2021年中考数学模拟试卷及答案3
- 格式:pdf
- 大小:576.16 KB
- 文档页数:16
2021年广东省中考数学仿真模拟试卷(三)一、选择题(共10小题).1.﹣9的绝对值是()A.B.﹣C.9D.﹣92.北京冬奥会和冬残奥会赛会志愿者招募工作进展顺利,截止2020年底,赛会志愿者申请人数已突破960000人.将960000用科学记数法表示为()A.96×104B.9.6×104C.9.6×105D.9.6×1063.在平面直角坐标系中,点(2,5)关于y轴对称点的坐标为()A.(﹣2,5)B.(2,﹣5)C.(﹣2,﹣5)D.(2,5)4.如图所示的几何体从上面看到的形状图是()A.B.C.D.5.代数式在实数范围内有意义的条件是()A.x>﹣B.x≠﹣C.x<﹣D.x≥﹣6.已知有下列四个算式:①(﹣5)+(+3)=﹣8;②﹣(﹣2)3=6;③(﹣3)÷(﹣)=9;④(﹣)﹣(﹣)=﹣.其中正确的有()A.1个B.2个C.3个D.4个7.若一个多边形内角和等于1260°,则该多边形边数是()A.8B.9C.10D.118.成都市某医院开展了主题为“抗击疫情,迎战硝烟”的护士技能比赛活动,决赛中5名护士的成绩(单位:分)分别为:88,93,90,93,92,则这组数据的中位数是()A.88B.90C.92D.939.已知m,n是方程x2+x﹣3=0的两个实数根,则m2﹣n+2019的值是()A.2019B.2020C.2021D.202310.如图是二次函数y=ax2+bx+c的图象,下列结论:①二次三项式ax2+bx+c的最大值为4;②9a+3b+c<0;③一元二次方程ax2+bx+c=2的两根之和为﹣1;④使y≤3成立的x的取值范围是x≥0.其中正确的个数有()A.1个B.2个C.3个D.4个二、填空题(本大题7小题,每小题4分,共28分)请将下列各题的正确答案填写在答题卡相应的位置上.11.将x2﹣4y2因式分解为.12.已知﹣7x6y4和3x2m y n是同类项,则m﹣n的值是.13.若某数的两个平方根是a+1与a﹣3,则这个数是.14.若实数m,n满足|m﹣2|+(n﹣2021)2=0,则m﹣1+n0=.15.用一个圆心角为180°,半径为6的扇形作一个圆锥的侧面,这个圆锥的底面圆的半径是.16.如图,把三角形纸片折叠,使点B、点C都与点A重合,折痕分别为DE,FG,得到∠AGE=30°,若AE=EG=2厘米,则△ABC的边BC的长为厘米.17.如图,有两张矩形纸片ABCD和EFGH,AB=EF=2cm,BC=FG=8cm.把纸片ABCD 交叉叠放在纸片EFGH上,使重叠部分为平行四边形,且点D与点G重合.当两张纸片交叉所成的角α最小时,tanα等于.三、解答题(一)(本大题3小题,每小题6分,共18分)18.先化简,再求值.(x﹣2y)2+2y(2x﹣3y).其中x=﹣1,y=.19.先化简,再求值:﹣,其中x=2﹣.20.如图,已知▱ABCD.(1)作出BC的垂直平分线,交AD于点E,交BC于点F,(用尺规作图,保留作图痕迹,不要求写作法);(2)在1的条件下,连接BE,CE,若∠D=65°,∠ABE=25°,求∠ECB的度数.三、解答题(二)(本大题3小题,每小题8分,共24分)21.2020年春季在新冠疫情的背景下,全国各大中小学纷纷开设空中课堂,学生要面对电脑等电子产品上网课,某校为了解本校学生对自己视力保护的重视程度,随机在校内调查了部分学生,调查结果分为“非常重视”“重视”“比较重视”“不重视”四类,并将结果绘制成如图所示的两幅不完整的统计图:根据图中信息,解答下列问题:(1)在扇形统计图中,“比较重视”所占的圆心角的度数为,并补全条形统计图;(2)该校共有学生3200人,请你估计该校对视力保护“非常重视”的学生人数;(3)对视力“非常重视”的4人有A1,A2两名男生,B1,B2两名女生,若从中随机抽取两人向全校作视力保护经验交流,请利用树状图或列表法,求出恰好抽到同性别学生的概率.22.在期末一节复习课上,八年(一)班的数学老师要求同学们列二元一次方程组解下列问题:在我市“精准扶贫”工作中,甲、乙两个工程队先后接力为扶贫村庄修建3000m的村路,甲队每天修建150m,乙队每天修建200m,共用18天完成.(1)粗心的张红同学,根据题意,列出的两个二元一次方程,等号后面忘记写数据,得到了一个不完整的二元一次方程组,张红列出的这个不完整的方程组中未知数p表示的是,未知数q表示的是;张红所列出正确的方程组应该是;(2)李芳同学的思路是想设甲工程队修建了xm村路,乙工程队修建了ym村路.下面请你按照李芳的思路,求甲、乙两个工程队分别修建了多少天?23.如图,点O是Rt△ABC的斜边AB上一点,⊙O与边AB交于点A,D,与AC交于点E,点F是的中点,边BC经过点F,连接AF.(1)求证:BC是⊙O的切线;(2)若⊙O的半径为5,AF=8,求AC的长.五、解答题(三)(本大题2小题,每小题10分,共20分)24.如图,已知直线OA与反比例函数y=(m≠0)的图象在第一象限交于点A.若OA =4,直线OA与x轴的夹角为60°.(1)求点A的坐标;(2)求反比例函数的解析式;(3)若点P是坐标轴上的一点,当△AOP是直角三角形时,直接写出点P的坐标.25.如图1,一次函数的图象与两坐标轴分别交于A,B两点,且B点坐标为(0,4),以点A为顶点的抛物线解析式为y=﹣(x+2)2.(1)求一次函数的解析式;(2)如图2,将抛物线的顶点沿线段AB平移,此时抛物线顶点记为C,与y轴交点记为D,当点C的横坐标为﹣1时,求抛物线的解析式及D点的坐标;(3)在(2)的条件下,线段AB上是否存在点P,使以点B,D,P为顶点的三角形与△AOB相似,若存在,求出所有满足条件的P点坐标;若不存在,请说明理由.参考答案一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑。
2021年河北省石家庄四十二中中考数学模拟试卷(3月份)(一)一、选择题(共16个小题,1-10小题,每小题3分,11-16小题,每小题3分,共42)1.平面内过直线l外一点O作直线l的垂线能作出()A.0条B.1条C.2条D.无数条2.比1小2的数是()A.2B.﹣2C.﹣1D.|﹣2|3.在数轴上标注了四段范围,如图所示,则表示﹣的点落在()A.段①B.段②C.段③D.段④4.如图,小明用6个相同的小正方体搭成的立体图形研究几何体的三视图的变化情况,若由图①变到图②,不改变的是()A.主视图B.主视图和左视图C.主视图和俯视图D.左视图和俯视图5.=()A.B.C.9m D.816.用直尺和圆规作Rt△ABC斜边AB上的高线CD,以下四个作图中,作法错误的是()A.B.C.D.7.我国北斗公司在2020年发布了一款代表国内卫星导航系统最高水平的芯片,该芯片的制造工艺达到了米,用科学记数法表示为()A.2×10﹣5B.2×10﹣6C.5×10﹣5D.5×10﹣68.下列等式变形正确的是()A.若2x=1,则x=2B.若4x﹣1=2﹣3x,则4x+3x=2﹣1C.若﹣2x=3,则D.若,则3(3x+1)﹣2(1﹣2x)=19.如图,平行四边形ABCD中,E、F分别在边BC、AD上,添加条件后不能使AE=CF 的是()A.BE=DFB.AE∥CFC.AF=AED.四边形AECF为平行四边形10.