人教版八年级数学上册 第15章 分式 单元测试卷(无答案)
- 格式:pdf
- 大小:187.96 KB
- 文档页数:3
八年级数学《分式》单元测试题 一,选择题(每小题3分,共36分)1,若分式22943x x x --+的值为零,则x 的值为( ). A.3 B.3或-3 C.-3 D.0 2,解方程32121---=-xx x 去分母得 ( ) A .()2311---=x x B . ()x x ---=2311C.()2311---=x xD. ()2311---=-x x3,计算37444x x y y x y y x x y++----得( ) A . 264x y x y +-- B .264x y x y +- C .2- D .24,南京到上海铁路长300 km ,为了适应两市经济的发展,客车的速度比原来每小时增加了40 km ,因此从南京到上海的时间缩短了一半,设客车原来的速度是x km/h ,则根据题意列出的方程是( ) A. 3004012300x x-=· B.300402300x x -=· C. 3004012300x x +=· D. 300402300x x +=· 5, 化简2239m m m --的结果是( ) A. 3m m + B.-3m m + C. 3m m - D. 3m m- 6,某学校学生进行急行军训练,预计行60千米的路程在下午5时到达,后来由于把速度加快20% ,结果于下午4时到达,求原计划行军的速度。
设原计划行军的速度为xkm/h ,,则可列方程( )A .1%206060++=x x B. 1%206060-+=x x C. 1%2016060++=)(x x D. 1%2016060-+=)(x x7,若2x <,则2|2|x x --的值是( ) A .1- B .0 C .1 D .28, 一份工作,甲单独做需a 天完成,乙单独做需b 天完成,则甲乙两人合作一天的工作量是( )A 、a+b;B 、b a +1;C 、2b a +;D 、ba 11+ 9,化简:(3x y z )2·(xz y )·(2yz x)3等于( ) A .232y z xB .xy 4z 2C .xy 4z 4D .y 5z 10,在x 1、21、212+x 、πxy 3、y x +3、ma 1+中分式的个数有( ) A 、2个 B 、3个 C 、4个 D 、5个 11,若分式方程xa x a x +-=+-321有增根,则a 的值是( ) A .1 B .0 C .—1 D .—212,若把分式xyy x +中的x 和y 都扩大2倍,那么分式的值( ) A .扩大2倍 B .不变C .缩小2倍D .缩小4倍二,填空题(每小题3分,共18分)13,用分式表示下列各式:(1)3÷(a-1)= (2)(x 3-1)÷(x-1)=(3)(a+b)÷(a 2-b 2)= (4)(a+12)÷(a-12)=14,如果0a b >>,则1b b a b a +--的值的符号是__________. 15,已知a+1a=3,则a 2+21a=_______. 16,若关于x 的分式方程13a x -=+1x+3在实数范围内无解,则实数a=________.17,已知11x y -,则分式2322x xy y x xy y+---的值为________. 18,分式392--x x 当x _______时分式的值为零,当x _____时,分式x x 2121-+有意义.三,计算题(共66分)19,计算(10分):(1))2(216322b a a bc a b -⋅÷ (2)9323496222-⋅+-÷-+-a a b a b a a .20,解下列分式方程(10分)(1)xx 3121=- (2)1412112-=-++x x x21,(8分)关于x 的方程233x k x x =+--会产生增根,求k 的值22,(8分)已知x 为整数,且918232322-++-++x x x x 为整数,求所有符合条件的x 的值.23,(10分)一辆汽车开往距离出发地180千米的目的地,出发后第一小时内按原计划的速度匀速行驶,一小时后以原来的1.5倍匀速行驶,并比原计划提前40分钟到达目的地.求前一小时的行驶速度.24,(10分)某工人原计划在规定时间内恰好加工1500个零件,改进了工具和操作方法后,工作效率提高为原来的2倍,因此加工1500个零件时,比原计划提前了5小时,问原计划每小时加工多少个零件?25,(10分)甲、乙两组学生去距学校4.5千米的敬老院打扫卫生,甲组学生步行出发半小时后,乙组学生骑自行车开始出发,两组学生1,求步行与骑自同时到达敬老院,如果步行速度是骑自行车速度的3行车的速度各是多少?。
人教版八年级上册数学第15章《分式》单元测试卷一.选择题(共10小题,满分30分)1.下列式子中,属于分式的是()A.B.C.D.2.分式的值是零,则x的值为()A.3B.﹣3C.3或﹣3D.03.已知某新型感冒病毒的直径约为0.000002022米,将0.000002022用科学记数法表示为()A.2.022×10﹣5B.0.2022×10﹣5C.2.022×10﹣6D.20.22×10﹣74.计算的结果是()A.B.C.D.5.在①x2﹣x+,②﹣3=a+4,③+5x=6,④=1中,其中关于x的分式方程的个数为()A.1B.2C.3D.46.如果把分式中的x、y的值都扩大2倍,那么分式的值()A.扩大2倍B.扩大4倍C.扩大6倍D.不变7.若将分式与通分,则分式的分子应变为()A.6m2﹣6mn B.6m﹣6nC.2(m﹣n)D.2(m﹣n)(m+n)8.分式,的最简公分母是()A.a B.ab C.3a2b2D.3a3b39.计算结果等于2的是()A.|﹣2|B.﹣|2|C.2﹣1D.(﹣2)0 10.已知,则的值是()A.66B.64C.62D.60二.填空题(共10小题,满分30分)11.分式的最简公分母是.12.要使分式有意义,则分式中的字母b满足条件.13.若表示一个整数,则整数x可取的个数有个.14.约分:=.15.方程的解是.16.若解分式方程产生增根,则m=.17.用漫灌方式给绿地浇水,a天用水10吨,改用喷灌方式后,10吨水可以比原来多用5天,那么喷灌比漫灌平均每天节约用水吨.18.已知若x﹣=3,则x2+=.19.将分式化为最简分式,所得结果是.20.扶贫工作小组对果农进行精准扶贫,帮助果农将一种有机生态水果拓宽了市场.与去年相比,今年这种水果的产量增加了1000千克,每千克的平均批发价比去年降低了1元,批发销售总额比去年增加了20%.已知去年这种水果批发销售总额为10000元,则这种水果今年每千克的平均批发价是元.三.解答题(共7小题,满分90分)21.神舟十三号飞船搭载实验项目中,四川省农科院生物技术研究所共有a粒水稻种子,每粒种子质量大约0.0000325千克;甘肃省天水市元帅系苹果的b粒干燥种粒,每粒种子质量大约0.002275千克,参与航天搭载诱变选育.(1)用科学记数法表示上述两个数.(2)若参与航天搭载这两包种子的质量相等,求的值.(3)若这两包种子的质量总和为1.04千克,水稻种子粒数是苹果种子粒数10倍,求a,b的值.22.若式子无意义,求代数式(y+x)(y﹣x)+x2的值.23.下列分式中,哪些是最简分式?,,;,,,.24.(1)计算:;(2)解不等式组:.25.若关于x 的方程有增根,求实数m的值.26.一船在河流上游A港顺流而下直达B港,用一个小时将货物装船后返航,已知船在静水中的速度是50千米/时,A、B两地距离为150千米,则该船从A港出发到返回A港共用了7.25小时,如果设水流速度是x千米/时,那么x应满足怎样的方程?27.阅读理解材料:为了研究分式与分母x的变化关系,小明制作了表格,并得到如下数据:x…﹣4﹣3﹣2﹣101234…10.50.0.25……﹣0.25﹣0.﹣0.5﹣1无意义从表格数据观察,当x>0时,随着x 的增大,的值随之减小,并无限接近0;当x<0时,随着x 的增大,的值也随之减小.材料2:对于一个分子、分母都是多项式的分式,当分母的次数高于分子的次数时,我们把这个分式叫做真分式.当分母的次数不低于分子的次数时,我们把这个分式叫做假分式.有时候,需要把一个假分式化成整式和真分式的代数和,像这种恒等变形,称为将分式化为部分分式.如:.根据上述材料完成下列问题:(1)当x>0时,随着x的增大,1+的值(增大或减小);当x<0时,随着x的增大,的值(增大或减小);(2)当x>1时,随着x的增大,的值无限接近一个数,请求出这个数;(3)当0≤x≤2时,求代数式值的范围.。
人教版八年级数学上册第15章分式单元测试卷一、选择题(本大题共10小题,共30分)1.式子32x ,1π,−4a+b,a+b3中是分式的有()个.A. 1B. 2C. 3D. 42.要使分式3x−6x+1的值等于零,则x的取值是()A. x=2B. x=−2C. x≠1D. x≠−13.下列与分式a−ba+b的值相等的是()A. b−a−a+b B. b−aa+bC. −b−aa−bD. −a−b−a−b4.计算1a−1−aa−1的结果为()A. 1+aa−1B. −aa−1C. −1D. 25.化简a+1a2−2a+1÷(1+2a−1)的结果是()A. 1a−1B. 1a+1C. 1a2−1D. 1a2+16.x(x≠0)为何值时,分式x−2x2的值为负()A. x>2B. x<2C. x=2D. x<07.计算4x1−x2÷2x2x2+x的结果是()A. 21+x B. 21−xC. −21+xD. −21−x8.计算1x+1+11−x的正确结果是()A. 0B. 2x1−x C. 21−x2D. 2x2−19.镇江市教育局为帮助全市贫困师生举行“一日捐”活动,甲、乙两校教师各捐款60000元,已知“…”,设乙学校教师有x人,则可得方程60000x −60000(1+20%)x=20,根据此情景,题中用“…”表示的缺失的条件应补()A. 乙校教师比甲校教师人均多捐20元,且甲校教师的人数比乙校教师的人数多20%B. 甲校教师比乙校教师人均多捐20元,且乙校教师的人数比甲校教师的人数多20%C. 甲校教师比乙校教师人均多捐20元,且甲校教师的人数比乙校教师的人数多20%D. 乙校教师比甲校教师人均多捐20元,且乙校教师的人数比甲校教师的人数多20%1第!异常的公式结尾页,共3页 210. 若 23x 2+4x+7的值为14,则 16x 2+8x−1的值是( )A. 1B. −1C. −17D. 15二、填空题(本大题共6小题,共18分) 11. 化简:2x −1x =______. 12. 计算:(y −2x )2= ______ . 13. 当x =________时,分式x 2−4x 2−4x+4的值为零.14. 当x ______ 时,分式x 2−4x+2无意义;当x ______ 时,分式x 2−4x+2值为零.15. 计算:2a−1a+1a=________.16. 若分式2−3xx 2+1的值是负数,则x 的取值范围是______. 三、计算题(本大题共7小题,共72分) 17. 先化简,再求值:x−3x 2−1⋅x 2+2x+1x−3−(1x−1+1),其中x =√2+1.18. 计算:6−2aa−2÷(a +2−5a−2).19. 先化简(1−3x+2)÷x−1x 2+2x −1,再从−2≤x ≤2的范围内选取一个合适的整数x 代入求值.20.21.已知x2=y3=z4,求2x+2y+z3y−z.22.化简并求值:(1x−y −1x+y)÷2x−yx2−y2,其中x,y满足|x+2|+(2x+y−1)2=0.23.3x+4x2+x−6=Ax−2+Bx+3,求A、B的值.某超市用1200元购进一批甲玩具,用800元购进一批乙玩具,所购甲玩具件数是乙玩具件数的54,已知甲玩具的进货单价比乙玩具的进货单价多1元.(1)求:甲、乙玩具的进货单价各是多少元?(2)玩具售完后,超市决定再次购进甲、乙玩具(甲、乙玩具的进货单价不变),购进乙玩具的件数比甲玩具件数的2倍多60件,求:该超市用不超过2100元最多可以采购甲玩具多少件?24.1、在最软入的时候,你会想起谁。
第十五章分式(单元测试卷人教版)考试时间:120分钟,满分:120分一、选择题:共10题,每题3分,共30分。
1.下列分式是最简分式的是()A .11x x --B .211x x --C .42xD .221x x -2.在5πx -,2x ,13x +,25x x +,6y -,5a x -中,分式的个数为()A .2B .3C .4D .53.要使分式1xx -有意义,则x 应满足下列哪个条件()A .0x ≠B .1x ≠-C .1x ≠D .2x ≠4.分式方程1231x x =-+的解为()A .7x =B .7x =-C .5x =D .5x =-5.已知关于x 的分式方程3111m x x+=--的解是非负数,则m 的取值范围是()A .2m >B .2m ≥C .2m ≥且3m ≠D .2m >且3m ≠6.若关于x 的分式方程3233x a a x x +=--无解,则a 的值为()A .1B .12C .1或12D .以上都不是7.若关于x 的方程311x mx x -=--产生增根,则m 的值是()A .3-B .2-C .2D .08.计算:263242m m m m -÷+--的结果为()A .1B .22m m -+C .22m m +-D .22m m +9.在物理学中,压强p 等于物体所受压力F 的大小与受力面积S 之比,即Fp S=.小明将底面积为2m S 、重100N 的均匀长方体铁块A 和底面积为()21m S +、重150N 的均匀长方体铁块B 放置在水平桌面上,A 、B 两个铁块对桌面的压强之比为2:1,求底面积S 为多少?则可列方程()A .10015021S S =⨯+B .10015021S S ⨯=+C .10015021S S=⨯+D .10015021S S⨯=+10.按一定规律排列的分式:2345246810246810,,,,x x x x x y y y y y,….第n 个分式是()A .22nnn x yB .22nnnx yC .22n nnx yD .22nnnx y二、填空题:共8题,每题3分,共24分。
