 1sin 1sin cos 1sin cos 1sin cos αααααααα--+==+++. sin 1cos 1sin cos 1cos sin 1sin cos αααααααα-+-==+++,代入等式左边可知所证成立. 评注 本题有多种证法,而借助比例的性质的方法显得尤为简捷.涉及分式的三角函数问题,可以考虑借助比例法解答.如关于半角的正切公式sin 1cos tan 21cos sin ααααα-==+,按照比例性质,立得1cos sin tan 21cos sin ααααα-+=++.。
9种常用三角恒等变换技巧总结三角恒等变换是数学中常用的一种技巧,在解决三角函数相关问题时非常有用。
下面总结了九种常见的三角恒等变换技巧。
1.倍角公式:sin2θ = 2sinθcosθcos2θ = cos²θ - sin²θtan2θ = 2tanθ / (1 - tan²θ)这些公式可以用于将一个三角函数中的角度变为它的倍角,从而简化计算。
2.半角公式:sin(θ/2) = ±√((1 - cosθ) / 2)cos(θ/2) = ±√((1 + cosθ) / 2)tan(θ/2) = ±√((1 - cosθ) / (1 + cosθ))这些公式可以用于将一个三角函数中的角度变为它的半角,从而简化计算。
3.和差公式:sin(A ± B) = sinAcosB ± cosAsinBcos(A ± B) = cosAcosB ∓ sinAsinBtan(A ± B) = (tanA ± tanB) / (1 ∓ tanAtanB)这些公式可以用于将两个角度的三角函数变成一个角度的三角函数,从而简化计算。
4.和差化积公式:sinA + sinB = 2sin((A+B)/2)cos((A-B)/2)sinA - sinB = 2cos((A+B)/2)sin((A-B)/2)cosA + cosB = 2cos((A+B)/2)cos((A-B)/2)cosA - cosB = -2sin((A+B)/2)sin((A-B)/2)这些公式可以用于将和或差的三角函数转化为乘积的三角函数,从而简化计算。
5.积化和差公式:sinAcosB = 1/2(sin(A+B) + sin(A-B))cosAsinB = 1/2(sin(A+B) - sin(A-B))cosAcosB = 1/2(cos(A+B) + cos(A-B))sinAsinB = -1/2(cos(A+B) - cos(A-B))这些公式可以用于将乘积的三角函数转化为和或差的三角函数,从而简化计算。
解决三角函数的几种方法三角函数的各类问题,由于涉及的三角公式较多,问题的解法也比较灵活,但也会呈现出一定的规律性,本文拟对其中的解题方法进行总结归纳.1 凑角法一些求值问题通过观察角之间的关系,并充分利用角之间的关系,往往是凑出特殊角,可以实现顺利解答. 例1 求tan 204sin 20︒+︒的值.解析 原式sin 202sin 40sin 202sin(6020)cos 20cos 20︒+︒︒+︒-︒==︒︒ sin 202(sin 60cos 20cos60sin 20)cos 20︒+︒︒-︒︒==︒评注 三角求值主要借助消除三个方面的差异解答,即消除函数名称差异,或者式子结构的差异,或者角度之间的差异,凑角法体现的就是消除非特殊角与特殊角之间的差异.本题注意若将第一步中的分子化为sin(6040)2sin 40︒-︒+︒,或者化为sin(3010)2sin(3010)︒-︒+︒+︒,都没有上面的方法简捷,请同学们进行操作比较,分析原因,并注意凑角也需谨慎选择!2 降幂法一些涉及高次三角式的求值问题,往往借助已知及22sin cos 1αα+=,或降幂公式221cos 21cos 2sin ,cos 22αααα-+==等借助降幂策略解答. 例2 若2cos cos 1αα+=,求26sin sin αα+的值.解析 由2cos cos 1αα+=,得1cos 2α-+=,cos α=.由2cos cos 1αα+=,又可得22cos 1cos sin ααα=-=,则263sin sin cos cos αααα+=+,又由2cos cos 1αα+=,得2cos 1cos αα=-,故322cos cos cos (1cos )cos (2cos )2cos cos 3cos 1ααααααααα+=+=-=-=-,代值可得265sin sin 2αα+=. 评注 若求出cos α的值后直接简单代入,则运算量将大得多,而主动降幂后就截然不同了.涉及非单角形式的三角函数问题,有时也需要考虑降幂进而化为一个角的三角函数形式解答,遇到“高次”问题就特别注意联想“降幂法”解答.3 对偶法 根据一些三角式的特征,适当进行配对,有时可以实现问题的顺利解答.