数字特征与特征函数
- 格式:doc
- 大小:695.00 KB
- 文档页数:18
第四章 数字特征与特征函数1、设μ是事件A 在n 次独立试验中的出现次数,在每次试验中p A P =)(,再设随机变量η视μ取偶数或奇数而取数值0及1,试求ηE 及ηD 。
2、袋中有k 号的球k 只,n k ,,2,1Λ=,从中摸出一球,求所得号码的数学期望。
3、随机变量μ取非负整数值0≥n 的概率为!/n AB p nn =,已知a E =μ,试决定A 与B 。
4、袋中有n 张卡片,记号码1,2,…,n,从中有放回地抽出k 张卡片来,求所得号码之和μ的数学期望及方差。
5、试证:若取非负整数值的随机变量ξ的数学期望存在,则∑∞=≥=1}{k k P E ξξ。
6、若随机变量ξ服从拉普拉斯分布,其密度函数为,,21)(||∞<<∞-=--x e x p x λμλ0>λ。
试求ξE ,ξD 。
7、若21,ξξ相互独立,均服从),(2σa N ,试证πσξξ+=a E ),max (21。
8、甲袋中有a 只白球b 只黑球,乙袋中装有α只白球β只黑球,现从甲袋中摸出()c c a b ≤+只球放入乙袋中,求从乙袋中再摸一球而为白球的概率。
9、现有n 个袋子,各装有a 只白球b 只黑球,先从第一个袋子中摸出一球,记下颜色后就把它放入第二个袋子中,再从第二个袋子中摸出一球,记下颜色后就把它放入第三个袋子中,照这样办法依次摸下去,最后从第n 个袋子中摸出一球并记下颜色,若在这n 次摸球中所摸得的白球总数为n S ,求n S 。
10、在物理实验中,为测量某物体的重量,通常要重复测量多次,最后再把测量记录的平均值作为该体质重量,试说明这样做的道理。
11、若ξ的密度函数是偶函数,且2E ξ<∞,试证ξ与ξ不相关,但它们不相互独立。
12、若,ξη的密度函数为22221,1(,)0,1x y p x y x y π⎧+≤⎪=⎨⎪+>⎩,试证:ξ与η不相关,但它们不独立。
13、若ξ与η都是只能取两个值的随机变量,试证如果它们不相关,则独立。
第八章特征函数第一节特征函数一、复随机变量1、定义:设与均为上的一维随机变量,称为上的复随机变量.2、的数学期望: ,若、均存在.3、相互独立:设()独立,称()独立.4、性质:(1),其中为复常数.证明:.(2).证明:.精彩文档精彩文档(3).证明:仅证离散型.设,则||||)(,,Z E p iy x p iy xlk kl l k lk kl l k∑∑=+≤+=.(4)|||1|x e ix≤-, R ∈∀x .证明:|||||1|0x dt edt e e xitx it ix=≤=-⎰⎰.(5)若k k k iY X Z +=独立,则. 证明:仅证明时成立即可.因独立,则与独立, 从而与,与,与,与,均独立.那么.(6),必存在.证明:仅证连续型. 因 ,,故与存在,从而存在.精彩文档二、特征函数 1、定义:设为上的一维随机变量,,规定,称为的特征函数.显然:①.② 若为离散型,则.③ 若为连续型,则.2、性质: (1);证明:.(2);证明:.(3)在上一致连续;证明:R ∈∀t ,R ∈∀h ,|])1[(||||)()(|)(itX ihX itX X h t i X X e e E Ee Ee t h t -=-=-++ψψ⎰⎰+∞∞-+∞∞--≤-=dx x edx x e e ihxitxihx)(|1|)()1(ϕϕ⎰∞∞-=dx x hx)(2sin2ϕ 其中:2sin222|1|222hx ie eeex h i x h i x h i ihx=-=--;精彩文档由于 0>∀ε, 0>∃K ..t s ⎰>Kx dx x ||)(ϕε<, (因为1)(=⎰+∞∞-dx x ϕ收敛)取0>=Kεδ , 当δ<||h 时,⎰⎰->+≤-+KKK x X X dx x hxdx x hx t h t )(2sin 2)(2sin 2|)()(|||ϕϕψψ⎰⎰⎰-->+<+≤KKKKKx dx x K h dx x hx dx x )(||22)(||2)(2||ϕεϕϕεϕεε4)(22≤++<⎰-KKdx x .(4),为常数;证明:.(5)设()独立, 则.证明:仅证明时成立即可..(6),若存在.证明:因 .所以 .三、常见分布的特征函数1、离散型(1)退化分布:.证明:.(2):,其中.证明:.(3):.证明:,服从参数为的(0-1)分布,且独立, , 所以.(3):.证明:.2、连续型(1):.特别:①:;②:.精彩文档精彩文档证明:(2):.(3):.证明:.(4) :.证明:222122221 221t t i it itz t t i edz eeσμσσσμπ--+∞-∞---==⎰.其中:.2222)(2σσσμσμσσμit it x x it x z +--⎪⎭⎫⎝⎛-=⎪⎭⎫ ⎝⎛--=精彩文档22222σμσμt it xit x -+-⎪⎭⎫ ⎝⎛-= 222221212t t i itx x z σμσμ+-+⎪⎭⎫ ⎝⎛--=- 下面计算 πσσ22222==⎰⎰-+∞-∞---it itz Lz dz edz e:,.,,在上, ,π2022=+→+=⎰⎰⎰⎰+∞∞---dx ex l xxL xx.第二节 唯一性定理一、逆转公式 1、预备知识 (1)设有函数,使得,,收敛,则在上一致收敛. 于是有;又若在上连续,则.华东师大《数学分析(下)》(2)狄里克莱积分: 华东师大《数学分析(下)》,.(3)设,,则2、逆转公式:设的分布函数为,特征函数为,又是的连续点,则证明: 不妨设,且,令,因为精彩文档.又收敛,则又因为存在,故. 所以.二、唯一性定理1、唯一性定理: 的分布函数由其特征函数为唯一确定.证明:在的每一个连续点上,取也为的连续点,于是有.因由其上连续点唯一确定,故由唯一确定.精彩文档精彩文档2、设,且,则⎰∞∞--='=dt t ex F x X itxX )(21)()(ψπϕ.证明: 因,故连续.,,有, 又 ,且 ,于是⎰⎰∞∞--+∞∞-∆+--→∆=∆-=dt t e dt t x it e e X itxX x x it itx x )(21)(lim 21)(0ψπψπ.注意为解析函数,.三、分布函数的再生性 1、,独立,则: . 证明:因,.由唯一性定理知, .2、,独立,则: .证明:因,.由唯一性定理知, .3、,独立,则: .证明:,,由唯一性定理知, .4、,独立,则: .证明:,, 由唯一性定理知, .第三节维随机变量的特征函数一、特征函数1、定义:设为上的维随机变量,,规定,称为精彩文档精彩文档的特征函数. 显然:① 若为离散型,则.② 若为连续型,则.注:∑==⎪⎪⎪⎪⎪⎭⎫ ⎝⎛='nk k k n n X t X X X t t t X t 12121) (M Λ2、性质: (1);证明:.