新人教版八年级数学上册第十五章《分式》单元测试试卷及答案一、选择题1、若代数式有意义,则实数x的取值范围是()A.x=0 B.x=3 C.x≠0 D.x≠32、若分式的值为0,则x的值为 ( )A.2 B.2 C.-2 D.03、分式、与的最简公分母是 ( )A. B. C. D.4、若中的和的值都缩小2倍,则分式的值()A.缩小2倍 B.缩小4倍 C.扩大2倍 D.扩大4倍5、已知x2﹣3x﹣4=0,则代数式的值是()A.3 B.2 C. D.6、(2017临沂)甲、乙二人做某种机械零件,已知甲每小时比乙多做6个,甲做90个所用时间与乙做60个所用时间相等,求甲、乙每小时各做零件多少个.如果设乙每小时做x个,那么所列方程是()A. B. C. D.7、方程的根为A.或3 B. C.3 D.1或8、(2016黑龙江省齐齐哈尔市)若关于x的分式方程的解为正数,则满足条件的正整数m的值为()A.1,2,3 B.1,2 C.1,3 D.2,39、3-去分母,得().A.3-2(5x+7)=-(x+17) B.12-2(5x+7)=-x+17 C.12-2(5x+7)=-(x+17) D.12-10x+14=-(x+17)10、某店在开学初用880元购进若干个学生专用科学计算器,按每个50元出售,很快就销售一空,据了解学生还急需3倍这种计算器,于是又用2580元购进所需计算器,由于量大每个进价比上次优惠1元,该店仍按每个50元销售,最后剩下4个按九折卖出.这笔生意该店共盈利()元.A.508 B.520 C.528 D.560二、填空题11、计算_______________.12、函数的自变量x的取值范围是________.13、计算的结果为__________.14、计算:=________.15、已知:,则=_________.16、某商场销售一种商品,第一个月将此商品的进价提高20%作为销售价,共获利1200元,第二个月商场搞促销活动,将此商品的进价提高15%作为销售价,第二个月的销售量比第一个月增加了80件,并且商场第二个月比第一个月多获利300元.设此商品的进价是x元,则可列方程________.17、(2017黄冈)化简:=______.18、当x=_____时,分式的值为0.19、已知9x-6x+1=0,则代数式3x+的值为________20、若代数式的值为零,则代数式(a+2)(a2-1)-24的值是_________.三、计算题21、(1)计算:(2017-π)0-+|-2|;(2)化简:.22、解方程:.23、先化简,再求值:,其中.24、先化简,再求值:其中x=.四、解答题(题型注释)25、为了防止水土流失,某村开展绿化荒山活动,计划经过若干年使本村绿化总面积新增360万平方米.自2014年初开始实施后,实际每年绿化面积是原计划的1.6倍,这样可提前4年完成任务.问实际每年绿化面积多少万平方米?26、小军家距学校5千米,原来他骑自行车上学,学校为保障学生安全,新购进校车接送学生.若校车的速度是他骑车速度的2倍,则现在小军乘校车上学可以从家晚10分钟出发,结果与原来到校时间相同,试求小军骑车的速度.27、今年某中学到鹅鼻嘴公园植树,已知该中学离公园约15km,部分学生骑自行车出发40分钟后,其余学生乘汽车出发,汽车速度是自行车速度的3倍,全体学生同时到达,设自行车的速度为v km/h.(1) 求v的值;(2) 植树活动完成后,由于学生比较劳累,骑自行车的学生的速度变为原来的,汽车速度不变,为了使两批学生同时到达学校,那么骑自行的学生应该提前多少时间出发.参考答案1、D2、B3、B4、C5、D6、B7、C8、C9、C10、B11、12、x>213、x+114、2a+1215、1516、17、118、219、220、-2421、(1)-1 (2)22、x=0.23、2-24、25、实际每年绿化面积为54万平方米.26、1527、(1) ;(2)骑自行车的学生应提前出发.【解析】1、分析:根据分式有意义的条件进行求解即可.详解:由题意得,x﹣3≠0,解得,x≠3,故选:D.点睛:此题考查了分式有意义的条件.注意:分式有意义的条件事分母不等于零,分式无意义的条件是分母等于零.2、分析:要使一个分式的值为零,则必须满足分式的分子为零,分母不为零,根据性质即可求出答案.详解:根据题意可得:,解得:x=2,故选B.点睛:本题主要考查的是分式的性质,属于基础题型.要使分式有意义,则必须满足分式的分母不为零;要使一个分式的值为零,则必须满足分式的分子为零,分母不为零.3、分析:最简公分母通常取各分母系数的最小公倍数与字母因式的最高次幂的积,根据定义即可得出答案.详解:根据题意可得最简公分母为:12abc,故选B.点睛:本题主要考查的就是最简公分母的求法,属于基础题型.理解最简公分母的定义是解决这个问题的关键.4、分析:依题意分别用和去代换原分式中的x和y,利用分式的基本性质化简即可.详解:分别用和去代换原分式中的x和y得,,∴分式的值变为原来的2倍.故选C.点睛:本题主要考查分式的基本性质:分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变.解题的关键是抓住分子、分母变化的倍数,解此类题首先把字母变化后的值代入式子中,然后约分,再与原式比较,最终得出结论.5、x2-3x-4=0,(x-4)(x+1)=0,解得x1=4,x2=-1,∵x2-x-4≠0,∴x≠4,∴当x=-1时,原式=.故选D.点睛:本题在解出x代入分式的时候一定要考虑分式有意义的条件即分母不为0.6、解:设乙每小时做x个,则甲每小时做(x+6)个,根据甲做90个所用时间与乙做60个所用时间相等,得:,故选B.7、分析:分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.详解:去分母得:3=x2+x﹣3x,解得:x=﹣1或x=3,经检验x=﹣1是增根,分式方程的根为x=3.故选C.点睛:本题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.8、试题解析:等式的两边都乘以(x﹣2),得:x=2(x﹣2)+m,解得x=4﹣m,x=4﹣m≠2,由关于x的分式方程的解为正数,得:m=1,m=3,故选C.点睛:本题考查了分式方程的解,利用等式的性质得出整式方程是解题关键,注意要检验分式方程的根.9、试题解析:方程两边同乘以4得,12-2(5x+7)=-(x+17).A.第一项3没有乘以公分母4;B.等号右边去括号未变号;C.正确;D. 等号左边去括号未变号.故选C.点睛: 本题主要考查一元一次方程的解法,去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号.10、试题分析:设第一次购进计算器x个,则第二次购进计算器3x个,根据每个进价比上次优惠1元,求出购进计算器的个数,再根据总售价﹣成本=利润,即可得出答案.解:设第一次购进计算器x个,则第二次购进计算器3x个,根据题意得:=+1,解得:x=20,经检验x=20是原方程的解,则这笔生意该店共盈利:[50×(20+60﹣4)+4×50×90%]﹣(880+2580)=520(元);故选B.考点:分式方程的应用.11、分析:根据绝对值的定义可知,负指数幂的运算法则可知,再由实数的运算法则计算即可.详解:原式=.点睛:本题考察了去绝对值符号、负指数幂.12、根据题意得,x﹣2>0,解得x>2.故答案是:x>2.13、=.故答案是:x+1.14、原式====2a+12.故答案为2a+12.点睛:分式混合运算的步骤:先乘方,再乘除,最后加减,有括号的要先算括号内的.注意分式化简的最后结果是最简分式.15、【分析】利用等式性质两边除以a,得;同时平方得;再利用乘法公式,原式化为:,再代入求值.【详解】等式两边除以a,得:,所以,,所以,,所以,,所以,原式===15【点睛】此题考核知识点:等式的性质;整式乘法公式.解题的关键在于:灵活运用等式基本性质对等式进行变形,灵活运用整式乘法公式.16、分析:求的是单价,总价明显,一定是根据数量来列等量关系.本题的关键描述语是:第二个月的销售量比第一个增加了80件.等量关系为:第二个月的销售量-第一个月的销售量,算出后可得到此商品的进价.详解:解:设此商品进价是x元.,则有,故答案为:.点睛:本题考查了分式方程的应用,应用题中一般有三个量,求一个量,明显的有一个量,一定是根据另一量来列等量关系的.本题考查分式方程的应用,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.17、原式===1,故答案为:1.18、=0,则19、9x2-6x+1=0利用完全平方公式对方程左侧的整式进行因式分解,得 (3x-1)2=0,∴3x-1=0,∴.当时,.故本题应填写:2.20、因为=0,所以-1=0且a2+a-2≠0,解得a=±1,且a≠1,a≠-2,所以a=-1.将a=-1代入(a+2)(a2-1)-24得(-1+2)×(1-1)-24=-24.故答案为:-24.点睛:分式为零的条件是:分子为零且分母不为零.21、分析:(1)根据零指数幂、负整数指数幂、绝对值分别求出每个部分的值,再代入求出即可;(2)先算减法和分解因式,把除法变成乘法,最后根据分式的乘法法则进行计算即可.本题解析:解:(1)原式=1-4+2=-1.(2)原式=÷==·=.22、方程两边同时乘以:得:,解得:,检验:当时,,∴是原方程的解.点睛:解分式方程的“基本思想是去分母化分式方程为整式方程”,所以我们第一步要去分母,这时需注意方程两边各项要同时乘以最简公分母,不要漏乘;第二需注意解分式方程可能会产生增根,所以最后必须检验.23、试题分析:可先将小括号里的通分化简,然后将除法转化为乘法进行进一步化简。
人教版八年级上册数学第十五章分式单元测试题(含答案)一、选择题1.若x为任意有理数,下列分式中一定有意义的是()A. B. C. D.2.下列各式:(﹣m)2,,,x2+y2,5,,中,分式有()A. 1个B. 2个C. 3个D. 4个3.下面是分式方程的是()A. B. C. D.4.下列四个分式中,是最简分式的为()A. B. C. D.5.若分式的值为,则( )A. B. C. 或 D.6.若a=﹣0.22,b=﹣2﹣2,c=(﹣)﹣2,d=(﹣)0,则它们的大小关系是()A. a<b<c<dB. b<a<d<cC. a<d<c<bD. c<a<d<b7.化简÷(﹣x﹣2)的结果()A. B. C. D.8.关于方程(a+1)x=1,下列结论正确的是()A. 方程无解B. x=C. a≠-1时方程解为任意实数D. 以上结论都不对9.化简的结果是()A. x﹣2B.C.D. x+210.化简的结果是()A. B. a C. D.11.若关于x的方程无解,则()A. m=1B. m=﹣1C. m=0或﹣1D. m=1或﹣1二、填空题12.当x=________时,分式的值等于零.13.计算:()2=________ .14.分式,,,中,最简分式的个数是________个.15.分式的值为0,则x=________.16.约分:=________;=________17.当x=2时,分式(﹣1)÷ 的值是________.18.分式,,的最简公分母为________.19.若分式的值为零,则x的值为________ .20.已知关于x的方程的解是正数,则m的取值范围为:________.21.当m________时,方程= 无解.三、解答题22.通分:(1);(2),;(3);(4).23.计算:.24.化简:(1);(2).25.26.化简:(a+1﹣)÷ ,然后给a从1,2,3中选取一个合适的数代入求值.27.某医药公司有一种药品共300箱,将其分配给批发部和零售部销售.批发部经理对零售部经理说:“如果把你们分得的药品让我们卖可得3500元.”零售部经理对批发部经理说:“如果把你们所分到的药品让我们卖,可卖得7500元.”若设零售部所得的药品是a箱,则:(1)该药品的零售价是每箱多少元?(2)该药品的批发价是每箱多少元?28.要在规定的日期内加工一批机器零件,如果甲单独做,刚好在规定日期内完成,乙单独做则要超过3天.现在甲、乙两人合作2天后,再由乙单独做,正好按期完成,问规定日期是多少天?参考答案一、选择题1. B2. B3. D4. D5. D6.B7. A8. D9.D 10. B 11. D二、填空题12.﹣2 13. 14.3 15.-3 16.;17.-2 18.12a 2b 2c 2 19.1 20.m >﹣3且m≠﹣2 21.m=3﹣1=2三、解答题22.(1)解: = , =(2)解: = ; =(3)解: = ; =(4)解: = = ; = =23.解:原式= + == .24.(1)解:原式= = =(2)解:原式= = =25.解:1+3(x ﹣2)=x ﹣1 整理得:1+3x ﹣6=x ﹣1解得;x=2经检验x=2是原方程的增根,原方程无解26.解:原式= • = • =2(a+2)=2a+4,当a=3时,原式=6+4=1027.解:零售部所得到的药品是a箱时,批发部所得到的药品是(300﹣a)箱.由题意,得(1)零售(300﹣a)箱药品,可得7500元,所以该药品的零售价是元.(2)批发a箱药品,可得3500元,所以该药品的批发价是元.28.解:设规定日期是x天.则甲单独做需要x天,乙单独做需要(x+3)天,根据题意得:(+ )×2+ =1,解得:x=6,经检验,x=6是原方程的根.答:规定的日期是6天人教版八年级上第十五章《分式》单元检测卷(含答案)一、选择题(每题3分,共30分)1.(2019·常州)若代数式x +1x -3有意义,则实数x 的取值范围是( ) A .x =-1B .x =3C .x ≠-1D .x ≠3 2.如果把xy x y+中的x 与y 都扩大10倍,那么这个代数式的值() A .不变 B .扩大20倍C .扩大10倍D .缩小为原来的110 3.计算22x y y y x x -⎛⎫÷⋅ ⎪⎝⎭的结果是() A .2x y B .y x C .2x y - D .-x4.已知a =2-2,b =1)0,c =(-1)3,则a ,b ,c 的大小关系是( )A .a >b >cB .b >a >cC .c >a >bD .b >c >a5.花粉的质量很小,一粒某种植物花粉的质量约为0.000037毫克,已知1克=1000毫克,那么0.000037毫克可以用科学记数法表示为( )A .3.7×10-5克B .3.7×10-6克C .3.7×10-7克D .3.7×10-8克6.若(244a -+12a-)⋅w =1,则w =( ) A .a +2(a ≠-2) B .-a +2(a ≠2)C .a -2(a ≠2)D .-a -2(a ≠-2)7.分式方程11x --21x +=211x -的解是( ) A .x =0 B .x =-1 C .x =±1 D .无解 8.若分式22-x 与1互为相反数,则x 的值为( ) A .2B .-2C .1D .-19.(2019·十堰)十堰即将跨入高铁时代,钢轨铺设任务也将完成.现还有6000米的钢轨需要铺设,为确保年底通车,如果实际施工时每天比原计划多铺设20米,就能提前15天完成任务.设原计划每天铺设钢轨x 米,则根据题意所列的方程是( )A.6000x -6000x +20=15 B.6000x +20-6000x =15 C.6000x -6000x -15=20 D.6000x -15-6000x =2010.已知关于x 的方程22x m x +-=3的解是正数,则m 的取值范围为( ) A .m <-6B .m >-6C .m >-6且m ≠-4D .m ≠-4二、填空题(每题3分,共18分)11.如果分式11x x +-的值为0,那么x 的值为______. 12.某中学图书馆添置图书,用240元购进一种科普书,同时用200元购进一种文学书.由于科普书的单价比文学书的单价高出一半,因此学校所购买的文学书比科普书多4本.求文学书的单价.设这种文学书的单价为x 元,则根据题意,所列的方程是______.13.计算:(-2xy -1)-3=______.14.(2019·绥化)当a =2018时,代数式⎝⎛⎭⎫a a +1-1a +1÷a -1(a +1)2的值是________. 15.若(x -y -2)2+│xy +3│=0,则(3x x y --2x x y -)÷1y的值是. 16.(2019·齐齐哈尔)关于x 的分式方程2x -a x -1-11-x=3的解为非负数,则a 的取值范围为_____________.三、解答题(共52分)17.(12分)(1)计算1-2a b a b -+÷222244a b a ab b -++;(2) (2019·枣庄)先化简,再求值:x 2x 2-1÷⎝⎛⎭⎫1x -1+1,其中x 为整数且满足不等式组⎩⎪⎨⎪⎧x -1>1,5-2x ≥-2.18.(12分)解方程:(1)32x x ++22x -=3;(2)24 1x-+21xx+-=-1.19.(8分)先化简2249xx--÷(1-13x-),再从不等式2x-3<7的正整数解中选一个使原式有意义的数代入求值.20.(8分)(2019·黄冈)为了对学生进行革命传统教育,红旗中学开展了“清明节祭扫”活动.