如图,在平面直角坐标系中,已知点O(0,0),A(6,0),B(0,8),以某点为位似中心,作出与△AOB的位似比为k的位似△CDE,则位似中心的坐标和k的值分别为()A.(0,0),2B.(2,2),C.(2,2),2D.(1,1),11.如图,是反比例函数y=和y=﹣在x轴上方的图象,x轴的平行线AB分别与这两个函数图象相交于点A,B,点P在x轴上.则点P从左到右的运动过程中,△APB的面积是()A.10B.4C.5D.从小变大再变小12.如图,从海岛B分别同时沿北偏西20°方向,北偏东40°驶出甲、乙两艘货船,若两艘货船的速度均为20海里/时,两小时后,两艘货船A、C之间的距离为()A.60海里B.40海里C.30海里D.20海里13.随着快递业务的增加,某快递公司为快递员更换了快捷的交通工具,公司投递快件的能力由每周3000件提高到4200件,平均每人每周比原来多投递40件,若快递公司的快递员人数不变,求原来平均每人每周投递快件多少件?设原来平均每人每周投递快件x件,根据题意可列方程为()A.=B.C.=﹣40D.=14.一组数据3,5,5,7,若添加一个数据5,则发生变化的统计量是()A.平均数B.中位数C.方差D.众数15.在半径为1的⊙O中,弦AB、AC的长分别为、,则∠BAC所对的弧长为()A.B.C.或D.或16.对于题目:在平面直角坐标系中,直线y=﹣x+4分别与x轴、y轴交于两点A、B,过点A且平行y轴的直线与过点B且平行x轴的直线相交于点C,若抛物线y=ax2﹣2ax﹣3a(a≠0)与线段BC有唯一公共点,求a的取值范围.甲的计算结果是a≥;乙的计算结果是a<﹣,则()A.甲的结果正确B.乙的结果正确C.甲与乙的结果合在一起正确D.甲与乙的结果合在一起也不正确二、填空题(本大题有3个小题,共12分。
2021年重庆市九龙坡区育才中学中考数学模拟试卷(三)一、选择题:(本大题共12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为小B、C、D的四个答案,其中只有一个是正确的,请将正确答案的代号写在括号内. 1. 在﹣3,﹣14,0,1四个数中,最大的数是()A. 1B. 0C. ﹣14D. ﹣3【答案】A【解析】【分析】根据实数大小比较判断即可;【详解】∵1>0>﹣14>﹣3,∴最大的数是1,故选:A.【点睛】本题主要考查了实数比大小,准确分析计算是解题的关键.2. 下列图形中,是轴对称图形,但不是中心对称图形的是()A. B. C. D.【答案】A【解析】【详解】轴对称图形一个图形沿某一直线对折后图形与自身重合的图形;中心对称图形是指一个图形沿某一点旋转180°后图形能与自身重合,只有A图符合题中条件.故应选A.3. 在下列调查中,适宜采用全面调查的是()A. 检测一批电灯泡的使用寿命B. 了解九(1)班学生校服的尺码情况C. 了解我省中学生的视力情况D. 调查重庆《生活麻辣烫》栏目的收视率【答案】B【解析】【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【详解】解:A.检测一批电灯泡的使用寿命,具有破坏性,适合抽样调查,不符合题意;B.了解九(1)班学生校服的尺码情况,必需采用全面调查,符合题意;C.了解我省中学生的视力情况,适合抽样调查,不符合题意;D.调查重庆《生活麻辣烫》栏目的收视率,适合抽样调查,不符合题意;故选:B.【点睛】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应该选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.4. 已知x﹣2y=4,xy=4,则代数式5xy﹣3x+6y的值为()A. 32B. 16C. 8D. ﹣8【答案】C【解析】【分析】变形代数式5xy﹣3x+6y为5xy﹣3(x﹣2y),直接代入求值即可.【详解】解:原式=5xy﹣3(x﹣2y).当x﹣2y=4,xy=4时,原式=5×4﹣3×4=20﹣12=8.故选:C.【点睛】本题考查了代数式求值问题,涉及到了整体代入的思想方法,要求学生能对代数式进行变形,得到所需要的式子,进行整体代入即可,考查了学生对代数式的变形与计算的能力以及整体思想的运用.5. 如图,BC∥ED,下列说法不正确是()A. 两个三角形是位似图形B. 点A是两个三角形的位似中心C. B与D、C与E是对应位似点D. AE:AD是相似比【答案】D【解析】【分析】根据位似变换的概念判断即可.【详解】解:A、∵BC∥ED,∴△ADE∽△ABC,∵△ADE与△ABC对应点的连线相交于一点,对应边平行或在同一条直线上,∴△ADE与△ABC是位似图形,本选项说法正确,不符合题意;B、点A是两个三角形的位似中心,本选项说法正确,不符合题意;C、B与D、C与E是对应位似点,本选项说法正确,不符合题意;D、AE:AD不是相似比,AE:AC是相似比,本选项说法错误,符合题意;故选:D.【点睛】本题考查的是位似变换的概念,两个图形不仅是相似图形,而且对应顶点的连线相交于一点,对应边互相平行,那么这样的两个图形叫做位似图形,这个点叫做位似中心.6. +)A. 4B. 5C. 6D. 7【答案】C【解析】的值即可判断.【详解】解:(==46=+, 466.259<<<26 2.53∴<<<24464 2.543∴+<+<+<+即646 6.57<+<<46∴+的值更接近整数6∴()148183+⋅的值更接近整数6. 故选:C .【点睛】本题考查了估算无理数的大小以及二次根式的混合运算,估算无理数大小要用逼近法. 7. 如图,O 是ABC ∆的外接圆,已知50ACB ︒∠=,则ABO ∠的大小为( )A. 30︒B. 40︒C. 45︒D. 50︒【答案】B【解析】 【分析】根据圆周角定理:在同圆或等圆中,同弧或等弧所对圆周角相等,都等于这条弧所对的圆心角的一半可得∠AOB=100°,再根据三角形内角和定理可得答案.【详解】∵∠ACB=50°,∴∠AOB=100°,∵AO=BO ,∴∠ABO=(180°-100°)÷2=40°,故选:B . 【点睛】此题主要考查了三角形的外接圆与外心,圆周角定理,关键是掌握在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.8. 下列说法正确的是()A. 若|a|=|b|,则a=bB. 内错角相等C. 2x-有意义的条件为x>2D. 点P(﹣3,2)关于y轴对称点的坐标为(3,2)【答案】D【解析】【分析】直接利用绝对值的性质以及二次根式的性质、关于y轴对称点的性质分别判断得出答案.【详解】解:A、若|a|=|b|,则a=±b,故此选项错误;B、两直线平行,内错角相等,故此选项说法错误;C、2x-有意义的条件为x≥2,故此选项错误;D、点P(﹣3,2)关于y轴对称点的坐标为(3,2),故此选项正确.故选:D.【点睛】本题考查了绝对值的性质以及二次根式的性质、关于y轴对称点的性质,正确掌握相关定义是解题的关键.9. 如图是某水库大坝的横截面示意图,已知AD∥BC,且AD、BC之间的距离为15米,背水坡CD的坡度i=1:0.6,为提高大坝的防洪能力,需对大坝进行加固,加固后大坝顶端AE比原来的顶端AD加宽了2米,背水坡EF的坡度i=3:4,则大坝底端增加的长度CF是()米.A. 7B. 11C. 13D. 20【答案】C【解析】【分析】过D作DG⊥BC于G,EH⊥BC于H,解直角三角形即可得到结论.