(2);证明:.(3)在上一致连续; 证明:,,.其中:2121|||)()(|||X X t t X t '∆'∆≤'∆,注:∑=∆='∆nk k kX tX t 1,∑=∆∆=∆'∆nk k k t t t t 1,∑=='nk k k X X X X 1此式利用了许瓦兹不等式:精彩文档.因,由判别式可得.为方便起见,以下引入记号: ①,,.②,,特别记: ,.例: )4(}4,2{N I ⊂=,)1,0,1,0(1=I ,)0,1,0,0(11}3{3==.③ ,其中,.特别记,为单位矩阵.例: )4(}4,2{N I ⊂=,精彩文档⎪⎪⎪⎪⎪⎭⎫⎝⎛=1000000000100000I E , ⎪⎪⎪⎪⎪⎭⎫⎝⎛==0000010000000000}3{3E E .④ t E t I I =, 为t 的取有行的向量,I I I AE E A =, 为的取有行和列的矩阵,例: ),,,(4321t t t t t =,)4(}4,2{N I ⊂=,⎪⎪⎪⎪⎪⎭⎫⎝⎛⎪⎪⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛==43214242100000000010000000),0,,0(t t t t t t t t t I ,⎝⎛⎪⎪⎪⎪⎪⎭⎫⎝⎛⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫⎝⎛=00000010000100000000010000000000000000000444342413433323124232221141312114422a a a a a a a a a a a a a a a a a a A I ④ ,,但均为非负整数. (4),为常量,为常矩阵. 证明:.精彩文档注:A B AB ''=')((5) 边缘分布:,, 特别,证明:.其中:X t E X E t X E E t X E t E X t I I I I I I I I )()()('='='='='(6),若存在,.说明:n kn kkkt t t t ∂∂∂=∂Λ2121二、逆转公式 1、逆转公式:设的分布函数为,特征函数为,在体面上概率为0,则⎰∏∈=---=-n kk k k x nk k b it a it X n dt it e e t a F b F R 1)()2(1)()(ψπ.2、唯一性定理:的分布函数由其特征函数唯一确定.⎰∏∈=---∞→-=n k k k k x nk k x it y it X n y dt it e e t x F R1)()2(1lim )(ψπ.三、独立性 1、设()独立, 则.证明:仅证明时成立即可.精彩文档.2、设为维随机变量,则 ,独立 ⇔ ∏==nk k X X t t k1)()(ψψ.证明:“”因为,独立,从而, 所以. “”因为,所以⎰∏∈=---∞→-=n kk k k x nk k x it y it X n y dt it e e t x F R1)()2(1lim )(ψπ⎰∏∈=---∞→-=n k kk k k x nk k X k x it y it n y dt t it e e R 1)()2(1lim ψπ ∏∏⎰==∈---∞→=-=nk k X nk t k k X k x it y it y x F dt t it e e k k k kk k k 11)()(21lim Rψπ.故,独立.第四节 n 维正态分布矩阵回顾:(1) 正定,记为; 非负定,记为.(2) ,.(3) 所有主子式存在,,使得存在,,使得.(4) 所有主子式存在,使得.(5) . 这时即的主子式.(6) ,则.(7) 对称合同于对角矩阵,即存在,,使得为对角矩阵.一、n维正态分布1、定义:设,,为阶正定矩阵,且,称服从维正态分布,记作.2、验算:验算确实是维随机变量的密度函数.(1)显然:,;(2)因,故存在,,使得,且.令,于是,这样,而,有,那么精彩文档,从而.于是.3、特别,当时, .二、特征函数1、的特征函数:.证明:,令,.由于,而,令,, 有,所以.精彩文档精彩文档2、I X 的特征函数: ,因此也是正态分布),(~I I I C N X μ. 其中,,为二次型的矩阵,也是正定矩阵.特别: ,.证明:.三、数字特征 1、设,则μ=EX .证明:因,从而,,所以.2、设,则. 因此有.预备工作: (1)设,为含自变量的可微函数,定义:.(2).证明:⎪⎪⎭⎫ ⎝⎛∂∂=⎪⎪⎭⎫ ⎝⎛∂∂=∂∂∑∑==)()(11n j jl kj nj jl kj B A t B A t t AB .(3)设,与无关,则精彩文档,.下面证明.证明:因)()()(202l k l k t l k X X X E X X E i t t t -==∂∂∂=ψ,又,而,,kl k l l k lk C C C t t Z -='-'-=∂∂∂111121212, lk Z k l Z k Z l l k X t t Z e t Z t Z e t Z e t t t t ∂∂∂+∂∂⎪⎪⎭⎫ ⎝⎛∂∂=⎪⎪⎭⎫ ⎝⎛∂∂∂∂=∂∂∂22)(ψ, 于是kl k l t l k X C i i t t t -=∂∂∂=))(()(02μμψ,从而,所以.四、独立性设,则独立,,证明:“”显然. “”因,,)(ex p()ex p()(221121kk k nk k k X C t it Ct t t i t -='-'=∑=μμψ∏∏===-=nk k X n k kkk k k t C t it k 11221)()ex p(ψμ. 所以 独立.精彩文档五、线性变换 1、,,,,则.证明:因})()( ex p{21t A AC t A t i ''-'=μ, 下面证明.因,,,故存在,,使得,且, 于是.可见.2、,,服从一维正态分布.证明:“”取,由1知.“”①先证明,当,,时., ,令,,,有,,已知,精彩文档那么.故 .显然,可见, 有,又X X k k 1'=服从一维正态分布,有0),cov(>==k k k kk DX X X C ,可知, 所以. ②再证明一般地也有.由于为实对称矩阵,故存在,,使得为对角矩阵.令,由条件知,,,,也服从一维正态分布, 而由知道,,,由①知,又,由1知.3、独立,),0(~E N X .证明:“”因,那么,故独立,.“”因,故,,服从一维正态分布.因此,又因独立,,所以.