全校学生从学校同时出发,步行4000米到达烈士纪念馆.学校要求九(1)班提前到达目的地,做好活动的准备工作.行走过程中,九(1)班步行的平均速度是其他班的1.25倍,结果比其他班提前10分钟到达.分别求九(1)班、其他班步行的平均速度.21.(12分)一项工程,甲队单独做需40天完成,若乙队先做30天后,甲、乙两队一起合做20天恰好完成任务,请问:(1)乙队单独做需要多少天才能完成任务?(2)现将该工程分成两部分,甲队做其中一部分工程用了x天,乙队做另一部分工程用了y天,若x,y都是正整数,且甲队做的时间不到15天,乙队做的时间不到70天,那么两队实际各做了多少天?参考答案1.D2.A3.D4.B5.D6.D7.D8.D9.A 10.C 11.-112.45.1240200=-xx 13.-338xy 14.201915.-23 16.a ≤4且a ≠3 17.(1)-b a b+. (2)由⎩⎪⎨⎪⎧x -1>1,5-2x ≥-2得2<x ≤72. ∵x 为整数,∴x =3,∴x 2x 2-1÷⎝⎛⎭⎫1x -1+1=x 2()x +1()x -1÷1+x -1x -1=x 2()x +1()x -1×x -1x =x x +1=34. 18.(1)x =4.(2)x =31.19.答案不唯一,略20.解:设其他班步行的平均速度为x 米/分,则九(1)班步行的平均速度为1.25x 米/分.依题意,得4000x -40001.25x=10,解得x =80, 经检验,x =80是原方程的解,且符合题意,∴1.25x =100.答:九(1)班步行的平均速度为100米/分,其他班步行的平均速度为80米/分.21. (1)乙队单独做需要100天才能完成任务.(2)甲、乙两队实际分别做了14天和65天.人教版八年级数学上册第15章分式单元过关测试(含答案)一、选择题:1、下列各式:其中分式共有()个A.2B.3C.4D.52、若式子有意义,的取值范围是( )A. B. C. D.3、下列约分正确的是()A. =B. =1C. =1D. =﹣14、下列分式:①;②;③;④其中最简分式有( )A.1个B.2个C.3个D.4个5、PM2.5是指大气中直径≤0.0000025米的颗粒物,将0.0000025用科学记数法表示为()A.2.5×10﹣7B.2.5×10﹣6C.25×10﹣7D.0.25×10﹣56、把分式中的a、b都扩大6倍,则分式的值()A.扩大12倍B.不变C.扩大6倍D.缩小6倍7、若a=﹣0.32,b=﹣3﹣2,c=(﹣)﹣2,d=(﹣)0,则a、b、c、d大小关系正确的是()A.a<b<c<dB.b<a<d<cC.a<d<c<bD.a<b<d<c8、化简(﹣)的结果是()A.xB.C.D.9、若x2+x﹣2=0,则的值为()A. B. C.2 D.﹣10、A.A=4,B=-9B.A=7,B=1C.A=1,B=7D.A=-35,B=1311、已知关于x的分式方程+=1的解是非负数,则m的取值范围是()A.m>2B.m≥2C.m≥2且m≠3D.m>2且m≠312、某市开发区在一项工程招标时,接到甲、乙两个工程队的投标书,工程领导小组根据甲、乙两队的投标书测算,可有三种施工方案:①甲队单独完成这项工程,刚好如期完工;②乙队单独完成此项工程要比规定工期多用5天;③■■■■■■■,剩下的工程由乙队单独做,也正好如期完工.某同学设规定的工期为x天,根据题意列出了方程:=1,则方案③中被墨水污染的部分应该是( )A.甲先做4天B.甲、乙合做4天C.甲先做工程的D.甲、乙合做工程的二、填空题:13、若,则_________ .14、如果分式的值为零,那么x= .15、计算:(a2b)-2÷(2a-2b-3)-2=___(结果只含有正整数指数幂).16、某车间每天能生产甲种零件120个或乙种零件100个,甲、乙两种零件分别取2个和1个才能配套,要在80天生产最多的成套产品,甲种零件应该生产________天.17、关于x的方程的解是正数,则a的取值范围是_________.18、若,对任意正整数n都成立,则a-b= .三、解答题:19、化简:÷(1+). 20、化简:( +)÷.21、解方程:﹣1= 22、解方程:﹣=1.23、已知a、b、c为实数,且,求的值。
人教版八年级数学上册第十五章《分式》单元测试题(含答案)一、选择题(每小题3分,共24分)1.在式子x y 3,πa ,13+x ,31+x ,a a 2中,分式有( )A .1个B .2个C .3个D .4个 2.分式32+x x无意义的条件是( ) A .x≠—3 B . x=-3 C .x=0 D .x=33.下列各分式中与分式ba a--的值相等是( ) A .b a a -- B .b a a +- C .a b a - D .—ab a-4.计算(2-a a —2+a a)·a a 24-的结果是( )A . 4B . -4C .2aD .-2a 5.分式方程2114339x x x +=-+-的解是( ) A .x=-2 B .x=2 C . x=±2 D .无解 6.把分式(0)xyx y x y+≠+中的x ,y 都扩大3倍,那么分式的值( ) A .扩大为原来的3倍 B .缩小为原来的13C .扩大为原来的9倍D .不变7.若分式34922+--x x x 的值为0,则x 的值为( )A .3B .3或-3C .-3D .08.某厂接到加工720件衣服的订单,预计每天做48件,正好按时完成,后因客户要求需提前5 天交货.设每天应多做x 件,则x 应满足的方程为 ( )A .72072054848x -=+ B .72072054848x +=+ C .720720548x -= D .72072054848x-=+二、填空题(每小题4分,共32分) 9.当x= 时,分式22x x --值为零.10.计算.2323()a b a b --÷= . 11.用科学记数法表示0.002 014= .12.分式222439xx x x --与的最简公分母是____ ______. 13.若方程322x mx x -=--无解,则m =__________________. 14.已知a 1-b 1=21,则ba ab-的值为________________.15.若R 1=11R +21R (R 1≠R 2),则表示R 1的式子是________________. 16.(2013年泰安)某电子元件厂准备生产4600个电子元件,甲车间独立生产一半后,由于要尽快投入市场,乙车间也加入了该电子元件的生产.若乙车间每天生产的电子元件个数是甲车间的1.3倍,结果用33天完成任务.问:甲车间每天生产电子元件多少个?在这个问题中设甲车间每天生产电子元件x 个,根据题意可得方程为________________. 三、解答题(共64分)17.(14分)计算:(1)(2x -3y 2)-2÷(x -2y )3; (2)21+-x x ÷41222-+-x x x +11-x .18.(8分)先化简,再求值:211122x x x -⎛⎫-÷⎪++⎝⎭,其中2x =.19.(8分)解方程21124x x x -=--.20.(10分)先仔细看(1)题,再解答(2)题. (1)a 为何值时,方程3x x -= 2 + 3ax -会产生增根? 解:方程两边乘(x-3),得x = 2(x-3)+a①.因为x=3是原方程的增根,•但却是方程①的解,所以将x=3代入①,得3=2×(3-3)+a ,所以a=3. (2)当m 为何值时,方程1y y --2my y -=1y y-会产生增根?25.(12分)贵港市在旧城改造过程中,需要整修一段全长2400米的道路,为了尽量减少施工对城市交通所造成的影响,实际工作效率比原计划提高了20%,结果提前8小时完成任务,求原计划每小时修路 的长度.26.(12分)荷花文化节前夕,我市对观光路工程招标时,接到甲、乙两个工程队的投标书,甲、乙施工一天的工程费用分别为1.5万元和1.1万元,市政局根据甲、乙两队的投标书测算,有三种施工方案.(1)甲队单独做这项工程刚好如期完成. (2)乙队单独做这项工程,要比规定日期多5天.(3)若甲、乙两队合作4天后,余下的工程由乙队单独做,也正好如期完成. 在确保如期完成的情况下,你认为哪种方案最节省工程款,通过计算说明理由.第十五章 分式测试题参考答案一、1. C 2. B 3. C 4. B 5. B 6. A 7. C 8. D二、9.-2 10.a 4b 6 11.-2.014×10-3 12.x(x+3)(x-3) 13.1 14.-2 15.R 1=RR RR -22 16.333.123002300=++x x x三、17.(1)7124yx . (2)1. 18.原式=11-x .代入x=2,得原式=1. 19.x=-23.20.解:方程两边乘y (y-1),得y 2-m=(y-1)2. 化简,得m=2y -1.因为y=0和y=1都是原方程的的增根,但却是化简后整式方程的解.故将y=0和y=1分别代入m=2y -1,得m=-1或m=1. 所以m =±1.21.解:设原计划每小时修路x 米,根据题意,得8%)201(24002400=+-xx . 解得50=x .经检验.x=50是原方程的解,且符合题意. 答:原计划每小时修路50米.22.解:设工程期为x 天,则甲队单独完成用x 天,乙队单独完成用(x +5)天.根据题意,得415xx x +=+. 解得x=20.经检验,x=20是原方程的解,且符合题意.所以在不耽误工期的情况下,有方案(1)和方案(3)两种方案合乎要求.方案(1)需工程款1.5×20=30(万元),方案(3)需工程款1.5×4+1.1×20=28(万元). 故方案(3)最节省工程款且不误期.人教版八年级数学上册第15章分式单元测试题(1)一、选择题:(每小题2分,共20分) 1.下列各式:2b a -,x x 3+,πy +5,()1432+x ,b a b a -+,)(1y x m-中,是分式的共有( )A.1个B.2个C.3个D.4个 2.下列判断中,正确的是( ) A .分式的分子中一定含有字母 B .当B =0时,分式B A无意义C .当A =0时,分式BA的值为0(A 、B 为整式)D .分数一定是分式3.下列各式正确的是( )A .11++=++b a x b x aB .22x y x y =C .()0,≠=a ma na m nD .a m an m n --=4.下列各分式中,最简分式是( )A .()()y x y x +-8534B .y x x y +-22 C .2222xy y x y x ++ D .()222y x y x +- 5.化简2293m m m --的结果是( )A.3+m m B.3+-m m C.3-m m D.m m-3 6.若把分式xyyx 2+中的x 和y 都扩大3倍,那么分式的值( ) A .扩大3倍 B .不变 C .缩小3倍 D .缩小6倍7.A 、B 两地相距48千米,一艘轮船从A 地顺流航行至B 地,又立即从B 地逆流返回A 地,共用去9小时,已知水流速度为4千米/时,若设该轮船在静水中的速度为x 千米/时,则可列方程( )A .9448448=-++x x B .9448448=-++x x C .9448=+x D .9496496=-++x x 8.已知230.5x y z ==,则32x y z x y z +--+的值是( )A .17 B.7 C.1 D.139.一轮船从A 地到B 地需7天,而从B 地到A 地只需5天,则一竹排从B 地漂到A 地需要的天数是( )A .12 B.35 C.24 D.47 10.已知226a b ab +=,且0a b >>,则a ba b+-的值为( )A .2B .2±C .2D .2±二、填空题:(每小题2分,共16分)11.分式392--x x 当x _________时分式的值为零,当x ________时,分式xx 2121-+有意义.12.利用分式的基本性质填空: (1)())0(,10 53≠=a axy xy a (2)()1422=-+a a 13.分式方程1111112-=+--x x x 去分母时,两边都乘以 . 14.要使2415--x x 与的值相等,则x =__________. 15.计算:=+-+3932a a a __________. 16. 若关于x 的分式方程3232-=--x m x x 无解,则m 的值为__________. 17.若分式231-+x x 的值为负数,则x 的取值范围是__________.18. 已知2242141x y y x y y +-=-+-,则的24y y x ++值为______. 三、解答题:(共64分) 19.计算:(6分)(1)11123x x x++ (2)3xy 2÷x y 2620. 计算:(3分) ()3322232n mn m --⋅21. 计算(8分)(1)168422+--x x x x (2)mn nn m m m n n m -+-+--222.(7分) 先化简,后求值:222222()()12a a a a a b a ab b a b a b -÷-+--++-,其中2,33a b ==-23. 解下列分式方程.(8分) (1)xx 3121=- (2)1412112-=-++x x x24. 计算:(8分) (1)1111-÷⎪⎭⎫ ⎝⎛--x x x (2)4214121111x x x x ++++++-25.(8分)已知x 为整数,且918232322-++-++x x x x 为整数,求所有符合条件的x 的值.26.(6分)先阅读下面一段文字,然后解答问题:一个批发兼零售的文具店规定:凡一次购买铅笔301支以上(包括301支)可以按批发价付款;购买300支以下(包括300支)只能按零售价付款.现有学生小王购买铅笔,如果给初三年级学生每人买1支,则只能按零售价付款,需用()12-m 元,(m 为正整数,且12-m >100)如果多买60支,则可按批发价付款,同样需用()12-m元.设初三年级共有x 名学生,则①x 的取值范围是 ;②铅笔的零售价每支应为 元;③批发价每支应为 元.(用含x 、m 的代数式表示). 27.(10分)某工人原计划在规定时间内恰好加工1500个零件,改进了工具和操作方法后,工作效率提高为原来的2倍,因此加工1500个零件时,比原计划提前了5小时,问原计划每小时加工多少个零件?答案一、选择题1.C 2.B 3.C 4.C 5.B 6.C 7.B 8.A 9.B 10.A 二、填空题(每小题3分,共24分)11.=-3、≠1212.26a 、2a - 13.(1)(1)x x +- 14.6 15.3a -16. 17.-1<x <23 18.2(提示:设24y y m +=,原方程变形为211x m x m -=--,方程两边同时乘以(1)(1)x m --,得(1)(1)(2)x m x m -=--,化简得m x +=2,即24y y m ++=2.三、解答题(共56分) 19.(1)原式=632666x x x ++=116x(2)原式=2236x xyy =212x 20.原式=243343m n m n -=1712m n - 21.(1)原式=2(4)(4)x x x --=4xx - (2)原式=2m n m n m n m n m n-++----=2m n m n m n -++--=mm n -- 22.原式=22222()()[]1()()()a a a a b a a b a b a b a b a b --÷-+--+-- =2222()[]1()()()a ab a a a b a a b a b a b ----÷+-+-=2()()1()ab a b a b a b ab-+-÷+-- =a b a b a b a b +-+--=2aa b- 当2,33a b ==-时,原式=2232(3)3⨯--=43113=411 23.