【详解】解:过D作DG⊥BC于G,EH⊥BC于H,∴GH=DE=2,∵DG=EH=15,背水坡CD的坡度i=1:0.6,背水坡EF的坡度i=3:4,∴CG=9,HF=20,∴CF=GH+HF﹣CG=13米,故选:C.【点睛】本题考查了解直角三角形的应用,解答本题的关键是理解坡度、坡比的含义,构造直角三角形,利用三角函数表示相关线段的长度,难度一般.10. 如果关于x的分式方程1222x mx x++=--有非负整数解,关于y的不等式组21235(1)(3)y yy y m+⎧+⎪⎨⎪-<-+⎩有且只有3个整数解,则所有符合条件的m的和是()A. ﹣3B. ﹣2C. 0D. 2【答案】A【解析】【分析】分式方程去分母转化为整式方程,由解为非负整数解,以及不等式组只有3个整数解,确定出符合条件m的值即可.【详解】解:去分母得:x﹣m﹣1=2x﹣4,解得:x=3﹣m,由解为非负整数解,得到3﹣m≥0,3﹣m≠2,即m≤3且m≠1,不等式组整理得:224ymy≥-⎧⎪⎨-<⎪⎩,由不等式组只有3个整数解,得到y=﹣2,﹣1,0,即0<24m-≤1,解得:﹣2≤m<2,则符合题意m=﹣2,﹣1,0,之和为﹣3,故选:A.【点睛】此题考查了分式方程的解以及一元一次不等式组的整数解,解题关键是熟练掌握运算法则. 11. 如图,在Rt△ABC中,∠ACB=90°,BC=6,点D为斜边AB上的一点,连接CD,将△BCD沿CD 翻折,使点B落在点E处,点F为直角边AC上一点,连接DF,将△ADF沿DF翻折,点A恰好与点E重合.若DC=5,则AF的长为()A. 5B. 74C.54D. 4.5【答案】B【解析】【分析】根据折叠的性质和勾股定理定理即可得到结论.【详解】解:∵将△BCD沿CD翻折,使点B落在点E处,∴BD=DE,BC=CE=6,∠B=∠CED,∵将△ADF沿DF翻折,点A恰好与点E重合,∴∠A=∠DEF,AD=DE,AF=EF,∴∠FED+∠CED=90°,∴AD=DB,∴CD=DA=DB=12 AB,∵DC=5,∴AB=10,∴AC22AB BC-22106-=8,∴CF=8﹣AF,∴EF2+CE2=CF2,∴AF2+62=(8﹣AF)2,∴AF=74,故选:B.【点睛】本题考查了翻折变换、直角三角形斜边中线的性质、勾股定理等知识,解题的关键是正确寻找直角三角形解决问题.12. 在平面直角坐标系中,平行四边形ABCD的顶点A在y轴上,点C坐标为(﹣4,0),E为BC上靠近点C的三等分点,点B、E均在反比例函数y=kx(k<0,x<0)的图象上,若tan∠OAD=12,则k的值为()A. ﹣2B. ﹣25C. ﹣6D. ﹣42【答案】C【解析】【分析】根据已知条件运用点B,E都在反比例函数图象上,再运用tan∠OAD=12即可求解.【详解】如图所示,过点B作BN⊥x轴,过点E作EM⊥x轴∴EM∥BN∴△ECM∽△BCN∵E 为BC 三等分点∴EC =13BC ∴13EC EM CM BC BN CN === 设B 点的坐标为:(-m ,n )∵C (-4,0)∴OC =4∴ON =m ,BN =n则CN =4-m∴EM =13BN =3n CM =13CN =4-3m OM =OC -CM =4-4-3m =83m + ∴E (-83m +,3n ) ∵tan ∠OAD =12 ∴tan ∠OAD =12=OF OA 则OA =2OF∴tan ∠AFO =2∵四边形ABCD 是平行四边形∴AD ∥BC∴∠ECM =∠AFO∴tan ∠ECM =2EM CM = 即3n ÷4-3m =2 n =8-2m∴B (-m ,8-2m )E (-83m +,823m -),两点都在k y x=上 ∴-m (8-2m )=-83m +×823m - 解得m =1∴B (-1,6)∴k =-1×6=-6故选:C .【点睛】本题考查了反比例函数上点的坐标特征平行四边形的性质及解直角三角形,本题的解题关键是确定B ,E 点的坐标,利用tan ∠OAD =12的关系即可得出答案. 二、填空题:(本大题共6个小题,铅小题4分,共24分)13.(π﹣3)0﹣|﹣3|=_____.【答案】2【解析】【分析】直接利用零指数幂的性质以及绝对值的性质、二次根式的性质分别化简得出答案.【详解】解:原式=4+1﹣3=2.故答案为:2.【点睛】本题考查了二次根式的化简、0指数幂的性质和绝对值的性质,解决本题的关键是牢记相关结论与性质,并能熟练运用.14. 清代诗人袁枚的一首诗《苔》中写到:“白日不到处,青春恰自来.苔花如米小,也学牡丹开”,若苔花的花粉直径约为0.0000084米,用科学记数法表示为______米.【答案】8.4×10-6 【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.0000084=8.4×10-6, 故答案为:8.4×10-6. 【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.15. 一个不透明的布袋内装有除颜色外,其余完全相同的2个红球,1个白球,1个黑球,搅匀后,从中随机摸出两个球,则摸到一个红球一个白球的概率为_____. 【答案】13【解析】【分析】先画树状图展示所有12种等可能的结果数,再找出摸到一个红球一个白球的结果数,然后根据概率公式求解.【详解】解:画树状图如图:共有12个等可能的结果,摸到一个红球一个白球的结果有4个,∴摸到一个红球一个白球的概率为412=13,故答案为:13.【点睛】本题考查了列表法或树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.16. 如图,在矩形ABCD中,AB=2AD=4,以点A为圆心,AB为半径的圆弧交CD于点E,交AD的延长线于点F,则图中阴影部分的面积为_____.(结果保留π)【答案】83π﹣3【解析】【分析】首先求出DE和AE,再利用特殊角的三角函数值求出∠DAE的度数,然后根据S阴影=S扇形AEF﹣S△ADE 即可求解.详解】解:∵AB=2AD=4,AE=AB,∴AD=2,AE=4.∴DE22224223AE AD--=,∴Rt△ADE中,cos∠DAE=2142 ADAE==,∴∠DAE=60°,则S△ADE=12AD•DE=12×2×33S扇形AEF=260483603ππ⨯=,则S阴影=S扇形AEF﹣S△ADE=8233π-.故答案为:8233π-.【点睛】本题综合考查了三角函数、矩形、勾股定理、扇形面积等内容,要求学生能利用相关概念和公式求出角以及线段的长,能利用面积公式求出图形的面积,因此,解决本题的关键是牢记公式,并做到熟练运用,本题运用了数形结合的思想方法.17. 小明和小亮分别从A、B两地同时相向而行,并以各自的速度匀速行驶,途中会经过奶茶店C,小明先到达奶茶店C,并在C地休息了一小时,然后按原速度前往B地,小亮从B地直达A地,结果还是小明先到达目的地,如图是小明和小亮两人之间的距离y(千米)与小亮出发时间x(时)的函数的图象,请问当小明到达B地时,小亮距离A地_____千米.