精彩文档作业:1、设nk X P X 1}{~==,.,,2,1n k Λ= 求)(t X ψ2、设X 服从几何分布,求)(t X ψ、EX 及DX .3、设||21)(~x e x X -=ϕ, 求)(t X ψ.4、已知itt X -=11)(ψ,求)(),(x x F ϕ.5、已知)1,0(~N X ,32+=X Y ,求)(t Y ψ.6、设X0 1 3P21 83 81 Y 01P 31 32 已知X 与Y 独立,求Y X Z +=的概率分布.7、已知),1,1,0,0(~ρN X ,求)(21X X E . 8、证明:若)(t k ψ,.,,2,1n k Λ=均为特征函数,则∏=nk kt 1)(ψ也是特征函数.9、已知)21,1,1,0,0(~N X ,⎩⎨⎧--=++=11211211X X Y X X Y ,求),(21y y Y ϕ.精彩文档作业:1、设nk X P X 1}{~==,.,,2,1n k Λ= 求)(t X ψ解: )1()1()(1)( 1111it t in it nk k it itn k ikt nk k itx itXX e n e e ene e n p eEet k--=====∑∑∑=-==ψ )1(1 --=-it tin e n e .2、设X 服从几何分布,求)(t X ψ、EX 及DX . 解:(1) qe p qe pe qepep qe Eet it it it k k it itk k ikt itXX -=-====-∞=-∞=-∑∑1)()(1111ψ. (2)由于kk k EX i X =)0()(ψ,而22)()()()(q e ipe i e q e p t it it itit X -=---='----ψ,精彩文档22)()()(2))(()(q e i e q e ipe q e i ipe t it it it it it it X ---⋅---=''------ψ32)(q e pe pqe it ti it ---=---. 于是 pq p i i EX X1)1()0(22=--='-=ψ. 又 2321)1()0(p q q p pq EX X +=----=''-=ψ, 从而 2222211)(p q p p q EX EX DX =-+=-=.3、设||21)(~x e x X -=ϕ, 求)(t X ψ.解: ⎰⎰⎰+∞∞-+∞∞-+∞∞-+===txdx x i txdx x dx x e Eet itxitXX sin )(cos )()()(ϕϕϕψ220||111)cos sin (cos cos 21t t tx tx t e txdx e txdx e x xx +=+-===+∞-+∞-+∞∞--⎰⎰.4、已知itt X -=11)(ψ,求)(),(x x F ϕ.解: 由于1111)(-⎪⎭⎫⎝⎛-=-=λψit it t X , 可见 )1(~Exp X .所以 ⎩⎨⎧≤>=- .0 ,0,0 ,)(x x e x x X ϕ⎩⎨⎧≤>-=- .0 ,0,0 ,1)(x x e x F x X精彩文档另解: ⎰⎰⎰∞∞--∞∞--∞∞--++=-==dt t e it dt it e dt t e x itxitx X itxX 21)1(21121)(21)(ππψπϕ ⎰⎰∞∞---∞∞--⎩⎨⎧≤>=+=+++= .0 ,0 ,0 ,121212122x x e iI I dt t te idt t e x itxitx ππ其中: ⎪⎩⎪⎨⎧≤>=- .0 ,21 ,0 ,211x e x e I xx⎪⎩⎪⎨⎧≤->=- .0 ,21 ,0 ,212x e x e iI x x 于是 ⎩⎨⎧≤>-=- .0 ,0 ,0 ,1)(x x e x F x X5、已知)1,0(~N X ,32+=X Y ,求)(t Y ψ. 解: 由于 2212221 )(t t t i X ee t --==σμψ,而)()(at e t X ibtb aX ψψ=+, 那么222212212323)2(3332)2()()(t t i t t i t t i X t i X Y e eee t e t t ---+=====ψψψ.可见 3=EY ,422==DY ,由唯一性定理知: )4,3(~N Y .6、设X0 1 3P21 83 81 Y 01P 31 32 已知X 与Y 独立,求Y X Z +=的概率分布. 解: 310818321)(⋅⋅⋅++==it it it itXX e e e Eet ψ, 103231)(⋅⋅+==it it itY Y e e Ee t ψ,因 X 与Y 独立, 于是精彩文档4321012124141241161)()()(⋅⋅⋅⋅⋅++++==it it it it it itX Y X Z e e e e e Ee t t t ψψψ, 所以,由唯一性定理知Z1234P612411 41 241 1217、已知),1,1,0,0(~ρN X ,求)(21X X E . 解: 由于) ex p()(21Ct t t i t X '-'=μψ,而 ⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛=0021μμμ, ⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=1122212121ρρσσρσσρσσC , ()⎪⎪⎭⎫ ⎝⎛++=⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛='211221212111)(t t t t t t t t t t Ct t ρρρρ222121212221212t t t t t t t t t t ++=+++=ρρρ, 于是 u t t t t X e eCt t t =='-=++-)2(2121222121)ex p()(ρψ因 ,而uu X e t t t t e t t )(222)(21211ρρψ+-=⎪⎭⎫ ⎝⎛+-=∂∂, )()()(1221212t t e t t e t t t u u X ρρρψ+++-=∂∂∂,所以 ρψ=∂∂∂-==021221)()(t X t t t X X E .精彩文档8、证明:若)(t k ψ,.,,2,1n k Λ=均为特征函数,则∏=nk kt 1)(ψ也是特征函数.证明: 设k X 的特征函数为)(t k ψ,.,,2,1n k Λ=且独立,则∑==n k k X X 1的特征函数为=∏=n k X t k 1)(ψ∏=nk k t 1)(ψ.因此∏=nk kt 1)(ψ也是特征函数.9、已知)21,1,1,0,0(~N X ,⎩⎨⎧--=++=11211211X X Y X X Y ,求),(21y y Y ϕ.