(1)方程两边同时乘以3(2)x x -,得32x x =-,解得x =-1,把x =-1代入3(2)x x -,3(2)x x -≠0,∴原方程的解,∴原方程的解是x =-1.(2)方程两边同乘以最简公分母(1)(1)x x +-,得4)1(2)1(=++-x x ,解这个整式方程得,1=x ,检验:把1=x 代入最简公分母(1)(1)x x +-,(1)(1)x x +-=0,∴1=x 不是原方程的解,应舍去,∴原方程无解. 24.(1)原式=1111x x x -⎛⎫+⎪-⎝⎭=1111x x x x -+--=11x x x x--=1 (2)原式=241124(1)(1)(1)(1)11x x x x x x x x +-+++-+-+++=224224111x x x ++-++=22222242(1)2(1)4(1)(1)(1)(1)1x x x x x x x +-++-++-+ =2222422224(1)(1)1x x x x x ++-+-++=444411x x+-+=4444444(1)4(1)(1)(1)(1)(1)x x x x x x +-+-++- =4484(1)4(1)1x x x ++--=881x- 25.原式=222218339x x x x +-++--=22(3)2(3)(218)9x x x x --+++-2269x x +-=2(3)(3)(3)x x x ++-=23x -,∵918232322-++-++x x x x 是整数,∴23x -是整数, ∴3x -的值可能是±1或±2,分别解得x =4,x =2,x =5,x =1,符合条件的x 可以是1、2、4、5.26.①241≤x ≤300;②x m 12-,6012+-x m 27.设原计划每小时加工x 个零件,根据题意得:1500150052x x-=,解得x =150,经检验,x =150是原方程的根,答:设原计划每小时加工150个零件.人教版八年级上第十五章《分式》单元检测卷(含答案)一、选择题(每题3分,共30分)1.(2019·常州)若代数式x +1x -3有意义,则实数x 的取值范围是( ) A .x =-1B .x =3C .x ≠-1D .x ≠3 2.如果把xy x y+中的x 与y 都扩大10倍,那么这个代数式的值() A .不变 B .扩大20倍C .扩大10倍D .缩小为原来的110 3.计算22x y y y x x -⎛⎫÷⋅ ⎪⎝⎭的结果是() A .2x y B .y x C .2x y - D .-x4.已知a =2-2,b =1)0,c =(-1)3,则a ,b ,c 的大小关系是( )A .a >b >cB .b >a >cC .c >a >bD .b >c >a5.花粉的质量很小,一粒某种植物花粉的质量约为0.000037毫克,已知1克=1000毫克,那么0.000037毫克可以用科学记数法表示为( )A .3.7×10-5克B .3.7×10-6克C .3.7×10-7克D .3.7×10-8克6.若(244a -+12a-)⋅w =1,则w =( ) A .a +2(a ≠-2) B .-a +2(a ≠2)C .a -2(a ≠2)D .-a -2(a ≠-2)7.分式方程11x --21x +=211x -的解是( ) A .x =0 B .x =-1 C .x =±1 D .无解 8.若分式22-x 与1互为相反数,则x 的值为( ) A .2B .-2C .1D .-19.(2019·十堰)十堰即将跨入高铁时代,钢轨铺设任务也将完成.现还有6000米的钢轨需要铺设,为确保年底通车,如果实际施工时每天比原计划多铺设20米,就能提前15天完成任务.设原计划每天铺设钢轨x 米,则根据题意所列的方程是( )A.6000x -6000x +20=15 B.6000x +20-6000x =15 C.6000x -6000x -15=20 D.6000x -15-6000x =2010.已知关于x 的方程22x m x +-=3的解是正数,则m 的取值范围为( ) A .m <-6B .m >-6C .m >-6且m ≠-4D .m ≠-4二、填空题(每题3分,共18分)11.如果分式11x x +-的值为0,那么x 的值为______. 12.某中学图书馆添置图书,用240元购进一种科普书,同时用200元购进一种文学书.由于科普书的单价比文学书的单价高出一半,因此学校所购买的文学书比科普书多4本.求文学书的单价.设这种文学书的单价为x 元,则根据题意,所列的方程是______.13.计算:(-2xy -1)-3=______.14.(2019·绥化)当a =2018时,代数式⎝⎛⎭⎫a a +1-1a +1÷a -1(a +1)2的值是________. 15.若(x -y -2)2+│xy +3│=0,则(3x x y --2x x y -)÷1y的值是. 16.(2019·齐齐哈尔)关于x 的分式方程2x -a x -1-11-x=3的解为非负数,则a 的取值范围为_____________.三、解答题(共52分)17.(12分)(1)计算1-2a b a b -+÷222244a b a ab b -++;(2) (2019·枣庄)先化简,再求值:x 2x 2-1÷⎝⎛⎭⎫1x -1+1,其中x 为整数且满足不等式组⎩⎪⎨⎪⎧x -1>1,5-2x ≥-2.18.(12分)解方程:(1)32x x ++22x -=3;(2)24 1x-+21xx+-=-1.19.(8分)先化简2249xx--÷(1-13x-),再从不等式2x-3<7的正整数解中选一个使原式有意义的数代入求值.20.(8分)(2019·黄冈)为了对学生进行革命传统教育,红旗中学开展了“清明节祭扫”活动.全校学生从学校同时出发,步行4000米到达烈士纪念馆.学校要求九(1)班提前到达目的地,做好活动的准备工作.行走过程中,九(1)班步行的平均速度是其他班的1.25倍,结果比其他班提前10分钟到达.分别求九(1)班、其他班步行的平均速度.21.(12分)一项工程,甲队单独做需40天完成,若乙队先做30天后,甲、乙两队一起合做20天恰好完成任务,请问:(1)乙队单独做需要多少天才能完成任务?(2)现将该工程分成两部分,甲队做其中一部分工程用了x天,乙队做另一部分工程用了y天,若x,y都是正整数,且甲队做的时间不到15天,乙队做的时间不到70天,那么两队实际各做了多少天?参考答案1.D2.A3.D4.B5.D6.D7.D8.D9.A 10.C 11.-112.45.1240200=-xx 13.-338xy 14.201915.-23 16.a ≤4且a ≠3 17.(1)-b a b+. (2)由⎩⎪⎨⎪⎧x -1>1,5-2x ≥-2得2<x ≤72. ∵x 为整数,∴x =3,∴x 2x 2-1÷⎝⎛⎭⎫1x -1+1=x 2()x +1()x -1÷1+x -1x -1=x 2()x +1()x -1×x -1x =x x +1=34. 18.(1)x =4.(2)x =31.19.答案不唯一,略20.解:设其他班步行的平均速度为x 米/分,则九(1)班步行的平均速度为1.25x 米/分.依题意,得4000x -40001.25x=10,解得x =80, 经检验,x =80是原方程的解,且符合题意,∴1.25x =100.答:九(1)班步行的平均速度为100米/分,其他班步行的平均速度为80米/分.21. (1)乙队单独做需要100天才能完成任务.(2)甲、乙两队实际分别做了14天和65天.。
人教版八年级上册数学第15章分式单元测试卷一.选择题(36分)1.化简xy y x y x ---22的结果是()A.-x-yB.x+yC.x-yD.-x+y2.下列分式是最简分式的是()A、11m m--;B、3xy yxy -;C、22x yx y -+;D、6132mm-;3.在式子a 1,1-x ,m 3,3b ,b a c -,()y x +43,5122++x x ,n m nm +-中,分式的个数是()A、6B、5C、4D、34.若把分式x yxy+中的,x y 都扩大3倍,那么分式的值()A.缩小3倍B.扩大3倍C.不变D .缩小9倍5.已知2111=-b a ,则ba ab -的值是()A.21 B.-21 C.2D.-26.下列各式正确的是()A、c c a b a b =----;B、c c a b a b =---+;C、c c a b a b =--++;D、c ca b a b-=----7.环境空气质量问题已经成为人们日常生活所关心的重要问题。
我国新修订的《环境空气质量标准》中增加了 2.5PM 监测指标,“ 2.5PM ”是指大气中危害健康的直径小于或等于2.5微米的颗粒物。
2.5微米即0.0000025米。
用科学记数法表示0.0000025为()A.52.510-⨯B.52.510⨯C.62.510-⨯D.62.510⨯8.一件工作,甲单独做a 小时完成,乙单独做b 小时完成,则甲、乙两人合作完成需要()小时。
A、ba 11+B、ab1C、ba +1D、ba ab +9.已知:a 2﹣3a+1=0,则a+﹣2的值为()A.4B.1C.﹣1D.﹣510.若方程7667=----xkx x 有增根,则k 的值是()A.-1B.0C.1D.611.若分式73222++y y 的值为41,则21461y y +-的值为()A、1B、-1C、-71D、5112.下列分式中,无论x 取任意实数都有意义的是()A.221x x --B.22x x -C.2x x -D.221x x -+二.填空(16分)13.化简333x x x+--结果是___________14.不改变分式的值,把分式144132a ba b +-的分子与分母中各项的系数都化为整数,其结果.15.若2222,2ba b ab a b a ++-=则=16.当41=+m m 时,221mm +的值为________17.已知+=3,则代数式的值为.18.已知关于x 的分式方程﹣=1的解为负数,则k 的取值范围是.19.如果分式121+-x x 的值为-1,则x 的值是;已知31=b a ,分式ba ba 52-+的值为20.当m 满足条件:时,分式方程1133mx x =---有增根。
第十五章分式单元测试班级________学号________姓名____________一、选择题1、在式子1a ,2xy π,2334a b c ,56x +,78x y +,9x +10y 中,分式的个数是( ). A.2 B.3 C.4 D.52、一枚五角的硬币直径约为0.018m ,用科学记数法表示为( )A .31.810-⨯mB .21.810-⨯mC .31810-⨯mD .11.810-⨯m3、下列各式中,是分式的是( )A.2-πxB. 231xC.312-+x x D .2x 4. 下列分式是最简分式的是( )A.x 2−14x−4B.x 2−2x−3x 2−4x−5C.2−x 2x−1D.3x 3x−65. 解分式方程2x−2−4xx 2−4=2x+2,分下列四步,其中开始出现错误的一步是( )A.确定方程两边分式的最简公分母是(x −2)(x +2)B.方程两边都乘(x −2)(x +2),得整式方程2(x +2)−4x =2(x −2)C.解这个整式方程,得x =2D.原方程的解为x =26.化简x 2x -1 +x 1-x的结果是( ) A .x +1 B .x -1 C .-x D .x7.解分式方程1x -2 -3=42-x时,去分母可得( ) A .1-3(x -2)=4 B .1-3(x -2)=-4C .-1-3(2-x)=-4D .1-3(2-x)=48、一件工作,甲单独做小时完成,乙单独做小时完成,则甲、乙两人合作完成需要( )小时完成。
A 、B 、C 、D 、 9、如果分式的值为为零,则a 的值为( )A. B.2 C. D.以上全不对 10、若x >y >0,则xy x y -++11的值是( ) A. 0 B. 正数 C. 负数 D. 不能确定11、化简22255mm m --的结果是( ) A .5+m m B .5+-m m C .5-m m D .mm -5二、填空题12、分式,21x xyy 51,212-的最简公分母为 。
人教版数学八年级上《第15章分式》单元检测试卷含答案(120分,90分钟) 题 号 一 二 三 总 分 得 分一、选择题(每题3分,共30分)1.下列式子是分式的是( ) A.a -b 2 B.5+y πC.x +3x D .1+x 2.下列等式成立的是( )A .(-3)-2=-9B .(-3)-2=19C .(a -12)2=a14D .(-a -1b -3)-2=-a2b63.当x =1时,下列分式中值为0的是( ) A.1x -1 B.2x -2x -2 C.x -3x +1 D.|x|-1x -1 4.分式①a +2a2+3,②a -b a2-b2,③4a 12(a -b ),④1x -2中,最简分式有( )A .1个B .2个C .3个D .4个5.下列各式中,正确的是( ) A .--3x 5y =3x -5y B .-a +b c =-a +b c C.-a -b c =a -b c D .-a b -a =a a -b 6.化简⎝ ⎛⎭⎪⎫1+a21+2a ÷1+a 1+2a 的结果为( ) A .1+a B.11+2a C.11+aD .1-a 7.石墨烯是现在世界上最薄的纳米材料,其理论厚度仅是0.000 000 000 34 m ,那个数用科学记数法表示正确的是( )A .3.4×10-9B .0.34×10-9C .3.4×10-10D .3.4×10-11 8.方程2x +1x -1=3的解是( ) A .-45 B.45 C .-4 D .49.若xy =x -y ≠0,则1y -1x =( )A.1xy B .y -x C .1 D .-110.甲、乙两个搬运工搬运某种物资,已知乙比甲每小时多搬运600 kg ,甲搬运5 000 kg 所用时刻与乙搬运8 000 kg 所用时刻相等,求甲、乙两人每小时分不搬运多少千克物资.设甲每小时搬运x kg 物资,则可列方程为( )A.5 000x -600=8 000xB.5 000x =8 000x +600C.5 000x +600=8 000xD.5 000x =8 000x -600二、填空题(每题3分,共30分)11.运算:3m 2n ·⎝ ⎛⎭⎪⎫p 3n -2÷mn p2=________. 12.若|a|-2=(a -3)0,则a =________. 13.把分式a +13b 34a -b 的分子、分母中各项系数化为整数的结果为________.14.禽流感病毒的形状一样为球形,直径大约为0.000 000 102 m ,该直径用科学记数法表示为________m.15.若分式|y|-55-y 的值为0,则y =________. 16.如果实数x 满足x2+2x -3=0,那么式子⎝ ⎛⎭⎪⎫x2x +1+2÷1x +1的值为________. 17.若分式方程2+1-kx x -2=12-x 有增根,则k =________. 18.一列数:13,26,311,418,527,638,…,它们按一定的规律排列,则第n 个数(n 为正整数)为________.19.小成每周末要到离家5 km 的体育馆打球,他骑自行车前往体育馆比乘汽车多用10 min ,乘汽车的速度是骑自行车速度的2倍.设骑自行车的速度为x km/h ,按照题意列方程为____________________.20.