线段、直线、射线2
- 格式:ppt
- 大小:701.50 KB
- 文档页数:17
直线、射线、线段(基础)知识讲解
【学习目标】
1.理解直线、射线、线段的概念,掌握它们的区别和联系;
2. 利用直线、线段的性质解决相关实际问题;
3.利用线段的和差倍分解决相关计算问题.
【要点梳理】
要点一、直线
1.概念:直线是最简单、最基本的几何图形之一,是一个不作定义的原始概念,直线常用“一根拉得紧的细线”、“一张纸的折痕”等实际事物进行形象描述.
2. 表示方法:(1)可以用直线上的表示两个点的大写英文字母表示,如图1所示,可表示为直线AB(或直线BA).
(2)也可以用一个小写英文字母表示,如图2所示,可以表示为直线l.
3.基本性质:经过两点有一条直线,并且只有一条直线.简单说成:两点确定一条直线.要点诠释:
直线的特征:(1)直线没有长短,向两方无限延伸.
(2)直线没有粗细.
(3)两点确定一条直线.
(4)两条直线相交有唯一一个交点.
4.点与直线的位置关系:
(1)点在直线上,如图3所示,点A在直线m上,也可以说:直线m经过点A.
(2)点在直线外,如图4,点B在直线n外,也可以说:直线n不经过点B.
要点二、线段
1.概念:直线上两点和它们之间的部分叫做线段.
2.表示方法:
(1)线段可用表示它两个端点的两个大写英文字母来表示,如图所示,记作:线段AB或线段BA.
(2)线段也可用一个小写英文字母来表示,如图5所示,记作:线段a.
3. “作一条线段等于已知线段”的两种方法:
法一:用圆规作一条线段等于已知线段.例如:下图所示,用圆规在射线AC上截取AB=a.
法二:用刻度尺作一条线段等于已知线段.例如:可以先量出线。
★教学目标一、知识与能力1、借助有趣的情景及事件“两点之间的所有连线中,线段最短”的性质;2、能借助直尺、圆规等工具,比较两条线段的长短,了解用圆规作一条线段等于已知线段。
二、过程与方法立足具体情境,尽可能从性感兴趣的话题出发,去发展有条理的思考,并用语言表达自己的发现成果。
三、情感、态度、价值观调动学生的全面触动性,积极参与数学活动,促使学生在学习中培养良好的情感态度,全面参与合作交流的意识,进一步提高观察、分析和抽象的能力。
★教学重难点一、重点:了解线段的性质及线段比较的方法,两点之间的距离的概念和线段中点的概念。
二、难点:比较线段长短的方法,线段中点的表示方法及应用。
★教学准备三角板、圆规、刻度尺、线绳。
★预习导学思考:如何比较两人的身高?是否有几种方法?如何来比的?★教学过程思考与调整一、创设情景,谈话导入,探求结论问题1:已知一线段a(如图)|——a——|,请你设法画一条线段等于已知线段a,你有几种方法?如何操作?问题2:如何比较两条线段的长短,请大家研究的方法?教师归的总结:(1)叠合法(2)度量法问题3:线段的中点,三等分点……等是如何规定的?怎样用图形和符号语言来表示?问题4:小狗、小猫看到前面有食物时,为什么都选择直着跑?难道它们也懂数学?结合简图,说明为什么?引入线段的性质:引入两点之间的距离:二、精讲点拔,质疑问题例 1 如图:你能在图中找出一点P,使点P到点A、B、C、D的点的距离之和最小吗?如果能,请你画出P点。
例 2 已知线段AB=8cm,在直线AB上有一点C,且BC=4cm,M是线段AC的中点,试求线段AM的长?三、课堂活动,强化训练思考与调整例 3 如图:三条线段首尾相接,你会用哪些方法比较线段AC和BC的长短?例 4 在一条直线上,依次有A、B、C、D、E五点,如果点B是AC的中点,点C是BD的中点,点D是CE的中点。
(1)画出图形(2)AB与DE相等吗?(3)点B、C、D是线段AE的几等分点?点C、D是线段BE的几等分点?四、思考于练习1.已知线段AB=8cm,在直线AB上有一点C,且BC=4cm,M是线段AC的中点,求线段AM的长。