解: 由于b AX Y +=,因 })()( ex p{)()()(21t A AC t A t i e t A e t t bt i X b t i b AX Y ''-'='==''+μψψψ,})()( ex p{21t A AC t b A t i ''-+'=μ, 由唯一性定理知 ),(~A AC b A N Y '+μ.而 ⎪⎪⎭⎫ ⎝⎛-=1111A ,⎪⎪⎭⎫ ⎝⎛-=11b ,⎪⎪⎭⎫⎝⎛=11ρρC , 有 b b A =+μ,⎪⎪⎭⎫ ⎝⎛-+=⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-='ρρρρ2200221111111111A AC , 从而 1,121-==y y μμ,0,)1(2,)1(22121=-=+=y y y y ρρσρσ,于是 ⎥⎥⎦⎤⎢⎢⎣⎡-+++---=ρρρπϕ1)1(1)1(412212221141),(y y ey y2)1(6)1(2221321+---=y y eπ.参考:精彩文档,⎥⎥⎦⎤⎢⎢⎣⎡-+-------=2222212121212)())((2)()1(21221121),(σμσσμμρσμρρσπσϕy y x x ey x .。
第四章 数字特征与特征函数1、设μ是事件A 在n 次独立试验中的出现次数,在每次试验中p A P =)(,再设随机变量η视μ取偶数或奇数而取数值0及1,试求ηE 及ηD 。
2、袋中有k 号的球k 只,n k,,2,1 =,从中摸出一球,求所得号码的数学期望。
3、随机变量μ取非负整数值0≥n 的概率为!/n AB p n n =,已知a E =μ,试决定A 与B 。
4、袋中有n 张卡片,记号码1,2,…,n,从中有放回地抽出k 张卡片来,求所得号码之和μ的数学期望及方差。
5、试证:若取非负整数值的随机变量ξ的数学期望存在,则∑∞=≥=1}{k k P E ξξ。
6、若随机变量ξ服从拉普拉斯分布,其密度函数为,,21)(||∞<<∞-=--x e x p x λμλ0>λ。
试求ξE ,ξD 。
7、若21,ξξ相互独立,均服从),(2σa N ,试证πσξξ+=a E ),max(21。
8、甲袋中有a 只白球b 只黑球,乙袋中装有α只白球β只黑球,现从甲袋中摸出()c c a b ≤+只球放入乙袋中,求从乙袋中再摸一球而为白球的概率。
9、现有n 个袋子,各装有a 只白球b 只黑球,先从第一个袋子中摸出一球,记下颜色后就把它放入第二个袋子中,再从第二个袋子中摸出一球,记下颜色后就把它放入第三个袋子中,照这样办法依次摸下去,最后从第n 个袋子中摸出一球并记下颜色,若在这n 次摸球中所摸得的白球总数为n S ,求n S 。
10、在物理实验中,为测量某物体的重量,通常要重复测量多次,最后再把测量记录的平均值作为该体质重量,试说明这样做的道理。
11、若ξ的密度函数是偶函数,且2E ξ<∞,试证ξ与ξ不相关,但它们不相互独立。
12、若,ξη的密度函数为22221,1(,)0,1x y p x y x y π⎧+≤⎪=⎨⎪+>⎩,试证:ξ与η不相关,但它们不独立。
13、若ξ与η都是只能取两个值的随机变量,试证如果它们不相关,则独立。
习题四1.设随机变量X 的分布律为求E (X ),E (X ),E (2X +3). 【解】(1) 11111()(1)012;82842E X =-⨯+⨯+⨯+⨯= (2) 2222211115()(1)012;82844E X =-⨯+⨯+⨯+⨯=(3) 1(23)2()32342E X E X +=+=⨯+=2.已知100个产品中有10个次品,求任意取出的5个产品中的次品数的数学期望、方差.故 ()0.58300.34010.07020.0073E X =⨯+⨯+⨯+⨯+⨯+⨯0.501,= 52()[()]iii D X x E X P ==-∑222(00.501)0.583(10.501)0.340(50.501)00.432.=-⨯+-⨯++-⨯=3.设随机变量且已知E (X )=0.1,E (X )=0.9,求P 1,P 2,P 3. 【解】因1231P P P ++=……①,又12331()(1)010.1E X P P P P P =-++=-=……②,222212313()(1)010.9E X P P P P P =-++=+=……由①②③联立解得1230.4,0.1,0.5.P P P ===4.袋中有N 只球,其中的白球数X 为一随机变量,已知E (X )=n ,问从袋中任取1球为白球的概率是多少?【解】记A ={从袋中任取1球为白球},则(){|}{}Nk P A P A X k P X k ===∑全概率公式1{}{}1().NNk k k P X k kP X k N Nn E X N N========∑∑5.设随机变量X 的概率密度为f (x )=⎪⎩⎪⎨⎧≤≤-<≤.,0,21,2,10,其他x x x x求E (X ),D (X ). 【解】12201()()d d (2)d E X xf x x x x x x x +∞-∞==+-⎰⎰⎰21332011 1.33x x x ⎡⎤⎡⎤=+-=⎢⎥⎢⎥⎣⎦⎣⎦122232017()()d d (2)d 6E X x f x x x x x x x +∞-∞==+-=⎰⎰⎰ 故 221()()[()].6D XE X E X =-=6.设随机变量X ,Y ,Z 相互独立,且E (X )=5,E (Y )=11,E (Z )=8,求下列随机变量的数学期望.(1) U =2X +3Y +1; (2) V =YZ -4X .【解】(1) [](231)2()3()1E U E X Y E X E Y =++=++ 25311144.=⨯+⨯+=(2) [][4][]4()E V E YZ X E YZ E X =-=- ,()()4()Y Z E Y E Z E X -因独立1184568.=⨯-⨯= 7.设随机变量X ,Y 相互独立,且E (X )=E (Y )=3,D (X )=12,D (Y )=16,求E (3X -2Y ),D (2X -3Y ). 【解】(1) (32)3()2()3323 3.E X Y E X E Y -=-=⨯-⨯=(2) 22(23)2()(3)412916192.D X Y D X DY -=+-=⨯+⨯= 8.设随机变量(X ,Y )的概率密度为f (x ,y )=⎩⎨⎧<<<<.,0,0,10,其他x y x k试确定常数k ,并求E (XY ). 【解】因1001(,)d d d d 1,2xf x y x y x k y k +∞+∞-∞-∞===⎰⎰⎰⎰故k =210()(,)d d d 2d 0.25xE XY xyf x y x y x x y y +∞+∞-∞-∞===⎰⎰⎰⎰.9.设X ,Y 是相互独立的随机变量,其概率密度分别为f X (x )=⎩⎨⎧≤≤;,0,10,2其他x x f Y (y )=(5)e ,5,0,.y y --⎧>⎨⎩其他求E (XY ).