数学家们在研究15 ,12,10这三个数的倒数时发觉:112-115=110-112.因此就将具有如此性质的三个数称为调和数,如6,3,2也是一组调和数.现有一组调和数:x ,5,3(x >5),则x =________.三、解答题(22题6分,21题,26题每题12分,其余每题10分,共60分)21.(1)运算:(-3)2-⎝ ⎛⎭⎪⎫15-1+(-2)0; (2)运算:1x -4-2x x2-16;(3)化简:x2x -2-x -2;(4)化简:⎝ ⎛⎭⎪⎫a a -b -2b a -b ·ab a -2b ÷⎝⎛⎭⎪⎫1a +1b .22.(1)先化简,再求值:x -3x2-1·x2+2x +1x -3-⎝ ⎛⎭⎪⎫1x -1+1,其中x =-65.(2)先化简,再求值:⎝ ⎛⎭⎪⎫1x -3-x +1x2-1·(x -3),从不大于4的正整数中,选择一个合适的x 的值代入求值.23.解分式方程: (1)x -2x +3-3x -3=1; (2)2x +2x -x +2x -2=x2-2x2-2x.24.化简求值:a2-6ab +9b2a2-2ab ÷⎝ ⎛⎭⎪⎫5b2a -2b -a -2b -1a ,其中a ,b 满足⎩⎪⎨⎪⎧a +b =4,a -b =2.25.观看下列等式: 第1个等式:a1=11×3=12×⎝ ⎛⎭⎪⎫1-13;第2个等式:a2=13×5=12×⎝ ⎛⎭⎪⎫13-15; 第3个等式:a3=15×7=12×⎝ ⎛⎭⎪⎫15-17;第4个等式:a4=17×9=12×⎝ ⎛⎭⎪⎫17-19;…. 请回答下面的咨询题:(1)按以上规律列出第5个等式:a5=__________=______________;(2)用含n的式子表示第n个等式:an=__________=______________(n 为正整数);(3)求a1+a2+a3+a4+…+a100的值.26.佳佳果品店在批发市场购买某种水果销售,第一次用1 200元购进若干千克,并以每千克8元出售,专门快售完.由于水果畅销,第二次购买时,每千克的进价比第一次提升了10%,用1 452元所购买的质量比第一次多20千克,以每千克9元售出100千克后,因显现高温天气,水果不易保鲜,为减少缺失,便降价50%售完剩余的水果.(1)求第一次购买的水果的进价是每千克多少元.(2)该果品店在这两次销售中,总体上是盈利依旧亏损?盈利或亏损了多少元?答案一、1.C 2.B 3.B 4.B 5.D 6.A 7.C 8.D9.C 点拨:1y -1x =x xy -y xy =x -y xy =1.10.B二、11.27212.-3 点拨:利用零指数幂的意义,得|a|-2=1,解得a =±3,又a -3≠0,因此a =-3.13.12a +4b 9a -12b14.1.02×10-715.-5 点拨:由题意知,|y|=5,∴y =±5.当y =5时,5-y =0,∴y =5为增根.∴y =-5.16.5 17.1 18.n n2+2 19.5x =52x +1060 20.15 点拨:由题意可知,15-1x =13-15,解得x =15,经检验x =15是该方程的根.三、21.解:(1)原式=9-5+1=5.(2)原式=1x -4-2x (x -4)(x +4)=x +4-2x (x -4)(x +4)=4-x (x -4)(x +4)=-1x +4. (3)原式=x2x -2-(x +2)(x -2)x -2=x2-x2+4x -2=4x -2. (4)原式=a -2b a -b ·ab a -2b ÷b +a ab =ab a -b ·ab a +b =a2b2a2-b2. 22.解:(1)原式=x -3(x -1)(x +1)·(x +1)2x -3-1+x -1x -1=x +1x -1-x x -1=1x -1, 当x =-65时,原式=1-65-1=-511.(2)原式=⎝ ⎛⎭⎪⎫1x -3-1x -1·(x -3)=x -1-x +3(x -3)(x -1)·(x -3)=2x -1,要使原式有意义,则x ≠±1,3,故可取x =4,则原式=23(或取x =2,则原式=2).23.解:(1)方程两边同乘(x +3)(x -3),得(x -2)(x -3)-3(x +3)=(x +3)(x -3),整理得-8x =-6,解得x =34.经检验,x =34是原方程的根.(2)原方程可化为2(x +1)x -x +2x -2=x2-2x (x -2), 方程两边同时乘x(x -2),得2(x +1)(x -2)-x(x +2)=x2-2,整理得-4x =2.解得x =-12.经检验,x =-12是原方程的解.24.解:原式=(a -3b )2a2-2ab ÷9b2-a2a -2b -1a =-(a -3b )2a (a -2b )·a -2b (a -3b )(a +3b )-1a =a -3b -a (a +3b )-1a =-2a +3b.∵a ,b 满足⎩⎪⎨⎪⎧a +b =4,a -b =2.∴⎩⎪⎨⎪⎧a =3,b =1. ∴原式=-23+3=-13. 25.解:(1)19×11;12×⎝ ⎛⎭⎪⎫19-111 (2)1(2n -1)(2n +1);12×(12n -1-12n +1) (3)原式=12×⎝ ⎛⎭⎪⎫1-13+12×⎝ ⎛⎭⎪⎫13-15+12×⎝ ⎛⎭⎪⎫15-17+…+ 12×⎝ ⎛⎭⎪⎫1199-1201=12×(1-13+13-15+15-17+…+1199-1201)=12×⎝ ⎛⎭⎪⎫1-1201=12×200201=100201.26.解:(1)设第一次购买的水果的进价是每千克x 元,则第二次购买的水果的进价是每千克1.1x 元,按照题意得1 4521.1x -1 200x =20,解得x =6.经检验,x =6是原方程的解.因此第一次购买的水果的进价是每千克6元.(2)第一次购买水果1 200÷6=200(千克).第二次购买水果200+20=220(千克).第一次赚钞票为200×(8-6)=400(元),第二次赚钞票为100×(9-6.6)+(220-100)×(9×0.5-6.6)=-12(元).因此两次共赚钞票400-12=388(元).因此该果品店在这两次销售中,总体上是盈利了,盈利了388元.。
人教版八年级上册数学第十五章《分式》单元测试卷(60分钟 100分)一、选择题(每小题3分,共30分)1.(南充中考)若1x =-4,则x 的值是( )A .4B .14C .-14D .-42.在第127届“广交会”上,有近26 000家厂家进行“云端销售”.其中数据26 000用科学记数法表示为( )A .26×103B .2.6×103C .2.6×104D .0.26×1053.下列式子:-5x ,1a +b,12 a 2-12 b 2,310m ,2π ,其中分式有( ) A .1个 B .2个 C .3个 D .4个4.计算1m +2 -14-m 2 ÷1m -2的结果为( ) A .0 B .1m +2 C .2m +2 D .m +2m -25.下列等式是四位同学解方程x x -1 -1=2x 1-x过程中去分母的一步,其中正确的是( )A .x -1=2xB .x -1=-2C .x -x -1=-2xD .x -x +1=-2x 6.若a =-0.32,b =-3-2,c =⎝⎛⎭⎪⎫-13 -2 ,d =⎝ ⎛⎭⎪⎫-13 0,则大小关系正确的是( ) A .a <b <c <d B .b <a <d <c C .a <d <c <d D .c <a <d <b7.若a =1,则a 2a +3 -9a +3的值为( ) A .2 B .-2 C .12 D .-128.(呼伦贝尔中考)甲、乙两人做某种机械零件,已知甲做240个零件与乙做280个零件所用的时间相等,两人每天共做130个零件.设甲每天做x 个零件,下列方程正确的是( )A .240x =280130-xB .240130-x=280x C .240x +280x =130 D .240x -130=280x9.对于两个不相等的实数a ,b ,我们规定符号Min{a ,b }表示a ,b 中的较小的值,如Min{2,4}=2,按照这个规定,方程Min ⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1x -2,3x -2 =x -1x -2 -2的解为( )A .0B .0或2C .无解D .不确定10.关于x 的分式方程2x +a x +1=1的解为负数,则a 的取值范围是( ) A .a >1 B .a <1C .a <1且a ≠-2D .a >1且a ≠2二、填空题(每小题3分,共24分)11.(北京中考)若代数式1x -7有意义,则实数x 的取值范围是__ __. 12.(广州中考)方程x x +1 =32x +2的解是 . 13.(呼和浩特中考)分式2x x -2 与8x 2-2x 的最简公分母是__ __,方程2x x -2 -8x 2-2x=1的解是__ __. 14.有一个分式,三位同学分别说出了它的一个特点,甲:分式的值不可能为0;乙:分式有意义时x 的取值范围是x ≠±1;丙:当x =-2时,分式的值为1.请你写出满足上述全部特点的一个分式: .15.(嘉兴中考)数学家斐波那契编写的《算经》中有如下问题:一组人平分10元钱,每人分得若干;若再加上6人,平分40元钱,则第二次每人所得与第一次相同,求第一次分钱的人数.设第一次分钱的人数为x 人,则可列方程 .16.已知3x -4(x -1)(x -2) =A x -1 +B x -2,则实数A =__ __. 17.若(x -y -2)2+|xy +3|=0,则⎝ ⎛⎭⎪⎪⎫3x x -y -2x x -y ÷1y 的值是 . 18.数学家们在研究15,12,10这三个数的倒数时发现112 -115 =110 -112 .因此就将具有这样性质的三个数称为调和数,如6,3,2也是一组调和数.现有一组调和数x ,5,3(x >5),则x =__ __.三、解答题(共46分)19.(6分)计算或化简:(1)(-1)2 022-|-7|+9 ×(5 -π)0+⎝ ⎛⎭⎪⎫15 -1 . (2)(徐州中考)⎝ ⎛⎭⎪⎫1-1a ÷a 2-2a +12a -2. 20.(6分)解方程:(1)(遵义中考)1x -2 =32x -3. (2)(大庆中考)2x x -1 -1=4x -1. 21.(8分)(鄂州中考)先化简x 2-4x +4x 2-1 ÷x 2-2x x +1 +1x -1,再从-2,-1,0,1,2中选一个合适的数作为x 的值代入求值.22.(8分)某茶店用4 000元购进了A 种茶叶若干盒,用8 400元购进了B 种茶叶若干盒,所购B 种茶叶比A 种茶叶多10盒,且B 种茶叶每盒进价是A 种茶叶每盒进价的1.4倍.(1)A ,B 两种茶叶每盒进价分别为多少元?(2)若第一次所购茶叶全部售完后,第二次购进A ,B 两种茶叶共100盒(进价不变),A 种茶叶的售价是每盒300元,B 种茶叶的售价是每盒400元,两种茶叶各售出一半后,为庆祝元旦,两种茶叶均打七折销售,全部售出后,第二次所购茶叶的利润为5 800元(不考虑其他因素),求本次购进A ,B 两种茶叶各多少盒?。
人教版八年级数学上册第15章分式单元测试题一、选择题(每小题3分,共30分)1.下列各式中,分式的个数为( )3x y -,21a x -,,3a b -,12x y +,12x y +,2123x x =-+. A.5 B.4 C.3 D.23.化简:211x xx x -=--( )A.0B.1C.xD.1x x - 4.将分式2x x y+中的x ,y 的值同时扩大到原来的2倍,则分式的值( )A.扩大到原来的2倍B.缩小到原来的21C.保持不变D.无法确定 5.若分式122+--x x x 的值为零,则的值为( )A.或B.C.D.6.某工厂现在平均每天比原计划多生产50台机器,现在生产600台机器所需时间与原计划 生产450台机器所需时间相同.设原计划平均每天生产x 台机器,根据题意,下面所列方 程正确的是( ) A.60045050x x =+ B.60045050x x=- C.60045050x x =+ D.60045050x x =- 7.对于下列说法,错误的个数是( )①是分式;②当1x ≠时,2111x x x -=+-成立;③当时,分式33x x +-的值是零;④11a b a a b÷⨯=÷=;⑤2a a a x y x y +=+;⑥3232x x-⋅=-.A.6B.5C.4D.3 8.把,,通分的过程中,不正确的是( )A .最简公分母是(-2)(+3)2B .C .D .9.下列各式变形正确的是( )A.x y x yx y x y -++=--- B.22a b a b c d c d --=++ C.0.20.03230.40.0545a b a b c d c d--=++ D.a b b a b c c b --=--10.若241142w a a ⎛⎫+⋅=⎪--⎝⎭,则w=( ) A.2(2)a a +≠- B. 2(2)a a -+≠ C. 2(2)a a -≠ D.2(2)a a --≠-二、填空题(每小题3分,共24分)11.化简2211121x x x x +⎛⎫+÷ ⎪--+⎝⎭的结果是 . 12.将下列分式约分:(1)258xx ;(2)22357mn n m - .13.计算2223362c ab b c b a ÷= .14. 有一个分式,三位同学分别说出了它的一些特点,甲:分式的值不可能为0;乙:分式有意义时的取值范围是≠±1;丙:当=-2时,分式的值为1.请你写出满足上述全部特点的一个分式: .15.已知,则222n m m n m n n m m ---++________.16.若0544≠==zy x ,则z y x y x 32+-+=_____________.17.代数式11x -有意义时,x 应满足的条件是_____________. 18.为改善生态环境,防止水土流失,某村拟在荒坡地上种植960棵树, 由于青年团员的支持,每日比原计划多种20棵,结果提前4天完成任务,问原计划每天种植多少棵树?设原计划每天种植棵树,根据题意可列方程__________________.三、解答题(共46分)19.(6分)约分:(1)22444a a a --+;(2)22211m m m -+-.20.(4分)通分:21x x -,2121x x --+. 21.(10分)计算与化简:(1)222x y y x ⋅;(2)22211444a a a a a --÷-+-; (3)22142a a a ---;(4)211a a a ---;(5)()()222142y x x yxyx y x +-÷⋅-. 22(9分)解下列分式方程: (1)730100+=x x ;(2)132543297=-----x x x x ;(3)21212339x x x -=+--. 23(6分)“母亲节”前夕,某商店根据市场调查,用3 000元购进第一批盒装花,上市后很快售完,接着又用5 000元购进第二批这种盒装花.已知第二批所购花的盒数是第一批所购花的盒数的2倍,且每盒花的进价比第一批的进价少5元.求第一批盒装花每盒的进价.第十五章 分式检测题参考答案1.C 解析:由分式的定义,知21a x -,3ab -,12x y +为分式,其他的不是分式.3. C 解析:原式=-== =x .点拨:此题考查了同分母分式相减,分母不变,分子相减.4.A 解析:因为()()yx x y x x y x x y x x +⨯=+=+=+22222224222,所以分式的值扩大到原来的2倍.5.C 解析:若分式122+--x x x 的值为零,则所以6. A 解析:若原计划平均每天生产x 台机器,则现在每天可生产(x +50)台,根据现在生产600台机器所需时间与原计划生产450台机器所需时间相同,从而列出方程60045050x x=+. 