【答案】90【解析】【分析】根据题意设小明的速度为akm/h,小亮的速度为bkm/h,求出a,b的值,再代入方程即可解答. 【详解】设小明的速度为akm/h,小亮的速度为bkm/h,23.5 2.5(3.52)(3.5 2.5)210bab a⎧=-⎪⎨⎪-+-=⎩,解得,12060ab=⎧⎨=⎩,当小明到达B地时,小亮距离A地的距离是:120×(3.5﹣1)﹣60×3.5=90(千米),故答案为90.【点睛】此题考查一次函数的应用,解题关键在于列出方程组.18. 假设某地下停车场有5个出入口,每天早晨6点开始对外停车且此时车位空置率为75%,在每个出入口的车辆数均是匀速出入的情况下,如果开放2个进口和3个出口,8小时车库恰好停满;如果开放3个进口和2个出口,2小时车库恰好停满.2020年元旦节期间,由于商场人数增多,早晨6点时的车位空置率变为60%,又因为车库改造,只能开放2个进口和2个出口,则从早晨6点开始经过__________小时车库恰好停满. 【答案】165【解析】【分析】设1个进口1小时开进x 辆车,1个出口1小时开出y 辆,车位总数为a ,然后根据题意可列方程组进行求解.【详解】解:设1个进口1小时开进x 辆车,1个出口1小时开出y 辆,车位总数为a ,由题意得: ()()8237523275x y a x y a ⎧-=⎪⎨-=⎪⎩%%, 解得:316332x a y a ⎧=⎪⎪⎨⎪=⎪⎩, 则3316602216325a a ⎛⎫÷⨯-⨯= ⎪⎝⎭%(小时); 故答案为165. 【点睛】本题主要考查二元一次方程组的应用,熟练掌握二元一次方程组的应用是解题的关键.三、解答题:(本大题8个小题,26题8分,19-25题每小题8分,共78分)19. 计算:(1)(2a ﹣b )2+(a +b )(a ﹣b );(2)(1﹣32x +)÷212x x -+. 【答案】(1)5a 2﹣4ab ;(2)11x + 【解析】【分析】(1)原式利用完全平方公式,以及平方差公式化简,去括号合并即可得到结果;(2)原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分即可得到结果.【详解】解:(1)原式=4a 2﹣4ab +b 2+a 2﹣b 2=5a 2﹣4ab ;(2)原式=()()232·2211x x x x x x ++⎛⎫- ⎪+++-⎝⎭ =()()12·211x x x x x -+++- =11x +. 【点睛】本题考查了平方差公式和完全平方公式、分式的混合运算以及化简,要求学生熟记相关公式并能灵活运用,考查了学生对相关概念的理解能力和对公式的运用能力.20. 如图,在四边ABCD 中,AB DC AB AD =∥,,对角AC BD 、交于O AC ,平BAD ∠.(1)求证:四边形ABCD 是菱形;(2)过点C 作CE AB ⊥交AB 的延长线于点E ,连接OE ,若254AB BD ==,,求OE 的长.【答案】(1)见解析;(2)4【解析】【分析】(1)先判断出∠CAB=∠DCA ,进而判断出∠DAC=∠DCA ,得出CD=AD=AB ,即可得出结论; (2)先判断出OE=OA=OC ,再求出OB=2,利用勾股定理求出OA ,即可得出结论.【详解】(1)证明:AB CD ∥ ,CAB ACD ∴∠=∠,AC 平分BAD ∠,CAB CAD ∴∠=∠ ,CAD ACD ∴∠=∠,AD CD ∴=又=AD AB ,AB CD ∴=,又AB CD ∥,∴四边形ABCD 是平行四边形,AB AD =,∴四边形ABCD 是菱形,(2)解:菱形ABCD ,AC BD ∴⊥ ,12OA OC AC == ,12OB OD BD ==, CE AB ⊥,90AEC ∴∠=︒,又O 为AC 中点,12OE AC OA ∴==, 在Rt AOB 中,90AOB ∠=︒,22OA AB OB ∴=-22(25)24OE OA ∴==-=. 【点睛】此题主要考查了菱形的判定和性质,平行四边形的判定和性质,角平分线的定义,勾股定理,判断出CD=AD=AB 是解本题的关键.21. 某防护服生产公司旗下有A 、B 两个生产车间,为了解A 、B 两个生产车间工人的日均生产数量,公司领导小组从A 、B 两个生产车间分别随机抽取了20名工人的日均生产数量x (单位:套),并对数据进行分析整理(数据分为五组:A .25≤x <35,B .35≤x <45,C .45≤x <55,D .55≤x <65,E .65≤x <75).得出了以下部分信息:A .B 两个生产车间工人日均生产数量的平均数、中位数、众数、极差如表:车间平均数(个) 中位数(个) 众数(个) 极差 A54 56 62 42 B a b 64 45“B 生产车间”工人日均生产数量在C 组中的数据是:52,45,54,48,54,其余所有数据的和为807. 根据以上信息,回答下列问题:(1)上述统计图表中,a = ,b = .扇形统计图B 组所对应扇形的圆心角度数为 °. (2)根据以上数据,你认为哪个生产车间情况更好?请说明理由(一条理由即可);(3)若A 生产车间共有200名工人,B 生产车间共有180个工人,请估计该公司生产防护服数量在“45≤x<65”范围的工人数量.【答案】(1)53,54,72;(2)“A车间”的生产情况较好,理由见解析;(3)估计生产防护服数量在“45≤x <65”范围的工人大约有199人【解析】【分析】(1)“B生产车间”工人日均生产数量在C组中的数据是:52,45,54,48,54,可求出“B生产车间”工人日均生产数量在C组的百分比,进而求出工人日均生产数量在B组的百分比,再根据平均数、中位数、众数的意义求解即可;(2)根据中位数、平均数、极差的比较得出答案;(3)根据两个车间的在“45≤x<65”范围所占的百分比,通过教师得出答案.【详解】解:(1)“B生产车间”工人日均生产数量在C组中的数据是:52,45,54,48,54,因此“C组”所占的百分比为5÷20=25%,“B组”所占的百分比为1﹣25%﹣10%﹣15%﹣30%=20%,所以“A组”的频数为:20×10%=2(人),“B组”的频数为:20×20%=4(人),“C组”的频数为:20×25%=5(人),“D组”的频数为:20×30%=6(人),“E组”的频数为:20×15%=3(人),因此“B车间”20名工人,日生产数量从小到大排列,处在中间位置的两个数的都是54,所以中位数是54,即b=54,“B车间”20名工人,日生产数量的平均数为:30×10%+40×20%+50×25%+60×30%+70×15%=53,即a=53,360°×20%=72°,故答案为:53,54,72;(2)“A车间”的生产情况较好,理由:“A车间”工人日均生产量的平均数,中位数均比“B车间”的高;(3)200×3720+180×(25%+30%)=199(人),答:A生产车间200人,B生产车间180人,估计生产防护服数量在“45≤x<65”范围的工人大约有199人.【点睛】本题考查了折线统计图、扇形统计图、平均数、中位数、众数以及极差,理解统计图中数量之间的关系是解题的关键.22. 