例3 已知(0,)2x π∈,且222cos cos 2cos 31x x x ++=,求x 的值.解析 设222cos cos 2cos 3m x x x =++,令222sin sin 2sin 3n x x x =++,则3m n +=,cos2cos4cos6m n x x x -=++,其中,2cos62cos 31x x =-,cos 2cos 4cos(3)cos(3)2cos cos3x x x x x x x x +=-++=,2cos3(cos cos3)1m n x x x -=+-,又cos cos3cos(2)cos(2)2cos cos2x x x x x x x x +=-++=,故4cos cos2cos31m n x x x -=-,故可解得1cos cos 2cos3(22)0(1)4x x x m m =-==Q .则cos 0x =,或cos20x =,或cos30x =,又(0,)2x π∈,则6x π=或4x π=. 评注 三角函数中的正弦函数与余弦函数是一对互余函数,有很多对称的结论,如22sin cos 1θθ+=等,因此在解决一些三角求值,求证等问题时,可以构造对偶式,实施配对策略,尝试进行巧妙解答.例4 求cos7π+cos 37π+cos 57π的值. 解:设M =cos 7π+cos 37π+cos 57π,构造其对偶式 N =sin 7π+sin 37π+sin 57π.则 M ·N =21sin 27π+21sin 67π+21sin 107π+sin 47π+sin 67π+sin 87π =21( sin 7π+sin 37π+sin 57π)=21N . ∴ M =cos 7π+cos 37π+cos 57π=21. 4 换元法给值求值问题都是给的单角的某一三角函数值,利用换元法可以将问题转化为熟悉的已知单角的三角函数值求值(包括求周期、对称轴、对称中心等)问题.例5 求sin 75cos 4515ααα+︒++︒+︒()()()的值.解析 令15αβ+︒=,则原式sin(60)cos(30)βββ=+︒++︒(sin cos 60cos sin 60)(cos cos30sin sin 30)0βββββ=︒+︒+︒-︒-=.评注 教材求值问题往往是已知单角三角函数值求值,而近几年的高考和期末考试试题,则青睐于已知复合角的三角函数值求值,因此备考时要特别注意此点,解答此类问题的换元法或整体思想也都十分重要.对本题,若直接将三部分借助两角和的正弦公式与余弦公式展开,则要繁杂得多.5 方程法 有时可以根据已知构造所求量的方程解答.例6 若33cos sin 1x x =+,试求sin x 的值.解析 令cos sin x x t =+,则21cos sin (1)2x x t =-,[t ∈.由已知,有 2221(cos sin )(cos sin cos sin )(1)12t x x x x x x t --++=+=,即3232(1)(2)0t t t t --=+-=,得1t =-,或2t =(舍去).即cos sin 1x x =+,又22sin cos 1x x +=,整理可得2sin sin 0x x +=,解得sin 0x =或sin 1x =-.评注 将已知转化为关于sin x 的方程是解题的关键.方程的思想方法是解答诸多三角函数问题的基本大法,如求三角函数的解析式等问题.一般地,若题目中有n 个需要确定的未知数,则只要构造n 个方程解答即可.6 讨论法涉及含有参数或正负情形的三角问题,往往需要借助讨论法进行解答.例7 已知ABC !中,54sin ,cos 135A B ==,求cos C . 解析 由5sin 13A =,得12cos 13A =±.当12cos 13A =-时,因为,A B 是ABC !的内角,需要满足0A B π<+<,有0A B ππ<<-<,而余弦函数在区间(0,)π是减函数,得cos cos()cos A B B π>-=-,但124cos cos 135A B =-<-=,故此情形不合题意. 可以验证12cos 13A =符合题意,故33cos cos()sin sin cos cos 65C A B A B A B =-+=-=-. 评注 分类讨论是将问题化整为零,进而化难为易的重要思想方法,一般含有绝对值的三角函数问题,涉及未确定象限的角的问题等,都要首先考虑“讨论”!7 平方法分析已知和所求,有时借助“取平方”的方法可以实现顺利解题.例8 已知sin sin sin 0αβγ++=,cos cos cos 0αβγ++=,求cos()αβ-的值.