7.B 解析:不是分式,故①不正确;当1x ≠时,2111x x x -=+-成立,故②正确;当 时,分式33x x +-的分母,分式无意义,故③不正确; ④,故④不正确;,故⑤不正确; ,故⑥不正确.8. D 解析:A.最简公分母为(-2)(+3)2,正确; B.(分子、分母同乘,通分正确; C.(分子、分母同乘),通分正确; D.通分不正确,分子应为2×(-2)=2-4.故选D . 9.D 解析:,故A 不正确;,故B 不正确; ,故C 不正确;,故D 正确.10. D 解析:∵ ()()()()41211222222a w w w a a a a a a ⎛⎫-++⋅=⋅=-⋅= ⎪ ⎪-+--++⎝⎭, ∴ ()22w a a =---≠. 11.x -1 解析:原式=÷ =× =x -1.12.(1)83x (2)n m 5-解析:(1)258x x 83x ;(2)22357mn nm - n m 5-.13. c b a 323 解析:.36262322223322233cb a abc b c b a c ab b c b a =⋅=÷ 14.(答案不唯一) 解析:由题意,可知所求分式可以是,,等,答案不唯一. 15.79 解析:因为,所以n m 34=,所以()()()()()()()()n m n m m n m n m n m n n m n m n m m n m m n m n n m m -+--+++-+-=---++2222()()()().799734342222222==⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛+=-+=-+-++-=n n n n n n n n m n m n n m n m m n mn mn m16.118解析:设0544≠===k z y x 则所以.11811815844432==+-+=+-+k k k k k k k z y x y x17.x ≠±1 解析:由题意知分母不能为0,∴ |x |-1≠0,∴,则x ≠±1.18.420960960=+-x x解析:根据“原计划完成任务的天数实际完成任务的天数 ”列方程即可.依题意列方程为420960960=+-x x . 19.解:(1)22444a a a --+()22)2(222-+=-+-=a a a a a )(; (2)22211m m m -+-()().111)1()1(1)1()1(22m m m m m m m m +-=+--=+--= 20.解:因为21x x -与2121x x --+的最简公分母是 所以21x x -()211)1(1--=-=x x x x x ;2121x x --+()221)1(1--=--=x x x x . 21.解:(1)原式=4y. (2)原式=()()()()()2221112a a a a a a +--⋅+--()()212a a a +=+-.(3)原式=()()()()()()2222222222a a a a a a a a a a +---=-+-+-+ =()()21222a a a a -=-++.(4)原式=2111a a a +--=()()2111a a a a -+--=2211a a a -+-=11a -. (5)原式=()()()12222xy x y x y y x y x x y +-⋅⋅=-+--. 22.解:(1)方程两边都乘,得. 解这个一元一次方程,得. 检验:把代入原方程,左边右边. 所以,是原分式方程的根. (2)方程两边都乘,得. 整理,得.解这个一元一次方程,得. 检验:把代入原方程,左边右边.所以,是原分式方程的根. (3)方程两边都乘,得. 整理,得.解这个一元一次方程,得. 检验可知,当时,.所以,不是原分式方程的根,应当舍去.原分式方程无解. 23. 解:设第一批盒装花的进价是x 元/盒,则2×x 000 3=50005-x ,解得 x =30. 经检验,x =30是原分式方程的根.答:第一批盒装花每盒的进价是30元.点拨:本题考查了分式方程的应用.注意:分式方程需要验根,这是易错的地方.人教版八年级上册数学第15章分式单元测试一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.要使分式242x x --为零,那么x 的值是A .2-B .2C .2±D .02.分式256x y -和24xyz的最简公分母是A .12xyzB .212x yzC .24xyzD .224x yz3.计算2211(2)x x x x -+⋅+-的结果是 A .12x - B .12-C .yD .x4 A .mB .-mC .1mD .-1m5.某桑蚕丝的直径用科学记数法表示为1.6×10-5米,则这个数的原数是 A .0.0000016B .0.000016C .0.00016D .0.00166.化简1()x y y x x y x y-÷-⋅+-的结果是 A .221x y -B .y xx y-+ C .221y x -D .x yx y-+ 7.分式方程233x x=-的解为 A .x =0B .x =3C .x =5D .x =98.下来运算中正确的是A .a c ac b d bd÷=B .(2a a b -)2=2224a a b- C .x y y xx y y x--=++D .4453·m n m n m n=9.甲、乙两个搬运工搬运某种货物,已知乙比甲每小时多搬运600 kg ,甲搬运5000 kg 所用的时间与乙搬运8000 kg 所用的时间相等,求甲、乙两人每小时分别搬运多少千克货物.设甲每小时搬运x kg 货物,则可列方程为A .50008000600x x =-B .50008000600x x =+C .50008000600x x=+D .50008000600xx =-10.若关于x 的分式方程222x m x x=---的解为正数,则满足条件的正整数m 的值为 A .1,2,3B .1,2C .1,3D .2,3二、填空题(本大题共10小题,每小题3分,共30分)11.约分:2222444m mn n m n-+-=__________. 12.计算:2389()32x y y x⋅-=__________. 13.计算:22111m m m---的结果是__________. 14.计算:223()23m p mnn n p-÷=__________. 15.若x =3是分式方程210a x x--=的根,则a 的值是__________. 16.关于x 的方程1(1)(1)m x x -+--11x -=0无解,则m 的值是__________. 17.某人在解方程21132x x a-+=-去分母时,方程右边的1-忘记乘以6,算得方程的解为2x =,则a 的值为__________. 18.已知关于x 的分式方程211a x x+--=1的解是非负数,则a 的取值范围是__________. 19.在一块a 公顷的稻田上插秧,如果10个人插秧,要用m 天完成;如果用一台插秧机工作,要比10个人插秧提前3天完成.一台插秧机的工作效率是一个人工作效率的__________倍.20.,…,猜想第n 个分式是__________.三、解答题(本大题共8小题,共60分.解答应写出文字说明、证明过程或演算步骤) 21.解方程:(1)2101x x -=+;(2)2216124x x x --=+-.22.(1)先化简,再求值:2224(1)442x x x x x -+÷-+-,其中x =1; (2)先化简,再求值:211()(3)31x x x x +-⋅---,从不大于4的正整数中,选择一个合适的值代入x 求值.23.在创建文明城市的进程中,我市为美化城市环境,计划种值树木60万棵,由于志愿者的加入,实际每天植树比原计划多20%,结果提前5天完成任务,求原计划每天植树多少万棵?24.已知关于x 的方程4433x mm x x---=--无解,求m 的值.25.解不等式组36451102x xx x -≤⎧⎪++⎨<⎪⎩,并求出它的整数解,再化简代数式2321x x x +-+ ·(3x x +-239x x --),从上述整数解中选择一个合适的数,求此代数式的值.26.已知方程111a x x =-+的解为x =2,先化简22144(1)11a a a a -+-÷--,再求它的值.27.探索发现:111122=-⨯;1112323=-⨯;1113434=-⨯,… 根据你发现的规律,回答下列问题: (1)145=⨯__________,1(1)n n =⨯+__________; (2)利用你发现的规律计算:1111122334(1)n n ++++⨯⨯⨯⨯+;(3)灵活利用规律解方程:1111(2)(2)(4)(98)(100)100x x x x x x x +++=++++++.28.某商品经销店欲购进A 、B 两种纪念品,用320元购进的A 种纪念品与用400元购进的B 种纪念品的数量相同,每件B 种纪念品的进价比A 种纪念品的进价贵10元. (1)求A 、B 两种纪念品每件的进价分别为多少?(2)若该商店A 种纪念品每件售价45元,B 种纪念品每件售价60元,这两种纪念品共购进200件,这两种纪念品全部售出后总获利不低于1600元,求A 种纪念品最多购进多少件.答案1-10: ABABB CDDBC11.【答案】22m n m n -+ 12.【答案】-212yx13.14. 15.【答案】3 16. 【答案】1或3 17.【答案】1318.【答案】a ≥1且a ≠2 19.【答案】103m m - 2021.【解析】(1)2101x x-=+, 2(1)0x x -+=,1x =,经检验:x =1是原方程的解. (2)2216124x x x --=+-, 22(2)164x x --=-,2x =-,经检验:x =-2是增根, 所以原方程无解. 22.【解析】(1)原式=2222222(1)22x x x x x x x x x+--+⋅=⋅=--, 当x =1时,原式=2. (2)原式=(11)31x x ---·(x -3)=13(1)(3)x x x x --+--·(x -3)=21x -,要使原分式有意义,则x ≠±1,3, 故可取x =4,原式=23. 学.科网 23.【解析】设原计划每天植树x 万棵,则实际每天植树1.2x 万棵,24.【解析】原方程可化为(m +3)x =4m +8,由于原方程无解,故有以下两种情形:(1)若整式方程无实根,则m +3=0且4m +8≠0,此时m =-3; (2)若整式方程的根是原方程的增根,则483m m ++=3,解得m =1, 经检验,m =1是方程483m m ++=3的解. 综上所述,m 的值为-3或1. 25.【解析】解不等式3x -6≤x ,得:x ≤3,解不等式4510x +<12x +,得:x >0, 则不等式组的解集为0<x ≤3, 所以不等式组的整数解为1、2、3,原式=23(1)x x +-·[233(3)(3)(3)(3)x x x x x x x ---+-+-] =23(1)x x +-·(1)(3)(3)(3)x x x x --+- =11x -, ∵x ≠±3、1, ∴x =2,则原式=1. 26.【解析】把x =2代入111a x x =-+中,解得:a =3, 原式=22(1)(1)1(2)a a a a a -+-⋅-- =12a a +-, 当a =3时,原式=4.27.【解析】(1)1114545=-⨯,111(1)1n n n n =-⨯++.(2)原式111111111122334111n n n n n =-+-+-++-=-=+++. (3)11111111()222498100100x x x x x x x -+-++-=++++++,1111()2100100x x x -=++, 112100100x x x -=++, 13100x x =+, 解得50x =,经检验,50x =为原方程的根.28.【解析】(1)设A 种纪念品每件的进价为x 元,则B 种纪念品每件的进价为(10)x +元.人教版八年级数学上册第15章《分式》单元检测一.选择题(共10小题)1.在式子1a、、2334a b c、、、中,分式的个数有()A.2个B.3个C.4个D.5个2.如果分式的值为零,那么x等于()A.1B.﹣1C.0D.±13.将分式中的x,y的值同时扩大为原来的3倍,则分式的值()A.扩大6倍B.扩大9倍C.不变D.扩大3倍4.计算结果是()A.0B.1C.﹣1D.x5.横坐标和纵坐标都是整数的点叫作整点,函数的图象上的整点的个数是()A.3个B.4个C.6个D.8个6.计算(﹣a)2•的结果为()A.b B.﹣b C.ab D.b a7.如果a 2﹣6ab +9b 2=0(a 、b 均不为0),那的值是( )A .﹣34B .12C .﹣12D .348.若分式方程11(1)(2)x m x x x =+--+无解,则m 的值为( ) A .1B .1或﹣2C .0或3D .39.甲、乙两人3次都同时到某个体米店买米,甲每次买m (m 为正整数)千克米,乙每次买米用去2m 元.由于市场方面的原因,虽然这3次米店出售的是一样的米,但单价却分别为每千克1.8元、2.2元、2元,那么比较甲3次买米的平均单价与乙3次买米的平均单价,结果是( ) A .甲比乙便宜 B .乙比甲便宜C .甲与乙相同D .由m 的值确定10.小军家距学校5千米,原来他骑自行车上学,学校为保障学生安全,新购进校车接送学生,若校车速度是他骑车速度的2倍,现在小军乘校车上学可以从家晚10分钟出发,结果与原来到校时间相同.设小军骑车的速度为x 千米/小时,则所列方程正确的为( ) A .5x +16=52xB .5x ﹣16=52xC .5x +10=52xD .5x ﹣10=52x二.填空题(共8小题)11.人的头发直径约为0.00007m ,用科学记数法表示0.00007m= m . 12.计算:= .13.若分式的值为0,则x 、y 需要满足的条件为 . 14.化简:÷21m m -= . 15.若分式无意义,且=0,那么ab= . 16.计算:= .17.当a=2018时,分式的值是 .18.方程3x x -=2﹣33x-的增根是三.分式的运算(共1小题)19.计算:(1)2222124a b a b a b a ab b ---÷+++;(2)22113646449xx y x y y x -+-+-.四.解方程(共1小题) 20.解分式方程 (1)﹣=0 (2)+2=五.化简并求值(共2小题) 21.先化简:后,再选择一个你喜欢的x 值代入求值. 22.化简并求值:(+)÷,其中x ,y 满足|x ﹣2|+(2x ﹣y ﹣3)2=0. 六.解答题(共2小题) 23.已知关于x 的分式方程+=(1)若方程的增根为x=1,求m 的值 (2)若方程有增根,求m 的值 (3)若方程无解,求m 的值. 24.化简,并求值,其中a 与2,3构成△ABC 的三边,且a 为整数.七.应用题(共1小题)25.六•一前夕,某幼儿园园长到厂家选购A 、B 两种品牌的儿童服装,每套A 品牌服装进价比B 品牌服装每套进价多25元,用2000元购进A 种服装数量是用750元购进B 种服装数量的2倍.(1)求A 、B 两种品牌服装每套进价分别为多少元?(2)该服装A 品牌每套售价为130元,B 品牌每套售价为95元,服装店老板决定,购进B品牌服装的数量比购进A品牌服装的数量的2倍还多4套,两种服装全部售出后,可使总的获利超过1200元,则最少购进A品牌的服装多少套?2018—2019学年人教版八年级数学上册第15章《分式》单元检测参考简答一.