如果自然数m使得作竖式加法m+(m+1)+(m+2)时对应的每一位都不产生进位现象,则称m为“三生三世数”,例如:12,321都是“三生三世数”,理由是12+13+14及321+322+323分别都不产生进位现象;50,123都不是“三生三世数“,理由是50+51+52及123+124+125分别产生了进位现象(1)分别判断42和3210是不是“三生三世数”,并说明理由;(2)求三位数中小于200且是3的倍数的“三生三世数”.【答案】(1)42不是“三生三世数”,3210是“三生三世数”,理由见解析;(2)102,111,120,132 【解析】【分析】(1)根据“三生三世数”的定义进行判断便可;(2)先根据“三生三世数”定义求出三位数中小于200的“三生三世数”,再求得其中是3的倍数的数便可.【详解】解:(1)∵42+43+44计算时会产生进位现象,∴42不是“三生三世数”,∵3210+3211+3212计算时不会产生进位现象,∴3210是“三生三世数”,(2)根据“三生三世数”的定义知,小于200的三位数中的“三生三世数”有:100,101,102,110,111,112,120,121,122,130,131,132,∵102,111,120,132能被3整除,∴三位数中小于200且是3的倍数的“三生三世数”有:102,111,120,132.【点睛】本题考查了有理数的加法、新定义,解题的关键是明确题意,利用题干中的新定义解答.23. 已知y=a|2x+4|+bx(a,b为常数).当x=1时,y=5;当x=﹣1时,y=3.(1)a=,b=;(2)在给出的平面直角坐标系中,请用你喜欢的方法画出这个函数图象;并写出函数的一条性质:;(3)已知函数y=25|22|x-的图象如图所示,结合你所画的函数图象,直接写出方程a|2x+4|+bx=25|22|x-的近似解(精确到0.1).【答案】(1)1;﹣1;(2)当x≥﹣2时,y随x的增大而增大;(3)x1=﹣2.5,x2=2.8【解析】【分析】依题意(1)把当x=1时,y=5;当x=﹣1时,y=3分别代入函数y=a|2x+4|+bx(a,b为常数),可求出a和b的值;(2)根据对自变量x的范围的讨论,对函数进行变形,进而画出对应的函数图象;(3)根据两个函数图象的交点位置,估算出交点的横坐标即可;【详解】解:(1)根据题意可得,245243a ba b⎧++=⎪⎨-+-=⎪⎩,解得11ab=⎧⎨=-⎩,故答案为:1;﹣1;(2)根据题意,当x≥﹣2时,2x+4≥0,y=2x+4﹣x=x+4;当x<-2时,2x+4<0,则y=﹣2x﹣4﹣x=﹣3x﹣4.∴4,(2)34,(2)x xyx x+≥-⎧=⎨--<-⎩;由函数解析式可画出对应的函数图象,根据函数图象可得出对应函数的性质.故答案为:当x≥﹣2时,y随x的增大而增大;(3)根据函数图象,交点的横坐标就是该方程的解,根据图象估算对应的解为:x1=﹣2.5,x2=2.8;【点睛】本题主要考查待定系数求解析式、数形结合等,关键在如何准确应用数形结合求解;24. 为抗击新型肺炎疫情,某服装厂及时引进了一条口罩生产线生产口罩,开工第一天生产10万件,第三天生产14.4万件,若每天增长的百分率相同.试回答下列问题:(1)求每天增长的百分率;(2)经调查发现,1条生产线最大产能是20万件/天,若每增加1条生产线,每条生产线的最大产能将减少2万件/天,现该厂要保证每天生产口罩60万件,在增加产能同时又要节省投入的条件下(生产线越多,投入越大),应该增加几条生产线?【答案】(1)20%;(2)增加4条生产线【解析】【分析】(1)设每天增长的百分率x,根据题意第一天生产10万件,第三天生产14.4万件,列出方程即可解答.(2)设应该增加y条生产线,根据题意1条生产线最大产能是20万件/天,若每增加1条生产线,每条生产线的最大产能将减少2万件/天,现该厂要保证每天生产口罩60万件,列出方程即可解答.【详解】(1)设每天增长的百分率x,可得:10(1+x)2=14.4,解得:x=0.2,答:每天增长20%.(2)设应该增加y条生产线,根据题意可得:(20-2y)+(20-2y)y=60,解得:y=4,故答案为:4.【点睛】此题考查一元二次方程的应用,解题关键在于根据题意列出方程.25. 如图,抛物线y =ax 2+bx +c (a ≠0)与x 轴交于点A 、B (点A 在点B 的左边),与y 轴交于点C ,点A 、C 的坐标分别为(﹣3,0)、(0,2),对称轴为直线x =﹣2.(1)求抛物线的解析式;(2)如图,点D 与点C 关于抛物线的对称轴对称,连接AC ,过点D 作DE ∥AC 交抛物线于点E ,交y 轴于点M .点F 是直线AC 下方抛物线上的一动点,连接DF 交AC 于点G ,连接EG ,求△EFG 的面积的最大值以及取得最大值时点F 的坐标;(3)在(2)的条件下,点P 为平面内一点,在抛物线上是否存在一点Q ,是以点P 、Q 、F 、C 为顶点的四边形为矩形,如果存在,直接写出点P 的坐标,如果不存在,说明理由.【答案】(1)228233y x x =++;(2)S △EFG 最大为154,F (-32,-12);(3)P (-325,6125)或(-1910,15750). 【解析】 【分析】(1)将A 、C 的坐标代入函数式,再结合对称轴公式利用待定系数法求解即可;(2)根据待定系数法求出直线AC 、直线DE 的表达式,再根据三角形面积之间的关系表示出△EFG 的面积,从而得到当△DEF 的面积最大时△EFG 的面积最大,求出△DEF 面积的最大值进行计算即可; (3)设Q (m ,228233m m ++),P (x P ,y P ),分三种情况:①以CF 为对角线,②以CQ 为对角线,③以CP 为对角线,分别计算可得问题的答案.【详解】解:(1)将A 、C 的坐标(-3,0)、(0,2)代入函数式且对称轴为x =-2, ∴930222a b c c b a ⎧⎪-+=⎪=⎨⎪⎪-=-⎩,解得:23832 abc⎧=⎪⎪⎪=⎨⎪=⎪⎪⎩,∴抛物线的解析式为:228233y x x=++;(2)由点A、C的坐标(-3,0)、(0,2)可知,直线AC为:223y x=+,∵DE∥AC,∴k DE=k AC,∴k DE=23,∵D与C关于x=-2对称,∴D(-4,2),∴直线DE为:21433y x=+,联立:22143328233y xy x x⎧=+⎪⎪⎨⎪=++⎪⎩,解得:1214xx=⎧⎨=-⎩,24x=-舍去,∴E的横坐标为1,代入可得,28162333y=++=,∴E(1,163),连接DC,作FK⊥x轴,交DE于K,∵DE∥AC,∴S△DEG=S△DEC,将x =0代入21433y x =+得:143y =, ∴M (0,143), ∴S △DEC =S △DCM +S △ECM =203, ∴S △DEG =203, ∵S △EFG =S △DEF -S △DEG =S △DEF -203, ∴当△DEF 的面积最大时,△EFG 的面积最大,设F 为(t ,228233t t ++),K (t ,21433t +), ∴S △DEF =S △DFK +S △EFK =12(x E -x D )(y K -y F )=252682333t t ⎛⎫--+ ⎪⎝⎭=252125()3312t -++, ∴当t =32-时,三角形DEF 面积最大,最大为12512,此时△EFG 面积的最大值为:12520151234-=, ∴当F (32-,12-)时,S △EFG 最大为154; (3)假设存在,∵C (0,2),F (32-,12-),且以P 、Q 、F 、C 为顶点的四边形为矩形, ∴设Q (m ,228233m m ++),P (x P ,y P ),则m ≠0,m 32≠-, ∴直线CF :12()52330()2CF k --==--,直线QC :22822283333QC m m k m m ++-==+, 直线QF :22812253233323QF m m k m m +++==++, ①矩形以CF 为对角线,则:C F P Q C F P Q x x x x y y y y QC QF +=+⎧⎪+=+⎨⎪⊥⎩,∴k QC •k QF =-1, ∴23212822233282513333P P x m y m m m m ⎧-=+⎪⎪⎪-=+++⎨⎪⎪⎛⎫⎛⎫+⨯+=-⎪⎪ ⎪⎝⎭⎝⎭⎩,∴4m 2+26m +49=0,∵22644491080∆=-⨯⨯=-<,∴无解,此时不存在;②以CQ 为对角线,则:C Q P F C Q P F x x x x y y y y CF QF +=+⎧⎪+=+⎨⎪⊥⎩,∴k CF •k QF =-1, ∴23228143325251333P p m x m m y m ⎧=-⎪⎪⎪++=-⎨⎪⎪⎛⎫⨯+=-⎪ ⎪⎝⎭⎩, ∴175m =-, ∴191015750P P x y ⎧=-⎪⎪⎨⎪=⎪⎩, ∴19157,1050P ⎛⎫- ⎪⎝⎭; ③以CP 为对角线,则:C P Q F C p Q F x x x x y y y y CF QC +=+⎧⎪+=+⎨⎪⊥⎩,∴k CF •k QC =-1, ∴232281223325281333P P x m y m m m ⎧=-⎪⎪⎪+=++-⎨⎪⎪⎛⎫⨯+=-⎪ ⎪⎝⎭⎩, ∴4910m =-,∴3256125PPxy⎧=-⎪⎪⎨⎪=⎪⎩,∴3261,525P⎛⎫- ⎪⎝⎭,综上,点P坐标为19157,1050⎛⎫- ⎪⎝⎭或3261,525⎛⎫- ⎪⎝⎭.【点睛】本题考查了二次函数的综合应用,矩形的判定等知识,熟练掌握函数图象上点的坐标特征和二次函数的性质,理解坐标与图形的性质,会解一元二次方程,会运用分类讨论的思想解决问题是解题的关键.26. 如图,在△ABC和△DEF中,AB=AC,DE=DF,∠BAC=∠EDF=120°,线段BC与EF相交于点O.(1)若点O恰好是线段BC与线段EF的中点.①如图1,当点D在线段BC上,A、F、O、E四点在同一条直线上时,已知BC=43,DE=3,求AD 的长;②如图2,连接AD,CF相交于点G,连接OG,BG,当BG⊥OG时,求证:BG=3 CG.(2)若点D与点A重合,CF∥AB,H、K分别为OC、AF的中点,连接HK,直接写出HKAE OF-的值.【答案】(1)①19AD=;②见解析;(2)31HKAE OF+=-【解析】【分析】(1)①根据中点的定义求出OB,利用三角函数求出AB、OA和OE,再利用勾股定理解答即可;②延长GO至H,使得OH=OG,连接HC,OD,AO,利用SAS证明△BOG≌△COH,接着证明△AOD∽△COF 进而进一步得到A、G、O、C四点共圆,得出∠OGC=∠OAC=60°,利用特殊角的三角函数值即可完成求证;(2)过F作FH⊥BC交BC延长线于点H,利用SAS证明△ABE≌△ACF,得到相等的角和边,接着证明△OBE∽△OHF,点A、O、C、F四点共圆等,利用三角函数等知识分别求出HK、AE、OF,进而直接代入求解即可.【详解】解:(1)①∵O 点是BC 、EF 的中点,∴OB =OC =12BC =OE =OF , ∵AB =AC ,∠BAC =120°,∴∠BAO =60°∴4sin 60OB AB ===︒,2tan 60OB OA ===︒, 同理,由∠EDF =120°,O 是EF中点,DE =∴3sin 602OE DE =︒⨯==, ∴OE =OF =32,OD =12DE∴AD2==; ②延长GO 至H ,使得OH =OG ,连接HC ,OD ,AO ,∵点O 是BC ,EF 的中点,∴OB =OC ,OE =OF ,∴OD ⊥EF ,AO ⊥BC ,在△BOG 和△COH 中,OB OC BOG COH OG OH =⎧⎪∠=∠⎨⎪=⎩,∴△BOG ≌△COH (SAS ),∴∠BGO =∠CHO ,BG =CH ,∵BG ⊥OG ,∴∠BGO =∠CHO =90°,∴∠EDF =∠BAC =120°,∴∠OFD =∠OCA =30°,∴OF,OC,∴OD OA OF OC=,∵∠AOD=∠COF,∴△AOD∽△COF,∴∠OAD=∠OCF,∴∠AGC=∠AOC=90°,∴A、G、O、C四点共圆,∴∠OGC=∠OAC=60°,在Rt△GHC中,∠GHC=90°,∠HGC=60°,∴3HCCG=,∴HC=3CG,∴BG=3CG.(2)过F作FH'⊥BC交BC延长线于H',∵∠BAC=∠EAF=120°,∴∠BAE=∠CAF,在△ABE和△ACF中,AB ACBAE CAFAE AF=⎧⎪∠=∠⎨⎪=⎩,∴△ABE≌△ACF(SAS),∴∠ABE=∠ACF,BE=CF,∵AB∥CF,∴∠BAC=∠ACF=120°,∵∠ABC =∠ACB =30°,∴∠CBE =∠ABE ﹣∠ABC =90°,∵∠FCH '=180°﹣∠ACF ﹣∠ACB =30°,∠FH 'C =90°,∴FH '=12CF , ∵∠CBE =∠CH 'F =90°,∴BE ∥FH ',∴△OBE ∽△OH 'F , ∴2BE OE FH OF='=, 设AE =AF =m ,如图,作AG '⊥EF ,∴EG '=2m ,AG '= 12m∴EF ,∵OE =2OF ,∴OE =23EF m ,OF ,∴OG '=OE -EG ',∴OG AG ''= ∴∠G AO '=30°,∴∠BAO =90°,∠OAF =∠OFA =30°,∴OA =OF =3m ,∠AOF =120°, ∴OE =2OA ,∴∠EAO =90°,∠AOE =60°,∵∠AOF =∠ACF =120°,∴点A 、O 、C 、F 四点共圆,设A 、O 、C 、F 四点都在⊙M 上,连接AM ,OM ,CM ,FM ,∴∠AMF=120°,∵∠AMO=2∠AFO=60°=12∠AMF,∴OM垂直平分AF,∵点K是AF的中点,∴点K OM上,∵MK=12AM=12OM,OH=CH,∴KH=12CM=12OM,∵OM=OA=AM=3m,∴KH=3m,∴331633mHKAE OFm m+==--.【点睛】本题综合考查了相似三角形的判定与性质、全等三角形的判定与性质、锐角三角函数、圆以及它的内接四边形等的相关知识,要求学生理解并掌握相关概念与性质,牢记公式等。
绝密★启用前2021届九年级第三次模拟考试【山东卷】数学(考试时间:120分钟试卷满分:150分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。
写在本试卷上无效。
4.考试结束后,将本试卷和答题卡一并交回。
5.考试范围:中考全部内容。