数学:4.2《直线、射线、线段(2)》学案(人教版七年级上)【学习目标】:1、会用尺规画一条线段等于已知线段;2、会比较两条线段的长短;3、理解线段中点的概念,了解“两点之间,线段最短”的性质。
【学习重点】:线段的中点概念,“两点之间,线段最短”的性质是重点;【学习难点】:画一条线段等于已知线段是难点。
【导学指导】一、温故知新1、过A 、B 、C 三点作直线,小明说有三条,小颖说有一条,小林说不是一条就是三条,你认为 的说法是对的。
二、自主学习问题:现有一根长木棒,如何从它上面截下一段,使截下的木棒等于另一根木棒的长?上面的实际问题可以转化为下面的数学问题:已知线段a,画一条线段等于已知线段。
1.作一条线段等于已知线段现在我们来解决这个问题。
作法:(1)作射线AM(2)在AM 上截取AB= a 。
则线段AB 为所求。
应用:已知线段a 、b ,求作线段AB=a+b 。
解:(1)作射线AM ;(2)在AM 上顺次截取AC=a ,CB= b 。
则AB= a+b 为所求。
做一做:作线段AB=a-b 。
2、比较两条线段的长短 a M B · · A M B · · A a bC两条线段可能相等,也可能不相等,那么怎样比较两条线段的长短呢?我们先来回答下面的问题。
怎样比较两个同学的身高?一是用尺子测量;二是站在一起比(脚在同一高度)。
如果把两个同学看成两条线段,那么比较两条线段就有两种方法。
(1)度量法:用刻度尺分别量出两条线段的长度从而进行比较。
( 2)把一条线段移到另一条线段上,使一端对齐,从而进行比较,我们称为叠合法。
(如图) AB <CD AB >CD AB=CD3、线段的中点及等分点如图(1),点M 把线段AB 分成相等的两条线段AM 与BM ,点M 叫做线段AB 的中点;记作AM=MB 或AM=MB=1/2AB 或2AM=2MB=AB 。
如图(2),点M 、N 把线段AB 分成相等的三段AM 、MN 、NB ,点M 、N 叫做线段AB 的三等分点。
M O a线段、射线、直线【知识要点】知识点1、线段、直线、射线的概念:线段:一段拉直的棉线可近似地看作线段,线段有两个端点。
线段的画法:(1)画线段时,要画出两个端点之间的部分,不要画出向任何一方延伸的情况.(2)以后我们说“连结 ”就是指画以A 、B 为端点的线段.射线:将线段向一个方向无限延长,就形成了射线,射线有一个端点。
如手电筒、探照灯射出的光线等。
射线的画法:画射线 一要画出射线端点 ;二要画出射线经过一点,并向一旁延伸的情况.直线:将线段向两个方向无限延长就形成了直线,直线没有端点。
如笔直的铁轨等。
直线的画法:用直尺画直线,但只能画出一部分,不能画端点。
知识点2、线段、直线、射线的表示方法:(1) 点的记法:用一个大写英文字母(2) 线段的记法:①用两个端点的字母来表示 ②用一个小写英文字母表示 如图:记作线段AB 或线段BA , 记作线段a ,与字母顺序无关 此时要在图中标出此小写字母(3) 射线的记法:用端点及射线上一点来表示,注意端点的字母写在前面如图:记作射线OM,但不能记作射线MO(4) 直线的记法:①用直线上两个点来表示 ②用一个小写字母来表示如图:记作直线AB 或直线BA , 记作直线l与字母顺序无关。
此时要在图中标出此小写字母知识点3、线段、射线、直线的区别与联系:联系:三者都是直的,线段向一个方向延长可得到射线,线段向两个方向延长可得到直线,故射线、线段都是直线的一部分,线段是射线的一部分。
区别:直线可以向两方延伸,射线可以向一方无限延伸,线段不能延伸,三者的区别见下表:BA BAlB AaMOBAkB A名称图形表示方法界限端点长度线段线段AB(或线段BA)(字母无序)线段a 两方有界两个有射线射线AB(字母有序) 一方有界,一方无限一个无直线直线AB(或直线BA)(字母无序)直线l 两方无限无无知识点4、直线的基本性质(重点)(1)经过一点可以画无数条直线(2)经过两点只可以画一条直线直线的基本性质:经过两点有且只有一条直线(也就是说:两点确定一条直线)注:“确定”体现了“有”,又体现了“只有”。