选择题(共10小题)1.B . 2.B . 3.B . 4.C . 5.B . 6.A . 7.B . 8.C . 9.B . 10.B .二.填空题(共8小题)11. 7×10﹣5 . 12. x ﹣1 . 13. x=y 且x ≠1 . 14. m .15. ﹣12. 16. a +b . 17. 2019 . 18. x=3三.分式的运算(共1小题)19.计算:(1)2222124a b a b a b a ab b ---÷+++;(2)22113646449xx y x y y x-+-+-. 【解】:(1)原式=1﹣•=1﹣=(2)原式=﹣=﹣=﹣=﹣四.解方程(共1小题) 20.解分式方程 (1)﹣=0 (2)+2=【解】:(1)去分母得:x ﹣2﹣3x=0, 解得:x=﹣1,经检验x=﹣1是分式方程的解, 所以原分式方程的解为x=﹣1; (2)原方程可变为:+2=32x -- 去分母得,x ﹣1+2(x ﹣2)=﹣3, 整理,得3x ﹣5=﹣3,解得:x=23, 检验:把x=23代入x ﹣2≠0,所以x=23是原方程的解.五.化简并求值(共2小题) 21.先化简:后,再选择一个你喜欢的x 值代入求值. 22.化简并求值:(+)÷,其中x ,y 满足|x ﹣2|+(2x ﹣y ﹣3)2=0.21.【解】:原式=221(2)(2)4x x x x x x x ⎡⎤+--⨯⎢⎥---⎣⎦ =2(2)(2)(1)(2)4x x x x xx x x +---⨯-- =2224(2)4x x x xx x x --+⨯-- =21(2)x -;当x=3时,原式=21=1(32)-. 注:本题答案不唯一,只要x 的取值不为0、2、4,计算正确均可得分.22.【解】:原式=•=,∵|x ﹣2|+(2x ﹣y ﹣3)2=0,∴|x﹣2|=0,(2x﹣y﹣3)2=0,∴x=2,y=1.∴原式==43.六.解答题(共2小题)23.已知关于x的分式方程+=(1)若方程的增根为x=1,求m的值(2)若方程有增根,求m的值(3)若方程无解,求m的值.【解】:方程两边同时乘以(x+2)(x﹣1),去分母并整理得(m+1)x=﹣5,(1)∵x=1是分式方程的增根,∴1+m=﹣5,解得:m=﹣6;(2)∵原分式方程有增根,∴(x+2)(x﹣1)=0,解得:x=﹣2或x=1,当x=﹣2时,m=1.5;当x=1时,m=﹣6;(3)当m+1=0时,该方程无解,此时m=﹣1;当m+1≠0时,要使原方程无解,由(2)得:m=﹣6或m=32,综上,m的值为﹣1或﹣6或1.5.24.化简,并求值,其中a与2,3构成△ABC的三边,且a为整数.【解】:原式=•+=+==,∵a与2,3构成△ABC的三边,∴1<a<5,且a为整数,∴a=2,3,4,又∵a≠2且a≠3,∴a=4,当a=4时,原式=1.七.应用题(共1小题)25.六•一前夕,某幼儿园园长到厂家选购A、B两种品牌的儿童服装,每套A 品牌服装进价比B品牌服装每套进价多25元,用2000元购进A种服装数量是用750元购进B种服装数量的2倍.(1)求A、B两种品牌服装每套进价分别为多少元?(2)该服装A品牌每套售价为130元,B品牌每套售价为95元,服装店老板决定,购进B品牌服装的数量比购进A品牌服装的数量的2倍还多4套,两种服装全部售出后,可使总的获利超过1200元,则最少购进A品牌的服装多少套?【解】:(1)设A品牌服装每套进价为x元,则B品牌服装每套进价为(x﹣25)元,由题意得:=×2,解得:x=100,经检验:x=100是原分式方程的解,x﹣25=100﹣25=75,答:A、B两种品牌服装每套进价分别为100元、75元;(2)设购进A品牌的服装a套,则购进B品牌服装(2a+4)套,由题意得:(130﹣100)a+(95﹣75)(2a+4)>1200,解得:a>16,答:至少购进A品牌服装的数量是17套.人教版八年级数学上册第15章分式单元过关测试(含答案)一、选择题:1、下列各式:其中分式共有()个A.2B.3C.4D.52、若式子有意义,的取值范围是( )A. B. C. D.3、下列约分正确的是()A. =B. =1C. =1D. =﹣14、下列分式:①;②;③;④其中最简分式有( )A.1个B.2个C.3个D.4个5、PM2.5是指大气中直径≤0.0000025米的颗粒物,将0.0000025用科学记数法表示为()A.2.5×10﹣7B.2.5×10﹣6C.25×10﹣7D.0.25×10﹣56、把分式中的a、b都扩大6倍,则分式的值()A.扩大12倍B.不变C.扩大6倍D.缩小6倍7、若a=﹣0.32,b=﹣3﹣2,c=(﹣)﹣2,d=(﹣)0,则a、b、c、d大小关系正确的是()A.a<b<c<dB.b<a<d<cC.a<d<c<bD.a<b<d<c8、化简(﹣)的结果是()A.xB.C.D.9、若x2+x﹣2=0,则的值为()A. B. C.2 D.﹣10、A.A=4,B=-9B.A=7,B=1C.A=1,B=7D.A=-35,B=1311、已知关于x的分式方程+=1的解是非负数,则m的取值范围是()A.m>2B.m≥2C.m≥2且m≠3D.m>2且m≠312、某市开发区在一项工程招标时,接到甲、乙两个工程队的投标书,工程领导小组根据甲、乙两队的投标书测算,可有三种施工方案:①甲队单独完成这项工程,刚好如期完工;②乙队单独完成此项工程要比规定工期多用5天;③■■■■■■■,剩下的工程由乙队单独做,也正好如期完工.某同学设规定的工期为x天,根据题意列出了方程:=1,则方案③中被墨水污染的部分应该是( )A.甲先做4天B.甲、乙合做4天C.甲先做工程的D.甲、乙合做工程的二、填空题:13、若,则_________ .14、如果分式的值为零,那么x= .15、计算:(a2b)-2÷(2a-2b-3)-2=___(结果只含有正整数指数幂).16、某车间每天能生产甲种零件120个或乙种零件100个,甲、乙两种零件分别取2个和1个才能配套,要在80天生产最多的成套产品,甲种零件应该生产________天.17、关于x的方程的解是正数,则a的取值范围是_________.18、若,对任意正整数n都成立,则a-b= .三、解答题:19、化简:÷(1+). 20、化简:( +)÷.21、解方程:﹣1= 22、解方程:﹣=1.23、已知a、b、c为实数,且,求的值。
新人教版八年级上数学第十五章分式单元测试卷一、选择题(每小题3分,共30分)1.在下列各式m a m x x b a x x a ,),1()3(,43,2,3222--÷++π中,是分式的有( ) A.2个 B.3个 C.4个 D.5个2.要使分式2-x x 有意义,则x 的取值范围是( ) A.x= 2 B.x> 2 C.x< 2 D.x ≠=23.若分式13-x x 的值为零,则x 等于( ) A.1 B.-1 C. .x ≠1 D.0 4、如果把分式y x x +2中的x 和y 都扩大2倍,那么分式的值( ) A 、扩大2倍 B 、缩小2倍 C 、缩小4倍 D 、不变 5、下列分式a b b a b a b a b a b a x y y x a c b ----++++、、、)(、24)(35412222222中,最简分式的个数是( ) A 、1个 B 、2个 C 、3个 D 、4个 6.下列等式成立的是: A. x x x x --=--11 B. x x x x --=--11 C. x x x x -=--11 D. 11---=--x x x x 7.若使式子42212-+=-x x x 从左到右变形成立,应满足的条件是: A. 02>+x B. 02=+x C. 02<+x D. 02≠+x 8. 下列等式成立的是: A. 22m n m n = B. )0(≠++=a a m a n m n C. )0(≠--=a a m a n m n D. )0(≠=a ma na m n 9. 化简211a a -+的结果是( ) A 、a -1 B 、a -11 C 、a +11 D 、a --1110.有游客m 人,如果每n 个人住一个房间,结果还有一个人无房住,这客房的间数为( ) A.n m 1- B.1-n m C.n m 1+ D.1+nm 二、填空题(每小题2分,共18分)。
人教版八年级数学上册 第十五章 分式 单元测试题一、选择题1.老师设计了接力游戏,用合作的方式完成分式化简,规则是:每人只能看到前一人给的式子,并进行一步计算,再将结果传递给下一人,最后完成化简.过程如图所示:接力中,自己负责的一步出现错误的是( )A .只有乙B .甲和丁C .乙和丙D .乙和丁2.已知关于x 的分式方程213x m x -=-的解是非正数,则m 的取值范围是( ) A .3m ≤B .3m <C .3m >-D .3m ≥- 3.把分式方程211x x x -=+化为整式方程正确的是( ) A .22(1)1x x +-=B .22(1)1x x ++=C .22(1)(1)x x x x +-=+D .22(1)(1)x x x x -+=+4.A 、B 两地相距160千米,甲车和乙车的平均速度之比为4:5,两车同时从A 地出发到B 地,乙车比甲车早到30分钟,若求甲车的平均速度,设甲车平均速度为4x 千米/小时,则所列方程是( )A .1601603045x x-= B .1601601452x x -= C .1601601542x x -= D .1601603045x x += 5.甲、乙两人分别从相距8千米的两地同时出发,若同向而行,则t 1小时后,快者追上慢者;若相向而行,则t 2小时后,两人相遇,那么快者速度是慢者速度的( )A .112t t t +B .121t t t +C .1212t t t t -+D .1212t t t t +- 6.若关于x 的不等式组2132x a x a -≥⎧⎪⎨+-≤⎪⎩ 有解,且关于x 的分式方程2ax x -–1=32x x -的解为整数,则满足条件的整数a 的值的和是( (A .–6B .–1C .–3D .–47.若a 使关于x 的不等式组02432x a x x -⎧⎪⎨⎪-+⎩<<()至少有三个整数解(且关于x 的分式方程3a x x +-+23x -=2有正整数解(a 可能是( (A .(3B .3C .5D .88.下列运算正确的是( )A .11x y x y xy --=B .=-1b a a b b a+-- C .21111a a a --=--+ D .2111·1a a a a a--=-+ 9.初三学生周末去距离学校120km 的某地游玩.一部分学生乘慢车先行1小时后,另一部分学生乘快车前往,结果他们同时到达目的地.已知快车的速度是慢车的2倍,求慢车的速度.设慢车的速度是 /xkm h ,根据题意列方程为( ). A .12012012x x-= B .12012012x x -= C .12012012x x+= D .120120112x x -=- 10.化简﹣等于( ) A .B .C .﹣D .﹣二、填空题11.已知x 2﹣4x ﹣5=0,则分式265x x x --的值是_____.12.已知x ,y 为实数,y 求5x +6y 的值________. 13.若方程81877--=--x x x有增根,则增根是____________. 14.若关于x 的分式方程322x a x -=-的解为正数(那么字母a 的取值范围是__________________( 15.游泳者在河中逆流而上,于桥A 下面将水壶遗失被水冲走,继续前游30分钟后他发现水壶遗失,于是立即返回追寻水壶,在桥A 下游距桥1.2公里的桥B 下面追到了水壶,那么该河水流的速度是_________(三、解答题16.计算下列各式:(1)322441124a a a b a b a b a b +++-+++; (2)()()()222222x yz y zx z xy x y z x yz y z x y zx z y x z xy+-++++--++++-- ; (3)()2333232221112212211x x x x x x x x x x +--+++++-+-- ; (4)()()()()()()()()()()()()222222y x z x z y x y x z y z x z y x y z x y z y z x y z x x z y ------+++-+-+-+-+-+- . 17.观察下列算式:111111111111;;;2121262323123434==-==-==-⨯⨯⨯…… (1)通过观察,你得到什么结论?用含n (n 为正整数)的等式表示:________.(2)利用你得出的结论,计算:1111(1)(2)(2)(3)(3)(4)(4)(5)a a a a a a a a +++--------18.按要求完成下列题目.()1求:()11111223341n n +++⋯+⨯⨯⨯+的值. 对于这个问题,可能有的同学接触过,一般方法是考虑其中的一般项,注意到上面和式的每一项可以写成()11+n n 的形式,而()11111n n n n =-++,这样就把()11+n n 一项(分)裂成了两项. 试着把上面和式的每一项都裂成两项,注意观察其中的规律,求出上面的和,并直接写出111112233420162017+++⋯+⨯⨯⨯⨯的值. ()2若()()()()()112112A B n n n n n n n =++++++①求:A 、B 的值:②求:()()11112323412n n n ++⋯+⨯⨯⨯⨯++的值. 19.某汽车销售公司经销某品牌A 款汽车,随着汽车的普及,其价格也在不断下降.今年5月份A 款汽车的售价比去年同期每辆降价1万元,如果卖出相同数量的A 款汽车,去年销售额为100万元,今年销售额只有90万元.(1)今年5月份A 款汽车每辆售价多少万元?(2)为了增加收入,汽车销售公司决定再经销同品牌的B 款汽车,已知A 款汽车每辆进价为7.5万元,B 款汽车每辆进价为6万元,公司预计用不多于105万元且不少于99万元的资金购进这两款汽车共15辆,有几种进货方案? (3)如果B 款汽车每辆售价为8万元,为打开B 款汽车的销路,公司决定每售出一辆B 款汽车,返还顾客现金a 万元,要使(2)中所有的方案获利相同,a 值应是多少?此时,哪种方案对公司更有利?20.某绿色食品有限公司准备购进A 和B 两种蔬菜,B 种蔬菜每吨的进价比A 中蔬菜每吨的进价多0.5万元,经计算用4.5万元购进的A 种蔬菜的吨数与用6万元购进的B 种蔬菜的吨数相同,请解答下列问题:(1)求A (B 两种蔬菜每吨的进价;(2)该公司计划用14万元同时购进A (B 两种蔬菜,若A 种蔬菜以每吨2万元的价格出售,B 种蔬菜以每吨3万元的价格出售,且全部售出,请求出所获利润W(万元)与购买A种蔬菜的资金a(万元)之间的函数关系式;(3)在(2)的条件下,要求A种蔬菜的吨数不低于B种蔬菜的吨数,若公司欲将(2)中的最大利润全部用于购买甲、乙两种型号的电脑赠给某中学,甲种电脑每台2100元,乙种电脑每台2700元,请直接写出有几种购买电脑的方案.21.某书店为了迎接“读书节”制定了活动计划,以下是活动计划书的部分信息:(1)陈经理查看计划数时发现:A类图书的标价是B类图书标价的1.5倍,若顾客用540元购买的图书,能单独购买A 类图书的数量恰好比单独购买B类图书的数量少10本,请求出A(B两类图书的标价;(2)经市场调查后,陈经理发现他们高估了“读书节”对图书销售的影响,便调整了销售方案,A类图书每本标价降低a 元(0(a(5)销售,B类图书价格不变,那么书店应如何进货才能获得最大利润?22.某快递公司有甲、乙、丙三个机器人分配快件,甲单独完成需要x小时,乙单独完成需要y小时,丙单独完成需要z小时.(1)求甲单独完成的时间是乙丙合作完成时间的几倍?(2)若甲单独完成的时间是乙丙合作完成时间的a倍,乙单独完成的时间是甲丙合作完成时间的b倍,丙单独完成的时间是甲乙合作完成时间的c倍,求111111a b c+++++的值.23.A,B两地间仅有一长为180千米的平直公路,若甲,乙两车分别从A,B两地同时出发匀速前往B,A两地,乙车速度是甲车速度的43倍,乙车比甲车早到45分钟.(1)求甲车速度;(2)乙车到达A地停留半小时后以来A地时的速度匀速返回B地,甲车到达B地后立即提速匀速返回A地,若乙车返回到B地时甲车距A地不多于30千米,求甲车至少提速多少千米/时?【参考答案】1.D 2.A 3.C 4.B 5.D 6.B 7.C 8.B 9.B 10.B 11.212.-1613.714.a>4且a≠6.15.0.02km/min16.(1)7888aa b-;(2)0;(3)0;(4)1.17.(1)1114(2)(1)1(1)(5) n n n n a a=--++--18.() ()()3 412n nn n+++19.(1)9万元(2(共有5种进货方案(3(购买A款汽车6辆,B款汽车9辆时对公司更有利20.(1)每吨A种蔬菜的进价为1.5万元,每吨B种蔬菜的进价为2万元;(2(W=176a-+((3)有三种购买方案.21.(1)A类图书的标价为27元,B类图书的标价为18元;(2)当A类图书每本降价少于3元时,A类图书购进800本,B类图书购进200本时,利润最大;当A类图书每本降价大于等于3元,小于5元时,A类图书购进600本,B类图书购进400本时,利润最大.22.(1)甲单独完成的时间是乙丙合作完成时间的xy xzyz+倍;(2)123.(1)甲车速度为60千米/时;(2)甲车至少提速15千米/。