解析 有sin sin sin αβγ+=-,cos cos cos αβγ+=-,两式两边平方后对应相加,可得2222(sin sin 2sin sin )(cos cos 2cos cos )αβαβαβαβ+++++22(sin )(cos )1γγ=-+-=,即1cos()2αβ-=-. 评注 学习数学要掌握一些基本的操作技能,而“取”就是其中的重要一种,除了“取平方”外,常见的还有“取对数”,“取倒数”等操作,需要注意体会.本题就是借助平方关系实现整体消元后解答的. 8 猜想法有时根据已知数据的特征进行必要的猜想,能更好的解决求值问题.例9已知1sin cos 2αα+=,且α为第二象限角,则sin α= . 解析 由sin 0,cos 0αα><及22221sin cos 1,()()122αα+=+-=,可得1sin 2α=. 评注 实际上,将sin cos αα+=22sin cos 1αα+=联立所得二元二次方程组只有两组解,即1sin ,cos 2αα==或1cos ,sin 2αα==,依题意只可取前者.学习数学,要培养对数据的敏感性,能根据数据特征进行积极联想,进而适当猜想,能有效提高解题速度,而且猜想是一种重要的推理形式,并不是“胡猜乱想”,要紧扣已知和所求进行.9 图象法有时候,借助图象才能更好的解决对应的三角函数问题.例10 已知函数()sin 1(1)f x A x A =+>的图象与直线y A =在x 轴右侧的与x 轴距离最近的相邻三个交点的横坐标成等比数列,求实数A 的值.解析 如右图,设三个交点的坐标为(,)B b A ,(,)C c A ,(,)D d A ,由三角函数图象的对称性,则有22b c ππ+=⨯=,3232c d ππ+=⨯=,有b c π=-,3d c π=-,又222()(3)34c bd c c c c ππππ==--=-+,解得34c π=.故函数图象经过3(,)4A π,代入可得2A =+.评注 数和形是数学的两大支柱,三角函数的很多问题都有图形背景,在解决问题时,要充分借助图形进行直观分析,往往能更快捷的实现问题的解答,注意培养做草图的能力.10 比例法借助比例的性质,有时可以实现快速解答三角函数问题.例11 求证 2(cos sin )cos sin 1sin cos 1sin 1cos αααααααα-=-++++. 解析 若cos 0α=(或sin 0α=),因为sin 1(cos 1),αα≠-≠-或,故sin 1α=,或cos 1α=,验证可知等式成立.若cos 0α≠,则由2cos (1sin )(1sin )ααα=+-,2sin (1cos )(1cos )ααα=+-及比例性质a c a cb d b d +==+,可得cos 1sin 1sin cos 1sin cos 1sin cos αααααααα--+==+++. sin 1cos 1sin cos 1cos sin 1sin cos αααααααα-+-==+++,代入等式左边可知所证成立. 评注 本题有多种证法,而借助比例的性质的方法显得尤为简捷.涉及分式的三角函数问题,可以考虑借助比例法解答.如关于半角的正切公式sin 1cos tan 21cos sin ααααα-==+,按照比例性质,立得1cos sin tan 21cos sin ααααα-+=++. 10 构造三角形法例12 求值:sin 220°+cos 250°+sin20°cos50°设△ABC 中,A=20°B= 40°C=120°利用余弦定理求解原始= sin 220°+sin 240°+sin20°sin40°= sin 220°+sin 240°-2sin20°sin40°cos120°=sin 2120°=3/4。
解决三角函数的种方法方法一:代入法将给定的三角函数表达式代入三角恒等式,化简得到新的三角函数表达式。
这种方法适用于简单的恒等式,例如将sin^2x和cos^2x代入1−cot^2x=0,得到1−(cos^2x/sin^2x)=0,然后通过化简解方程得到解x的值。
方法二:化简法将给定的复杂三角函数表达式化简为简单形式。
例如将sin(x+a)−sin(x−a)的差化积公式应用,并使用和差化积公式,最后化简为2sin(a)cos(x)。
方法三:换元法通过引入新的变量或替换三角函数表达式,将原问题化简为更简单的形式。
例如可以通过令t=tan(x/2)将tan^2x转化为t^2,然后解方程t^2+1=0。
方法四:反函数法使用正弦、余弦、正切的反函数,将已知的值代入反函数的表达式,解方程找到相应的角度值。
例如通过arcsin函数,可以求解sin(x)=0.5的解x=π/6方法五:复数法将三角函数表达式转化为复数形式,利用复数的运算性质来解决问题。
例如欧拉公式e^ix=cos(x)+isin(x)可以将三角函数问题转化为复数的运算问题。