第Ⅰ卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.﹣2的绝对值是A.﹣2 B.2 C.±2D .-122.在国庆70周年的庆典活动中,使用了大量的电子显示屏,0.0009微间距显示屏就是其中之一.数字0.0009用科学记数法表示应为A.4910-⨯B.3910-⨯C.30.910-⨯D.40.910-⨯3.以下给出的几何体中,主视图是矩形,俯视图是圆的是A.B.C.D.4.改革开放以来,我国众多科技实体在各自行业取得了举世瞩目的成就,大疆科技、华为集团、太极股份和凤凰光学等就是其中的杰出代表.上述四个企业的标志是轴对称图形的是A.B.C.D.5.下列运算正确的是A.235x x x+=B.22(2)4x x-=-C.23522x x x⋅=D.()437x x=6.如图,DE∥BC,BE平分∠ABC,若∠1=70°,则∠CBE的度数为A.70°B.20°C.55°D .35°7.在学校的体育训练中,小杰投掷实心球的7次成绩如统计图所示,则这7次成绩的中位数和平均数分别是A.,B.,C.,D.,8.如图,点A,B,C,D在⊙O上,AC是⊙O的直径,∠BAC=40°,则∠D的度数是A.50°B.60°C.80°D.90°9.如图,两个转盘分别被分成等份和等份,分别标有数字、、和、、、,转动两个转盘各一次(假定每次都能确定指针所指的数字),两次指针所指的数字之和为或的概率是A.16B.14C.512D.71210.如图,某“拓展训练营”的一个自行车爬坡项目有两条不同路线,路线一:从C到B,路线二:从D到A,AB为垂直升降梯.其中BC的坡度为i=1:2,BC=12米,CD=8米,∠D=(其中A,B,C,D均在同一平面内),则垂直升降梯AB的高度约为(精确到米)(参考数据:tan36°≈,cos36°≈,sin36°≈)A.B.C.D.11.如图,在矩形ABCD中,AB=2,BC=3.若点E是边CD的中点,连接AE,过点B作BF⊥AE交AE 于点F,则BF的长为A .3102B .3105C.105D .35512.如图,抛物线y1=a(x+2)2﹣3与y2=12(x﹣3)2+1交于点A(1,3),过点A作x轴的平行线,分别交两条抛物线于点B,C.则以下结论:①无论x取何值,y2的值总是正数;②a=23;③当x=0时,y2﹣y1=6;④AB+AC=10;其中正确结论的个数是A.①②④B.①③④C.②③④D.①②③④第Ⅱ卷二、填空题(本大题共6小题,每小题4分,共24分)13.因式分解:22242a ab b-+=____________.14.计算:(﹣12)﹣2﹣2cos60°=____________.15.若分式13x-有意义,则的取值范围是_____________.16.如图,∠1,∠2,∠3是多边形的三个外角,边CD,AE的延长线交于点F,如果∠1+∠2+∠3=225°,那么∠DFE的度数是____________.17.如图,Rt ABC△中,90ACB∠=︒,AC BC=,在以的中点为坐标原点,所在直线为轴建立的平面直角坐标系中,将ABC绕点顺时针旋转,使点旋转至轴的正半轴上的点处,若2AO OB==,则图中阴影部分面积为________.18.如图,在平行四边形ABCD中,120C∠=︒,28AD AB==,点、分别是边、上的动点.连接、,点为的中点,点为的中点,连接.则的最大值与最小值的差为__________.三、解答题(本大题共9小题,共78分.解答应写出文字说明、证明过程或演算步骤)19.(本小题满分6分)解不等式组:3(2)41213x xxx--≤⎧⎪+⎨>-⎪⎩20.(本小题满分6分)化简式子(22244m mm m--++1)221mm m-÷+,并在﹣2,﹣1,0,1,2中选取一个合适的数作为m的值代入求值.21.(本小题满分6分)如图,AC DB=,AB DC=,求证:EB EC=.22.(本小题满分8分)如图,DE是△ABC的中位线,延长DE至R,使EF=DE,连接BF .(1)求证:四边形ABFD是平行四边形;(2)求证:BF=D C.23.(本小题满分8分)某服装网店李经理用11000元购进了甲、乙两种款式的童装共150套,两种童装的进价如下图所示:请你求出李经理购买甲、乙两种款式的童装各多少套24.(本小题满分10分)“勤劳”是中华民族的传统美德,学校要求同学们在家里帮助父母做一些力所能及的家务.在本学期开学初,小颖同学随机调查了部分同学寒假在家做家务的总时间,设被调查的每位同学寒假在家做家务的总时间为x小时,将做家务的总时间分为五个类别:A(0≤x<10),B(10≤x<20),C(20≤x<30),D(30≤x<40),E(x≥40).并将调查结果制成如下两幅不完整的统计图:根据统计图提供的信息,解答下列问题:(1)本次共调查了__________名学生;(2)请根据以上信息直接在答题卡中补全条形统计图;(3)扇形统计图中m的值是__________,类别D所对应的扇形圆心角的度数是__________度;(4)若该校有800名学生,根据抽样调查的结果,请你估计该校有多少名学生寒假在家做家务的总时间不低于20小时.25.(本小题满分10分)如图,⊙O中,AB是⊙O的直径,G为弦AE的中点,连接OG并延长交⊙O 于点D,连接BD交AE于点F,延长AE至点C,使得FC=BC,连接B C.(1)求证:BC是⊙O的切线;(2)⊙O的半径为5,tan A =34,求FD的长.26.(本小题满分12分)如图,一次函数y=﹣33x+2的图象与x轴、y轴分别交于点A、B,以线段AB 为边在第一象限作等边△AB C.(1)若点C在反比例函数y=kx的图象上,求该反比例函数的解析式;(2)点P(4,m)在第一象限,过点P作x轴的垂线,垂足为D,当△P AD与△OAB相似且P点在(1)中反比例函数图象上时,求出P点坐标.27.(本小题满分12分)如图所示,在平面直角坐标系中,抛物线2(0)y ax bx c a=++≠的顶点坐标为()3, 6C,并与轴交于点()0, 3B,点是对称轴与轴的交点.(1)求抛物线的解析式;(2)如图①所示,是抛物线上的一个动点,且位于第一象限,连结BP 、AP ,求ABP ∆的面积的最大值; (3)如图②所示,在对称轴的右侧作30ACD ∠=交抛物线于点,求出点的坐标;并探究:在轴上是否存在点,使60CQD ∠=若存在,求点的坐标;若不存在,请说明理由.。
2021年上海市宝山区中考数学三模试卷一、选择题(共6小题).1.下列计算正确的是()A.(2a)2=2a2B.a6÷a3=a3C.a3•a2=a6D.3a2+2a3=5a52.下列方程有实数根的是()A.B.C.x2﹣x+1=0D.2x2+x﹣1=0 3.如果函数y=3x+m的图象一定经过第二象限,那么m的取值范围是()A.m>0B.m≥0C.m<0D.m≤04.如图,反映的是某中学九(1)班学生外出乘车、步行、骑车人数的扇形分布图,其中乘车的学生有20人,骑车的学生有12人,那么下列说法正确的是()A.九(1)班外出的学生共有42人B.九(1)班外出步行的学生有8人C.在扇形图中,步行学生人数所占的圆心角的度数为82°D.如果该中学九年级外出的学生共有500人,那么估计全年级外出骑车的学生约有140人5.一个正多边形绕它的中心旋转45°后,就与原正多边形第一次重合,那么这个正多边形()A.是轴对称图形,但不是中心对称图形B.是中心对称图形,但不是轴对称图形C.既是轴对称图形,又是中心对称图形D.既不是轴对称图形,也不是中心对称图形6.下列命题中正确的是()A.对角线相等的梯形是等腰梯形B.