人教版八年级数学上册第15章分式单元测试卷一、选择题(本大题共10小题,共30分)1.式子32x ,1π,−4a+b,a+b3中是分式的有()个.A. 1B. 2C. 3D. 42.要使分式3x−6x+1的值等于零,则x的取值是()A. x=2B. x=−2C. x≠1D. x≠−13.下列与分式a−ba+b的值相等的是()A. b−a−a+b B. b−aa+bC. −b−aa−bD. −a−b−a−b4.计算1a−1−aa−1的结果为()A. 1+aa−1B. −aa−1C. −1D. 25.化简a+1a2−2a+1÷(1+2a−1)的结果是()A. 1a−1B. 1a+1C. 1a2−1D. 1a2+16.x(x≠0)为何值时,分式x−2x2的值为负()A. x>2B. x<2C. x=2D. x<07.计算4x1−x2÷2x2x2+x的结果是()A. 21+x B. 21−xC. −21+xD. −21−x8.计算1x+1+11−x的正确结果是()A. 0B. 2x1−x C. 21−x2D. 2x2−19.镇江市教育局为帮助全市贫困师生举行“一日捐”活动,甲、乙两校教师各捐款60000元,已知“…”,设乙学校教师有x人,则可得方程60000x −60000(1+20%)x=20,根据此情景,题中用“…”表示的缺失的条件应补()A. 乙校教师比甲校教师人均多捐20元,且甲校教师的人数比乙校教师的人数多20%B. 甲校教师比乙校教师人均多捐20元,且乙校教师的人数比甲校教师的人数多20%C. 甲校教师比乙校教师人均多捐20元,且甲校教师的人数比乙校教师的人数多20%D. 乙校教师比甲校教师人均多捐20元,且乙校教师的人数比甲校教师的人数多20%10. 若 23x 2+4x+7的值为14,则 16x 2+8x−1的值是( )A. 1B. −1C. −17D. 15二、填空题(本大题共6小题,共18分) 11. 化简:2x −1x =______. 12. 计算:(y −2x )2= ______ . 13. 当x =________时,分式x 2−4x 2−4x+4的值为零.14. 当x ______ 时,分式x 2−4x+2无意义;当x ______ 时,分式x 2−4x+2值为零.15. 计算:2a−1a+1a=________.16. 若分式2−3xx 2+1的值是负数,则x 的取值范围是______. 三、计算题(本大题共7小题,共72分) 17. 先化简,再求值:x−3x 2−1⋅x 2+2x+1x−3−(1x−1+1),其中x =√2+1.18. 计算:6−2aa−2÷(a +2−5a−2).19. 先化简(1−3x+2)÷x−1x 2+2x −1,再从−2≤x ≤2的范围内选取一个合适的整数x 代入求值.20.21.已知x2=y3=z4,求2x+2y+z3y−z.22.化简并求值:(1x−y −1x+y)÷2x−yx2−y2,其中x,y满足|x+2|+(2x+y−1)2=0.23.3x+4x2+x−6=Ax−2+Bx+3,求A、B的值.某超市用1200元购进一批甲玩具,用800元购进一批乙玩具,所购甲玩具件数是乙玩具件数的54,已知甲玩具的进货单价比乙玩具的进货单价多1元.(1)求:甲、乙玩具的进货单价各是多少元?(2)玩具售完后,超市决定再次购进甲、乙玩具(甲、乙玩具的进货单价不变),购进乙玩具的件数比甲玩具件数的2倍多60件,求:该超市用不超过2100元最多可以采购甲玩具多少件?24.1、在最软入的时候,你会想起谁。
第十五章分式单元综合测试一.选择题1.下列各式:,,,,(x﹣y)中,是分式的共有()A.1个B.2个C.3个D.4个2.下列分式中一定有意义的是()A.B.C.D.3.化简+的结果是()A.B.C.D.4.下列运算中正确的是()A.B.C.D.5.下列计算错误的是()A.+=B.C.=﹣1D.=6.下列计算正确的是()A.=B.()﹣3=﹣C.+=a﹣1D.3x2y+=x57.方程=1的解是()A.1B.0C.无解D.2 8.方程=的解是()A.x=4B.x=5C.x=6D.x=79.若关于x的分式方程=2的解为非负数,则m的取值范围是()A.m>﹣3B.m≥﹣3C.m>﹣3且m≠﹣1D.m≥﹣3且m ≠﹣110.疫情期间嘉祥外国语学校用4200元钱到商场去购买“84”消毒液,经过协商议价,每瓶便宜1元,结果比用原价多买了140瓶,求原价每瓶多少元?若设原价每瓶x元,则可列出方程为()A.﹣=140B.﹣=140C.﹣=1D.﹣=1二.填空题11.分式的最简公分母是.12.对于分式,当x时,分式有意义;对于分式,当x时,分式的值为零.13.如果b﹣a=﹣6,那么的值是.14.化简:=.15.计算﹣的结果为.16.若关于x的方程+3=有增根,则a=.17.用换元法解方程时,若设=t,则原方程可化为关于t的一元二次方程是.18.甲、乙两组学生去距学校4千米的敬老院开展慰问活动,甲组学生步行出发20分钟后,乙组学生骑自行车开始出发,两组学生同时到达敬老院.已知骑自行车速度是步行速度的3倍,设步行速度为x千米/时,则根据题意可以列出方程.19.若关于x的分式方程=﹣3无解,则实数m的值是.20.新型冠状病毒肺炎疫情发生后,全社会积极参与疫情防控.甲、乙两个工厂生产同一种防护口罩,甲厂每天比乙厂多生产口罩5万只,甲厂生产该种口罩40万只所用时间与乙厂生产该种口罩15万只所用时间相同,若设甲厂每天生产口罩x万只,根据题意可列出方程:.三.解答题21.(1)约分:;(2)通分:、.22.准备完成如图这样一道填空题,其中一部分被墨水污染了,若该题化简的结果为(1)求被墨水污染的部分;(2)原分式的值等于1吗?为什么?23.计算(1);(2).24.先化简:(﹣1)÷,然后从0,2,中选择一个合适的数代入求值.25.解分式方程:(1);(2).26.平价大药房准备购进KN95、一次性医用两种口罩.两种口罩的进价和售价如表.已知:用1800元购进一次性医用口罩的数量是用2000元购进KN95口罩的数量的5倍.KN95口罩一次性医用口罩进价(元/个)m+10.2m售价(元/个)15 2.5(1)求m的值;(2)要使购进的KN95、一次性医用两种口罩共1000个的总利润不少于1560元,且不超过1603元,问该药店共有多少种进货方案?参考答案一.选择题1.解:,,(x﹣y)分母中含有字母,因此是分式;,的分母中均不含有字母,因此它们是整式,而不是分式.故分式有3个.故选:C.2.解:A.当x=0时,无意义,不合题意;B.当x=±1时,无意义,不合题意;C.当x取任意实数时,有意义,符合题意;D.当x=﹣1时,无意义,不合题意;故选:C.3.解:+==.故选:D.4.解:A.≠,此选项错误;B.﹣=﹣=,此选项错误;C.﹣==﹣,此选项错误;D.+=+==,此选项正确;故选:D.5.解:A、+=,故原题计算正确;B、=,故原题计算正确;C、=﹣1,故原题计算正确;D、=,故原题计算错误;故选:D.6.解:A、原式==﹣,所以A选项的计算错误;B、原式==﹣,所以B项的计算正确;C、原式===a+1,所以C选项的计算错误;D、原式=,所以D项的计算错误.故选:B.7.解:去分母得:1=1﹣x,解得:x=0,经检验x=0是分式方程的解.故选:B.8.解:去分母得:3(x﹣1)=2(x+1),去括号得:3x﹣3=2x+2,解得:x=5,经检验x=5是分式方程的解.故选:B.9.解:去分母得:m+1=2x﹣2,解得:x=,由题意得:≥0且≠1,解得:m≥﹣3且m≠﹣1,故选:D.10.解:设原价每瓶x元,根据题意,得﹣=140.故选:B.二.填空题11.解:=,则最简公分母为x(x+2)(x﹣2),故答案为:x(x+2)(x﹣2).12.解:由题意得:x﹣1≠0,解得:x≠1;由题意得:x2+x﹣6=0,且x﹣2≠0,解得:x=﹣3,故答案为:≠1;=﹣3.13.解:∵b﹣a=﹣6,∴=•=•=a﹣b=﹣(b﹣a)=﹣(﹣6)=6,故答案为:6.14.解:原式=[﹣x﹣2]•=(﹣x﹣2)•=•﹣(x+2)•=1﹣x+2=3﹣x,故答案为:3﹣x.15.解:原式=﹣=﹣=﹣==.故答案为:.16.解:去分母,得1+3x﹣6=ax﹣1,∵方程有增根,所以x﹣2=0,x=2是方程的增根,将x=2代入上式,得1+6﹣6=2a﹣1,解得a=1,故答案为1.17.解:把=t代入方程,得t2+5t+6=0.故答案为:t2+5t+6=0.18.解:设步行速度为x千米/时,则骑自行车速度为3x千米/时,依题意,得:﹣=.故答案为:﹣=.19.解:关于x的分式方程=﹣3两边同时乘以(x﹣2)得:m=x﹣1﹣3(x﹣2),∴m=x﹣1﹣3x+6,∴2x=5﹣m,∴x=,∵原方程无解,∴=2,∴m=1.故答案为:1.20.解:设甲厂每天生产该种口罩x万只,则乙厂每天生产该种口罩(x﹣5)万只,依题意,得:,故答案为:,三.解答题21.解:(1)=;(2)==,==.22.解:(1)÷=•(x﹣3)=,∴被墨水污染的部分为x﹣4;(2)原式==1,∴x=4,由于÷=•∴x=4时,此时无意义.所以原分式的值不能为123.解:(1)原式=﹣•=﹣==;(2)原式=÷=•=.24.解:原式=(﹣)÷=•=,当a=0或2时,原式没有意义,当a==3时,原式=1.25.解:(1)两边同时乘以最简公分母(x﹣2),可得2x=x﹣2+1,解得x=﹣1,检验:当x=﹣1时,x﹣2≠0,所以x=﹣1是原分式方程的解;(2)两边同时乘以最简公分母(x+1)(x﹣1),可得x2+x﹣3x+1=x2﹣1,解得x=1;检验:当x=1时,(x+1)(x﹣1)=0,所以x=1是原方程的增根,原方程无解.26.解:(1)由题意得:=×5,解得:m=9,经检验,m=9是原方程的解,且符合题意,∴m=9;(2)∵m=9,∴m+1=10,0.2m=1.8,设购进的KN95口罩为x个,一次性医用口罩为(1000﹣x)个,由题意得:1560≤(15﹣10)x+(2.5﹣1.8)×(1000﹣x)≤1603,解得:200≤x≤210,即x的取值有11个,word版初中数学∴药店共有11种进货方案.11 / 11。
八年级数学上册第15章《分式》单元测试题一、选择题(每小题3分,共24分)1、若分式241x x -有意义,则x 应满足………………………………………………………( ) A 、0x = B 、0x ≠ C 、1x = D 、1x ≠2、要使22222x x x x=--这一步运算正确,一定有………………………………………( ) A 、0x > B 、0x ≠ C 、2x ≠ D 、2x >3、计算(111a --)(211a-)的结果为………………………………………………( ) A 、1a a +- B 、1a a - C 、1a a - D 、11a a+- 6、某种长途电话的收费方式如下:接通电话的第一分钟收费a 元,之后的每一分钟收费b 元.如果某人打该长途电话被收费8元钱,则此人打长途电话的时间是…………………( )A 、8min a b - B 、8min a b + C 、8min a b b -+ D 、8min a b b-- 7、解分式方程:81877x x x --=--,可得方程的解为…………………………………( ) A 、7x = B 、8x = C 、15x = D 、无解8、已知00abc a b c ≠++=且,则a (11b c +)+b (11a c +)+c (11a b +)的值为( ) A 、0 B 、1 C 、-1 D 、-3二、填空题(第小题3分,共18分)9、若213m n n -=,则m n =______________. 10、分式222439x x x x --与的最简公分母是_______________. 11、已知114a b +=,则3227a ab b a b ab-+=+-________________. 12、若方程322x m x x-=--无解,则m =____________________. 13、若关于x 的方程212x a x +=--的解是正数,则a 的取值范围是_________________. 14、若关于x 的分式方程1x a a x +=-无解,则a 的值为___________________. 三、解答题(共78分)15、计算(每小题3分,共24分)⑴5331111x x x x+---- ⑵22y xy x y y x -+- ⑶()432562b ab a ÷-(4)()1013423-⎛⎫--+-- ⎪⎝⎭ (5)(1a x -)÷22x a x -16、解下列方程(每小题4分,共16分)⑴2341123x x x x --=-+ ⑵2122x x x+=+-⑶1551x x x x -+=+- ⑷()363011x x x x +=++17、先化简,再求值(每小题5分,共10分)(第⑵中14a =-) ⑴()213222xx x x +⎛⎫÷-+ ⎪+⎝⎭+,其中12x = ⑵2221111211a a a a a a a a ⎡⎤-+⎛⎫--÷⎢⎥ ⎪--+-⎝⎭⎢⎥⎣⎦18、解答下列各题(每小题7分,共28分)⑴一列火车从车站开出,预计行程450km,当它开出3h 后,因特殊任务多停一站,耽误了30min,后来把速度提高了0.2倍,结果准时到达目的地,求这列火车原来的速度.⑵某花店老板用400元购买一批花瓶,途中不慎打碎了2个,他把余下的以每个高出成本30%的价格售出,一共获利68元,问:他购买了多少个花瓶?⑶张明与李强共同清点一批图书,已知张明清点完200本图书所用时间与李强清点完300本图书所用时间相同,且李强平均每分钟比张明多清点10本,求张明平均每分钟清点图书的数量.第十六章《分式》测试题答案⑷设甲施工队单独完成此项工程需x天,则乙施工队单独完成此项工程需45x天,根据题意得:1012145x x +=,解这个方程得:25x =。