方法六:图像法根据三角函数的周期性和图像特点,结合图像的性质去解决问题。
例如可以通过观察sin函数的图像,得知sin(x)=0的解为x=nπ,其中n 为整数。
方法七:恒等式法利用三角函数的恒等式解决问题。
例如通过化简sin2x−cos^2x−1=0的表达式为−cos^2x+(1−cos^2x)−1=0,然后使用三角恒等式cos^2x=1−sin^2x,最终化简得到sin^4x=0。
方法八:半角公式通过半角公式将复杂的三角函数表达式化简为简单的形式。
例如将sin(2θ)化简为2sinθcosθ的形式,然后代入原方程得到更简单的表达式。
方法九:三倍角公式通过三倍角公式将复杂的三角函数表达式化简为简单的形式。
例如将sin(3θ)化简为3sinθ−4sin^3θ的形式,然后代入原方程得到更简单的表达式。
三角函数的题型和方法一、思想方法1、三角函数恒等变形的基本策略。
( 1)常值代换:特别是用“ 1”的代换,如 1=cos 2θ +sin 2 θ=tanx · cotx=tan45 °等。
( 2)项的分拆与角的配凑。
如分拆项: sin 2x+2cos 2x=(sin 2x+cos 2x)+cos 2x=1+cos 2x ;配凑角:α =(α + β)-β,β =-等。
2 2( 3)降次与升次。
即倍角公式降次与半角公式升次。
( 4)化弦(切)法。
将三角函数利用同角三角函数基本关系化成弦(切)。
( 5)引入协助角。
asin θ +bcos θ = a 2 b 2 sin(θ + ),这里协助角 所在象限由 a 、b 的符号确立,角的值由 tan = b确立。
a( 6)全能代换法。
巧用全能公式可将三角函数化成 tan的有理式。
22、证明三角等式的思路和方法。
( 1)思路:利用三角公式进行假名,化角,改变运算结构,使等式两边化为同一形式。
( 2)证明方法:综合法、剖析法、比较法、代换法、相消法、数学概括法。
3、证明三角不等式的方法:比较法、配方法、反证法、剖析法,利用函数的单一性,利用正、余弦函数的有界性,利用单位圆三角函数线及鉴别法等。
4、解答三角高考题的策略。
( 1)发现差别:察看角、函数运算间的差别,即进行所谓的“差别剖析”。
( 2)找寻联系:运用有关公式,找出差别之间的内在联系。
( 3)合理转变:选择适合的公式,促进差别的转变。
二、注意事项对于三角函数进行恒等变形,是三角知识的综合应用,其题目种类多样,变化仿佛复杂,办理这种问题,注意以下几个方面:1、三角函数式化简的目标:项数尽可能少,三角函数名称尽可能少,角尽可能小和少,次数尽可能低,分母尽可能不含三角式,尽可能不带根号,能求出值的求出值。
2、三角变换的一般思想与常用方法。
注意角的关系的研究,既注意到和、差、倍、半的相对性,如1() ( ) 22 .也要注意题目中所给的各角之间的关系。
浅论关于三角函数的几种解题技巧本人在十多年的职中数学教学实践中,面对三角函数内容的相关教学时,积累了一些解题方面的处理技巧以及心得、体会。
下面尝试进行探讨一下:一、关于)2sin (cos sin cos sin ααααα或与±的关系的推广应用:1、由于ααααααααcos sin 21cos sin 2cos sin )cos (sin 222±=±+=±故知道)cos (sin αα±,必可推出)2sin (cos sin ααα或,例如: 例1 已知θθθθ33cos sin ,33cos sin -=-求。
分析:由于)cos cos sin )(sin cos (sin cos sin 2233θθθθθθθθ++-=-]cos sin 3)cos )[(sin cos (sin 2θθθθθθ+--=其中,θθcos sin -已知,只要求出θθcos sin 即可,此题是典型的知sin θ-cos θ,求sin θcos θ的题型。
解:∵θθθθcos sin 21)cos (sin 2-=- 故:31cos sin 31)33(cos sin 212=⇒==-θθθθ ]cos sin 3)cos )[(sin cos (sin cos sin 233θθθθθθθθ+--=- 3943133]313)33[(332=⨯=⨯+=2、关于tg θ+ctg θ与sin θ±cos θ,sin θcos θ的关系应用:由于tg θ+ctg θ=θθθθθθθθθθcos sin 1cos sin cos sin sin cos cos sin 22=+=+ 故:tg θ+ctg θ,θθcos sin ±,sin θcos θ三者中知其一可推出其余式子的值。
例2 若sin θ+cos θ=m 2,且tg θ+ctg θ=n ,则m 2 n 的关系为( )。