【解】方法一:先求X 与Y 的均值 12()2d ,3E X x x x==⎰5(5)5()e d5e d e d 51 6.z y y zzE Y y y z zz +∞+∞+∞=-----=+=+=⎰⎰⎰令 由X 与Y 的独立性,得2()()()6 4.3E XY E X E Y ==⨯=方法二:利用随机变量函数的均值公式.因X 与Y 独立,故联合密度为(5)2e ,01,5,(,)()()0,,y X Y x x y f x y f x f y --⎧≤≤>==⎨⎩其他于是11(5)2(5)552()2ed d 2de d 6 4.3y y E XY xy x x y x xy y +∞+∞----===⨯=⎰⎰⎰⎰10.设随机变量X ,Y 的概率密度分别为f X (x )=⎩⎨⎧≤>-;0,0,0,22x x x e f Y (y )=⎩⎨⎧≤>-.0,0,0,44y y y e 求(1) E (X +Y );(2) E (2X -3Y 2). 【解】22-200()()d 2ed [e]e d xx x X X xf x x x x x x +∞+∞+∞--+∞-∞==-⎰⎰⎰201e d .2x x +∞-==⎰401()()d 4e d y .4yY E Y y f y yy +∞+∞--∞==⎰⎰22242021()()d 4e d .48y Y E Y y f y y y y +∞+∞--∞====⎰⎰从而(1)113()()().244E X Y E X E Y +=+=+=(2)22115(23)2()3()23288E X Y E X E Y -=-=⨯-⨯=11.设随机变量X 的概率密度为f (x )=⎪⎩⎪⎨⎧<≥-.0,0,0,22x x cx xke求(1) 系数c ;(2) E (X );(3) D (X ). 【解】(1) 由222()d e d 12k x c f x x cx x k+∞+∞--∞===⎰⎰得22c k =. (2) 2220()()d()2e d k x E X xf x x x k x x +∞+∞--∞==⎰⎰222202e d 2k x kx x k+∞-==⎰(3) 222222201()()d()2e .kxE X x f x x x k x k+∞+∞--∞==⎰⎰故2222214π()()[()].24D X E X E X k k k⎛-=-=-= ⎝⎭ 12.袋中有12个零件,其中9个合格品,3个废品.安装机器时,从袋中一个一个地取出(取出后不放回),设在取出合格品之前已取出的废品数为随机变量X ,求E (X )和D (X ). 【解】设随机变量X 表示在取得合格品以前已取出的废品数,则X 的可能取值为0,1,2,3.为求其分布律,下面求取这些可能值的概率,易知9{0}0.750,12P X === 39{1}0.204,1211P X ==⨯=329{2}0.041,121110P X ==⨯⨯= 3219{3}0.005.1211109P X ==⨯⨯⨯=于是,得到X 的概率分布表如下:由此可得()00.75010.20420.04130.0050.301.E X =⨯+⨯+⨯+⨯=22222222()075010.20420.04130.0050.413()()[()]0.413(0.301)0.322.E X D X E X E X =⨯+⨯+⨯+⨯==-=-=13.一工厂生产某种设备的寿命X (以年计)服从指数分布,概率密度为f (x )=⎪⎩⎪⎨⎧≤>-.0,0,0,414x x xe为确保消费者的利益,工厂规定出售的设备若在一年内损坏可以调换.若售出一台设备,工厂获利100元,而调换一台则损失200元,试求工厂出售一台设备赢利的数学期望. 【解】厂方出售一台设备净盈利Y 只有两个值:100元和 -200元 /41/411{100}{1}e d e4x P Y P X x +∞--==≥==⎰1/4{200}{1}1e .P Y P X -=-=<=-故1/41/41/4()100e(200)(1e )300e 20033.64E Y ---=⨯+-⨯-=-= (元).14.设X 1,X 2,…,X n 是相互独立的随机变量,且有E (X i )=μ,D (X i )=σ2,i =1,2,…,n ,记∑==n i i S X n X 12,1,S 2=∑=--n i i X X n 12)(11. (1) 验证)(X E =μ,)(X D =n2σ;(2) 验证S 2=)(11122∑=--ni i X n X n ; (3) 验证E (S 2)=σ2.【证】(1) 1111111()()().n nn i i i i i i E X E X E X E X nu u n n n n ===⎛⎫===== ⎪⎝⎭∑∑∑22111111()()n nni i i ii i i D X D X D X X DXn nn ===⎛⎫== ⎪⎝⎭∑∑∑之间相互独立2221.n n nσσ==(2) 因222221111()(2)2nnnniii ii i i i i XX X X X X X nX X X ====-=+-=+-∑∑∑∑2222112nniii i XnX X nX X nX ===+-=-∑∑故22211()1ni i S X nX n ==--∑.(3) 因2(),()i i E X u D X σ==,故2222()()().i i i E X D X EX u σ=+=+同理因2(),()E X u D X nσ==,故222()E X u nσ=+.从而222221111()()[()()]11n ni i i i E s E X nX E X nE X n n ==⎡⎤=-=-⎢⎥--⎣⎦∑∑221222221[()()]11().1ni i E X nE X n n u n u n n σσσ==--⎡⎤⎛⎫=+-+=⎢⎥⎪-⎝⎭⎣⎦∑15.对随机变量X 和Y ,已知D (X )=2,D (Y )=3,Cov(X ,Y )= -1,计算:Cov (3X -2Y +1,X +4Y -3) 【解】Cov(321,43)3()10Cov(,)8()X Y X Y D X X Y D Y -++-=+- 3210(1)8328=⨯+⨯--⨯=- (因常数与任一随机变量独立,故Cov(X ,3)=Cov(Y ,3)=0,其余类似). 16.设二维随机变量(X ,Y )的概率密度为f (x ,y )=221,1,π0,.x y ⎧+≤⎪⎨⎪⎩其他试验证X 和Y 是不相关的,但X 和Y 不是相互独立的. 