有两个角相等的梯形是等腰梯形C.一组对边平行的四边形一定是梯形D.一组对边平行,另一组对边相等的四边形一定是等腰梯形二、填空题:(本大题共12题,每题4分,满分48分)7.计算:=.8.在实数范围内分解因式:a3﹣9a2=.9.化简:﹣=.10.函数的定义域是.11.已知:反比例函数的图象经过点A(2,﹣3),那么k=.12.将一次函数y=x+3的图象沿着y轴向下平移5个单位,那么平移后所得图象的函数解析式为.13.一布袋里装有4个红球、5个黄球、6个黑球,这些球除颜色外其余都相同,那么从这个布袋里摸出一个黄球的概率为.14.如果一组数a,2,4,0,5的中位数是4,那么a可以是(只需写出一个满足要求的数).15.已知:在平行四边形ABCD中,设=,=,那么=(用向量、的式子表示).16.在四边形ABCD中,BD是对角线,∠ABD=∠CDB,要使四边形ABCD是平行四边形只须添加一个条件,这个条件可以是(只需写出一种情况).17.某中学组织九年级学生春游,有m名师生租用45座的大客车若干辆,共有2个空座位,那么租用大客车的辆数是(用m的代数式表示).18.在Rt△ABC中,∠C=90°,AC=3,以点A为圆心,1为半径作⊙A,将⊙A绕着点C 顺时针旋转,设旋转角为α(0<α<90°),若⊙A与直线BC相切,则∠α的余弦值为.三、解答题:(本大题共7题,满分78分)19.先化简,再求值:,其中.20.解方程组:.21.如图,在梯形ABCD中,AD∥BC,AB=CD=5,对角线BD平分∠ABC,cos C=.(1)求边BC的长;(2)过点A作AE⊥BD,垂足为点E,求cot∠DAE的值.22.某宾馆有客房200间供游客居住,当每间客房的定价为每天180元时,客房恰好全部住满;如果每间客房每天的定价每增加10元,就会减少4间客房出租.设每间客房每天的定价增加x元,宾馆出租的客房为y间.求:(1)y关于x的函数关系式;(2)如果某天宾馆客房收入38400元,那么这天每间客房的价格是多少元?23.如图,已知在△ABC中,∠BAC=90°,AB=AC,点D在边BC上,以AD为边作正方形ADEF,联结CF,CE.(1)求证:FC⊥BC;(2)如果BD=AC,求证:CD=CE.24.如图,在直角坐标平面xOy内,点A在x轴的正半轴上,点B在第一象限内,且∠OAB =90°,∠BOA=30°,OB=4.二次函数y=﹣x2+bx的图象经过点A,顶点为点C.(1)求这个二次函数的解析式,并写出顶点C的坐标;(2)设这个二次函数图象的对称轴l与OB相交于点D,与x轴相交于点E,求的值;(3)设P是这个二次函数图象的对称轴l上一点,如果△POA的面积与△OCE的面积相等,求点P的坐标.25.已知:如图,△ABC为等边三角形,AB=,AH⊥BC,垂足为点H,点D在线段HC上,且HD=2,点P为射线AH上任意一点,以点P为圆心,线段PD的长为半径作⊙P,设AP=x.(1)当x=3时,求⊙P的半径长;(2)如图1,如果⊙P与线段AB相交于E、F两点,且EF=y,求y关于x的函数解析式,并写出它的定义域;(3)如果△PHD与△ABH相似,求x的值(直接写出答案即可).参考答案一、选择题:(本大题共6题,每题4分,满分24分)[下列各题的四个选项中,有且只有一个选项是正确的,请选择正确选项的代号并填涂在答题纸的相应位置上]1.下列计算正确的是()A.(2a)2=2a2B.a6÷a3=a3C.a3•a2=a6D.3a2+2a3=5a5【分析】根据同底数幂的除法,底数不变指数相减;合并同类项,系数相加字母和字母的指数不变;同底数幂的乘法,底数不变指数相加;幂的乘方,底数不变指数相乘,对各选项计算后利用排除法求解.解:A、(2a)2=4a2,故本选项错误.B、a6÷a3=a3,故本选项正确.C、a3•a2=a5,故本选项错误.D、3a2与2a3,不能合并同类项故本选项错误.故选:B.2.下列方程有实数根的是()A.B.C.x2﹣x+1=0D.2x2+x﹣1=0【分析】根据分式方程和无理方程的解法如果能求得方程的解说明方程有实数解,一元二次方程有实数根只需得到其根的判别式为非负数.解:A、分式方程=0,去分母得:x2+2=0∵x2≥0,∴原方程无解;B、∵≥0∴无理方程无解;C、∵x2﹣x+1=0中b2﹣4ac=1﹣4=﹣3<0∴x2﹣x+1=0无实数根;D、∵2x2+x﹣1=0中b2﹣4ac=1+8=9>0,∴此方程有实数根,故选:D.3.如果函数y=3x+m的图象一定经过第二象限,那么m的取值范围是()A.m>0B.m≥0C.m<0D.m≤0【分析】图象一定经过第二象限,则函数一定与y轴的正半轴相交,因而m>0.解:根据题意得:m>0,故选:A.4.如图,反映的是某中学九(1)班学生外出乘车、步行、骑车人数的扇形分布图,其中乘车的学生有20人,骑车的学生有12人,那么下列说法正确的是()A.九(1)班外出的学生共有42人B.九(1)班外出步行的学生有8人C.在扇形图中,步行学生人数所占的圆心角的度数为82°D.如果该中学九年级外出的学生共有500人,那么估计全年级外出骑车的学生约有140人【分析】先求出九(1)班的总人数,再求出步行的人数,进而求出步行人数所占的圆心角度数,最后即可作出判断.解:由扇形图知乘车的人数是20人,占总人数的50%,所以九(1)班有20÷50%=40人,所以骑车的占12÷40=30%,步行人数=40﹣12﹣20=8人,所占的圆心角度数为360°×20%=72°,如果该中学九年级外出的学生共有500人,那么估计全年级外出骑车的学生约有150人.故选:B.5.一个正多边形绕它的中心旋转45°后,就与原正多边形第一次重合,那么这个正多边形()A.是轴对称图形,但不是中心对称图形B.是中心对称图形,但不是轴对称图形C.既是轴对称图形,又是中心对称图形D.既不是轴对称图形,也不是中心对称图形【分析】先根据旋转对称图形的定义得出这个正多边形是正八边形、再根据轴对称图形和中心对称图形的定义即可解答.解:∵一个正多边形绕着它的中心旋转45°后,能与原正多边形重合,360°÷45°=8,∴这个正多边形是正八边形.正八边形既是轴对称图形,又是中心对称图形.故选:C.6.下列命题中正确的是()A.对角线相等的梯形是等腰梯形B.有两个角相等的梯形是等腰梯形C.一组对边平行的四边形一定是梯形D.一组对边平行,另一组对边相等的四边形一定是等腰梯形【分析】根据等腰梯形的判定定理对各个选项逐一分析即可.解:A、对角线相等的梯形是等腰梯形,由全等三角形的判定与性质可证明出是等腰梯形,故本选项正确;B、有两个角相等的梯形是等腰梯形,根据等腰梯形的性质和判定可判断:直角梯形中有两个角相等为90度,但不是等腰梯形,故本选项错误;C、一组对边平行的四边形一定是梯形,错误,因为没说明另一组对边的关系,有可能也平行,那么就有可能是平行四边形,故本选项错误;D、一组对边平行,另一组对边相等则有两种情况,即平行四边形或等腰梯形,所以不能说一定是等腰梯形.故本选项错误;故选:A.二、填空题:(本大题共12题,每题4分,满分48分)7.计算:=3.【分析】=,即是求9的算术平方根.解:根据题意:==3.故答案为:3.8.在实数范围内分解因式:a3﹣9a2=a2(a﹣9).【分析】按照因式分解的定义,提取公因式即可求解.解:a3﹣9a2=a2(a﹣9).故答案为:a2(a﹣9).9.化简:