第2课时线段大小的比较1.下列图形能比较大小的是() A.直线与线段B.直线与射线C.两条线段D.射线与线段2.在跳绳比赛中,要在两条绳中挑出一条最长的绳子参加比赛,选择的方法是() A.把两条绳子的一端对齐,然后拉直两条绳子,另一端在外面的即为长绳B.把两条绳子接在一起C.把两条绳子重合,观察另一端情况D.没有办法挑选3.下列说法正确的是() A.两点之间的连线中,直线最短B.线段AB是点A与点B的距离C.两点之间,线段最短D.两点之间的线段叫做两点之间的距离4.如果线段AB=5厘米,BC=3厘米,那么A、C两点的距离是() A.8厘米B.2厘米C.4厘米D.无法确定5.如图4-2-13所示三角形,用直尺和圆规画出一条线段a,使a=AC+BC,然后比较a与AB的长短.图4-2-136.下列说法正确的是() A.两点之间的连线中,直线最短B.若P是线段AB的中点,则AP=BPC.若AP=BP,则P是线段AB的中点D.两点之间的线段叫做两点之间的距离7.如图4-2-14,线段AB=4,点O是线段AB上一点,C、D分别是线段OA、OB的中点,小明据此很轻松地求得CD=2.若点O在AB的延长线上,原结论“CD=2”是否仍然成立图4-2-148.如图4-2-15所示,设A、B、C、D为4个居民小区,现要建一购物中心,试问把购物中心建在何处才能使4个居民小区到购物中心的距离之和最小说明理由.图4-2-15答案解析1.C【解析】直线、射线都可以无限延伸,无法比较大小,只有线段可以比较大小.2.A【解析】线段长短的比较方法:把两条线段的一个端点重合,然后将两条线段叠合在一起,观察两条线段的另一个端点的位置.3.C【解析】根据线段的性质“两点之间,线段最短”和“两点之间的线段的长度叫做两点之间的距离”判断,选项A、B、D错误,选项C正确,故选C. 4.D【解析】因为线段AB、BC可能在一条直线上,也可能不在一条直线上,所以无法确定A、C两点的距离.5.解:画图略,a>AB.6.B【解析】选项A错误,两点之间的连线中,线段最短;选项B正确,根据中点的定义可知若P是线段AB的中点,则AP=BP;选项C错误,只有当点P在线段AB上,且AP=BP时,点P才是线段AB的中点;选项D错误,连接两点的线段的长度叫做两点的距离.7.解:原结论仍成立,当点O在线段AB的延长线上时,如图所示,CD=OC-OD=12(OA-OB)=12AB=2.第7题答图8.【解析】利用“两点之间,线段最短”解决距离最小的问题.解:建在AC与BD的交点上.根据两点之间线段最短,购物中心应建在A 区和C区所连接的线段上,又要建在B区与D区连接的线段上,故应建在AC与BD的交点上,才能使4个居民小区到购物中心的距离之和最小.。
直线线段射线的定义和区别
直线,线段和射线的区别:
直线是两端都没有端点、可以向两端无限延伸、不可测量长度的。
线段是指两端都有端点,不可延长。
射线是指直线上的一点和它一旁的部分所组成的图形。
直线:
1、定义:两端都没有端点、可以向两端无限延伸,长度无法度量。
2、性质
直线是轴对称图形。
它有无数条对称轴,其中一条是它本身,还有任意一条与它垂直的直线。
因为在直线的任意一点作它的垂线,直线可以看作被分成两条方向相反的射线,将一条射线沿这条垂线折叠,这两条射线就重合了。
所以说,直线有无数条对称轴。
射线:
1、射线的定义:直线上一点和它们的一旁的部分叫做射线。
2、射线的特征:向一方无限延伸,它有一个端点。
线段:
1、线段的定义:直线上两点和它之间的部分叫做线段,这两点叫做线段的端点。
2、线段的性质(公理):所有连接两点的线中,线段最短。