【解】设22{(,)|1}D x y x y =+≤.2211()(,)d d d d πx y E X xf x y x y x x y +∞+∞-∞-∞+≤==⎰⎰⎰⎰ 2π1001=cos d d 0.πr r r θθ=⎰⎰同理E (Y )=0.而 C o v (,)[()][()](,XY x E x y E Y f x y x y+∞+∞-∞-∞=--⎰⎰222π1200111d d sin cos d d 0ππx y xy x y r r r θθθ+≤===⎰⎰⎰⎰, 由此得0XY ρ=,故X 与Y 不相关.下面讨论独立性,当|x |≤1时,1()X f x y 当|y |≤1时,1()Y f y x 显然()()(,).X Y f x f y f x y ≠故X 和Y 不是相互独立的.17.验证X 和Y 是不相关的,但X 和Y 不是相互独立的.【解】联合分布表中含有零元素,X 与Y 显然不独立,由联合分布律易求得X ,Y 及XY 的分布律,其分布律如下表由期望定义易得E (X )=E (Y )=E (XY )=0. 从而E (XY )=E (X )·E (Y ),再由相关系数性质知ρXY =0, 即X 与Y 的相关系数为0,从而X 和Y 是不相关的. 又331{1}{1}{1,1}888P X P Y P X Y =-=-=⨯≠==-=- 从而X 与Y 不是相互独立的.18.设二维随机变量(X ,Y )在以(0,0),(0,1),(1,0)为顶点的三角形区域上服从均匀分布,求Cov (X ,Y ),ρXY . 【解】如图,S D =12,故(X ,Y )的概率密度为题18图2,(,),(,)0,x y D f x y ∈⎧=⎨⎩其他. ()(,)d d DE X xf x y x y =⎰⎰11001d 2d 3xx x y -==⎰⎰22()(,)d d DE X x f x y x y =⎰⎰11201d 2d 6xx x y -==⎰⎰从而222111()()[()].6318D XE X E X ⎛⎫=-=-= ⎪⎝⎭同理11(),().318E Y D Y == 而 1101()(,)d d 2d d d 2d .12xDDE XY xyf x y x y xy x y x xy y -====⎰⎰⎰⎰⎰⎰所以1111Cov(,)()()()123336X Y E XY E X E Y =-=-⨯=-. 从而112)()XY D Y ρ-===-19.设(X ,Y )的概率密度为f (x ,y )=1ππsin(),0,0,2220.x y x y ,⎧+≤≤≤≤⎪⎨⎪⎩其他求协方差Cov (X ,Y )和相关系数ρXY . 【解】π/2π/21π()(,)d d d sin()d .24E X xf x y x y x xx y y +∞+∞-∞-∞==+=⎰⎰⎰⎰ππ2222201ππ()d sin()d 2.282E X x x x y y =+=+-⎰⎰从而222ππ()()[()] 2.162D XE X E X =-=+-同理 2πππ(),() 2.4162E Y D Y ==+- 又 π/2π/2π()d sin()d d 1,2E XY x xy x y x y =+=-⎰⎰故 2ππππ4C o v (,)()()()1.2444X Y E X Y E X E Y -⎛⎫⎛⎫=-=--⨯=- ⎪ ⎪⎝⎭⎝⎭222222π4(π4)π8π164.πππ8π32π8π32)()2162XY D Y ρ-⎛⎫- ⎪--+⎝⎭===-=-+-+-+-20.已知二维随机变量(X ,Y )的协方差矩阵为⎥⎦⎤⎢⎣⎡4111,试求Z 1=X -2Y 和Z 2=2X -Y 的相关系数.【解】由已知知:D (X )=1,D (Y )=4,Cov(X ,Y )=1.从而12()(2)()4()4Cov(,)1444113,()(2)4()()4Cov(,)414414,D Z D X Y D X D Y X Y D Z D X Y D X D Y X Y =-=+-=+⨯-⨯==-=+-=⨯+-⨯=12Cov(,)Cov(2,2)Z Z X Y X Y =--2Cov(,)4Cov(,)Cov(,)2Cov(,)2()5Cov(,)2()215124 5.X X Y X X Y Y Y D X X YD Y =--+=-+=⨯-⨯+⨯=故122)()Z Z D Z ρ===21.对于两个随机变量V ,W ,若E (V 2),E (W 2)存在,证明:[E (VW )]2≤E (V 2)E (W 2).这一不等式称为柯西许瓦兹(Couchy -Schwarz )不等式. 【证】令2(){[]},.g t E V tW t R =+∈显然22220()[()][2]g t E V tW E V tVW t W ≤=+=++222[]2[][],.E V t E VW t E W t R =++∀∈可见此关于t 的二次式非负,故其判别式Δ≤0, 即2220[2()]4()()E VW E W E V ≥∆=- 2224{[()]()()}.E VW E V E W =-故222[()]()()}.E VW E V E W ≤22.假设一设备开机后无故障工作的时间X 服从参数λ=1/5的指数分布.设备定时开机,出现故障时自动关机,而在无故障的情况下工作2小时便关机.试求该设备每次开机无故障工作的时间Y 的分布函数F (y ).【解】设Y 表示每次开机后无故障的工作时间,由题设知设备首次发生故障的等待时间X ~E (λ),E (X )=1λ=5. 依题意Y =min(X ,2).对于y <0,f (y )=P {Y ≤y }=0. 对于y ≥2,F (y )=P (X ≤y )=1.对于0≤y <2,当x ≥0时,在(0,x )内无故障的概率分布为 P {X ≤x }=1 -e -λx ,所以F (y )=P {Y ≤y }=P {min(X ,2)≤y }=P {X ≤y }=1 -e -y/5.23.已知甲、乙两箱中装有同种产品,其中甲箱中装有3件合格品和3件次品,乙箱中仅装有3件合格品.从甲箱中任取3件产品放乙箱后,求:(1)乙箱中次品件数Z 的数学期望;(2)从乙箱中任取一件产品是次品的概率. 【解】(1) Z 的可能取值为0,1,2,3,Z 的概率分布为33336C C {}C k kP Z k -==, 0,1,2,3.k =因此,()0123.202020202E Z =⨯+⨯+⨯+⨯= (2) 设A 表示事件“从乙箱中任取出一件产品是次品”,根据全概率公式有30(){}{|}k P A P Z k P A Z k ====∑191921310.202062062064=⨯+⨯+⨯+⨯= 24.假设由自动线加工的某种零件的内径X (毫米)服从正态分布N (μ,1),内径小于10或大于12为不合格品,其余为合格品.销售每件合格品获利,销售每件不合格品亏损,已知销售利润T (单位:元)与销售零件的内径X 有如下关系T =⎪⎩⎪⎨⎧>-≤≤<-.12,5,1210,20,10,1X X X 若若若 问:平均直径μ取何值时,销售一个零件的平均利润最大?【解】(){10}20{1012}5{12}E T P X P X P X =-<+≤≤->{10}20{1012}5{12(10)20[(12)(10)]5[1(12)]25(12)21(10) 5.P X u u P u X u u P X u uu u u u u u =--<-+-≤-≤--->-=-Φ-+Φ--Φ---Φ-=Φ--Φ--故2/2d ()25(12)(1)21(10)(1)0(()),d x E T u u x u ϕϕϕ-=-⨯---⨯-= 令这里 得 22(12)/2(10)/225e 21eu u ----=两边取对数有2211ln 25(12)ln 21(10).22u u --=--解得 125111ln 11ln1.1910.91282212u =-=-≈(毫米由此可得,当u =10.9毫米时,平均利润最大.25.设随机变量X 的概率密度为f (x )=⎪⎩⎪⎨⎧≤≤.,0,0,2cos 21其他πx x 对X 独立地重复观察4次,用Y 表示观察值大于π/3的次数,求Y 2的数学期望.(2002研考)【解】令 π1,,3(1,2,3,4)π0,3i X Y i ⎧>⎪⎪==⎨⎪≤⎪⎩X .则41~(4,)i i Y Y B p ==∑.因为ππ{}1{}33p P X P X =>=-≤及π/30π11{}cos d 3222x P X x ≤==⎰,所以111(),(),()42,242i i E Y D Y E Y ===⨯= 2211()41()()22D YE Y EY =⨯⨯==-,从而222()()[()]12 5.E Y D Y E Y =+=+=26.两台同样的自动记录仪,每台无故障工作的时间T i (i =1,2)服从参数为5的指数分布,首先开动其中一台,当其发生故障时停用而另一台自动开启.试求两台记录仪无故障工作的总时间T =T 1+T 2的概率密度f T (t ),数学期望E (T )及方差D (T ). 【解】由题意知:55e ,0,()0,0t i t f t t -⎧≥=⎨<⎩. 因T 1,T 2独立,所以f T (t )=f 1(t )*f 2(t ).当t <0时,f T (t )=0;当t ≥0时,利用卷积公式得55()5120()()()d 5e 5e d 25e tx t x t T f t f x f t x x x t +∞-----∞=-==⎰⎰故得525e ,0,()0,0.t T t t f t t -⎧≥=⎨<⎩由于T i ~E (5),故知E (T i )=15,D (T i )=125i =1,2)因此,有E (T )=E (T 1+T 2)=25.又因T 1,T 2独立,所以D (T )=D (T 1+T 2)=225. 27.设两个随机变量X ,Y 相互独立,且都服从均值为0,方差为1/2的正态分布,求随机变量|X -Y |的方差.【解】设Z =X -Y ,由于22~0,,~0,,X N Y N ⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭且X 和Y 相互独立,故Z ~N (0,1).因22()()(||)[(||)]D X Y D Z E Z E Z -==-22()[()],E Z E Z =-而22/2()()1,(||)||dz E Z D Z E Z z z +∞--∞===⎰2/2e dzz z+∞-==所以2(||)1πD X Y-=-.28.某流水生产线上每个产品不合格的概率为p(0<p<1),各产品合格与否相互独立,当出现一个不合格产品时,即停机检修.设开机后第一次停机时已生产了的产品个数为X,求E (X)和D(X).【解】记q=1 -p,X的概率分布为P{X=i}=q i -1p,i=1,2,…,故12111()().1(1)i ii iq pE X iq p p q pq q p∞∞-=='⎛⎫'=====⎪--⎝⎭∑∑又221211121()()i i ii i iE X i q p i i q p iq p∞∞∞---=====-+∑∑∑2232211()12112.(1)iiqpq q pqp q ppq q pq p p p∞=''⎛⎫''=+=+⎪-⎝⎭+-=+==-∑所以22222211()()[()].p pD XE X E Xp p p--=-=-=题29图29.设随机变量X和Y的联合分布在点(0,1),(1,0)及(1,1)为顶点的三角形区域上服从均匀分布.(如图),试求随机变量U=X+Y的方差.【解】D(U)=D(X+Y)=D(X)+D(Y)+2Cov(X,Y)=D(X)+D(Y)+2[E(XY) -E(X)·E(Y)].由条件知X和Y的联合密度为2,(,),(,)0,0.x y Gf x yt∈⎧=⎨<⎩{(,)|01,01,G x y x y x y=≤≤≤≤+≥从而11()(,)d2d2.X xf x f x y y y x+∞-∞-===⎰⎰因此11122300031()()d2d,()2d,22XE X xf x x x x E X x x=====⎰⎰⎰22141()()[()].2918D XE X E X =-=-= 同理可得 31(),().218E Y D Y == 1115()2d d 2d d ,12xGE XY xy x y x x y y -===⎰⎰⎰⎰541Cov(,)()()(),12936X Y E XY E X E Y =-=-=- 于是 1121()().18183618D U D X Y =+=+-=30.设随机变量U 在区间[ -2,2]上服从均匀分布,随机变量X =⎩⎨⎧->-≤-,U ,U 1,11,1若若 Y =⎩⎨⎧>≤-.1,11,1U ,U 若若试求(1)X 和Y 的联合概率分布;(2)D (X +Y ).【解】(1) 为求X 和Y 的联合概率分布,就要计算(X ,Y )的4个可能取值( -1, -1),( -1,1),(1, -1)及(1,1)的概率.P {x = -1,Y = -1}=P {U ≤ -1,U ≤1}112d d 1{1}444x x P U ---∞-=≤-===⎰⎰P {X = -1,Y =1}=P {U ≤ -1,U >1}=P {∅}=0,P {X =1,Y = -1}=P {U > -1,U ≤1}11d 1{11}44x P U -=-<≤==⎰21d 1{1,1}{1,1}{1}44x P X Y P U U P U ===>->=>=⎰. 故得X 与Y 的联合概率分布为(1,1)(1,1)(1,1)(1,1)(,)~1110424X Y ----⎡⎤⎢⎥⎢⎥⎣⎦. (2) 因22()[()][()]D X Y E X Y E X Y +=+-+,而X +Y 及(X +Y )2的概率分布相应为202~111424X Y -⎡⎤⎢⎥+⎢⎥⎣⎦, 24()~1122X Y ⎡⎤⎢⎥+⎢⎥⎣⎦. 从而11()(2)20,44E X Y +=-⨯+⨯= 211[()]042,22E X Y +=⨯+⨯=所以22()[()][()] 2.D X Y E X Y E X Y +=+-+=31.设随机变量X 的概率密度为f (x )=x-e 21,( -∞<x <+∞) (1) 求E (X )及D (X );(2) 求Cov(X ,|X |),并问X 与|X |是否不相关? (3) 问X 与|X |是否相互独立,为什么?【解】(1)||1()e d 0.2x E X xx +∞--∞==⎰ 2||201()(0)e d 0e d 2.2x x D X x x x x +∞+∞---∞=-==⎰⎰(2) Cov(,|)(||)()(||)(||)X X E X X E X E X E X X =-= ||1||e d 0,2x x x x +∞--∞==⎰所以X 与|X |互不相关.(3) 为判断|X |与X 的独立性,需依定义构造适当事件后再作出判断,为此,对定义域-∞<x <+∞中的子区间(0,+∞)上给出任意点x 0,则有0000{}{||}{}.x X x X x X x -<<=<⊂<所以000{||}{} 1.P X x P X x <<<<< 故由00000{,||}{||}{||}{}P X x X x P X x P X x P X x <<=<><<得出X 与|X |不相互独立.32.已知随机变量X 和Y 分别服从正态分布N (1,32)和N (0,42),且X 与Y 的相关系数ρXY = -1/2,设Z =23YX +. (1) 求Z 的数学期望E (Z )和方差D (Z ); (2) 求X 与Z 的相关系数ρXZ ;(3) 问X 与Z 是否相互独立,为什么? 【解】(1) 1().323X Y E Z E ⎛⎫=+=⎪⎝⎭ ()2Cov ,3232XY X Y D Z D D ⎛⎫⎛⎫⎛⎫=++⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭11119162Cov(,),9432X Y =⨯+⨯+⨯⨯ 而1Cov(,))()3462XY X Y D Y ρ⎛⎫==-⨯⨯=- ⎪⎝⎭所以 1()146 3.3D Z =+-⨯=(2) 因()()11Cov(,)Cov ,Cov ,Cov ,3232X Y X Z X X X X Y ⎛⎫=+=+ ⎪⎝⎭ 119()(6)3=0,323D X =+⨯-=- 所以 0.)()XZ D Z ρ==(3) 由0XZ ρ==,得X 与Z 不相关.又因1~,3,~(1,9)3Z N X N ⎛⎫ ⎪⎝⎭,所以X 与Z 也相互独立.33.将一枚硬币重复掷n 次,以X 和Y 表示正面向上和反面向上的次数.试求X 和Y 的相关系数XY ρ.【解】由条件知X +Y =n ,则有D (X +Y )=D (n )=0.再由X ~B (n ,p ),Y ~B (n ,q ),且p =q =12, 从而有 ()()4nD X npq D Y === 所以 0()()()2)()XY D X Y D X D Y D Y ρ=+=++2,24XY n nρ=+ 故XY ρ= -1. 34.试求X 和Y 【解】由已知知E (X )=0.6,E (Y )=0.2,而XY 的概率分布为所以E (XY )= -Cov(X ,Y )=E (XY ) -E (X )·E (Y )=0.12 -从而 XYρ35.对于任意两事件A 和B ,0<P (A )<1,0<P (B )<1,则称ρ=())()()()()()(B P A P B P A P B P A P AB P ⋅-为事件A 和B 的相关系数.试证:(1) 事件A 和B 独立的充分必要条件是ρ=0; (2) |ρ|≤1.【证】(1)由ρ的定义知,ρ=0当且仅当P (AB ) -P (A )·P (B )=0.而这恰好是两事件A 、B 独立的定义,即ρ=0是A 和B 独立的充分必要条件. (2) 引入随机变量X 与Y 为1,,0,A X A ⎧⎪=⎨⎪⎩若发生若发生; 1,,0,B Y B ⎧⎪=⎨⎪⎩若发生若发生.由条件知,X 和Y 都服从0 -1分布,即01~1()()X P A P A ⎧⎨-⎩ 01~1()()Y P B P B ⎧⎨-⎩ 从而有E (X )=P (A ),E (Y )=P (B ),D (X )=P (A )·P (A ),D (Y )=P (B )·P (B ),Cov(X ,Y )=P (AB ) -P (A )·P (B )所以,事件A 和B 的相关系数就是随机变量X 和Y 的相关系数.于是由二元随机变量相关系数的基本性质可得|ρ|≤1. 36. 设随机变量X 的概率密度为f X (x )=⎪⎪⎪⎩⎪⎪⎪⎨⎧<≤<<-.,0,20,41,01,21其他x x令Y =X 2,F (x ,y )为二维随机变量(X ,Y )的分布函数,求:(1) Y 的概率密度f Y (y ); (2) Cov(X ,Y );(3)1(,4)2F -. 解: (1) Y 的分布函数为2(){}{}Y F y P Y y P X y =≤=≤.当y ≤0时, ()0Y F y =,()0Y f y =; 当0<y <1时,(){{0}{0Y F y P X P X P X =≤≤=≤<+≤≤=,()Y f y =;当1≤y <4时,1(){10}{02Y F y P X P X =-≤<+≤≤=()Y f y =;当y ≥4时,()1Y F y =,()0Y f y =. 故Y 的概率密度为1,()04,0,.Y y f y y <<=≤<⎪⎩其他 (2) 0210111()()d d d 244+X E X =xf x x x x x x ∞∞=+=⎰⎰⎰--,02222210115()()()d d d )246+X E Y =E X =x f x x x x x x ∞∞=+=⎰⎰⎰--,02233310117()()()d d d 248+X E XY =E Y =x f x x x x x x ∞∞=+=⎰⎰⎰--,故 Cov(X,Y ) =2()()()3E XY E X E Y =⋅-.(3) 2111(,4){,4}{,4}222F P X Y P X X -=≤-≤=≤-≤11{,22}{2}22P X X P X =≤--≤≤=-≤≤-11{1}24P X =-≤≤-=.。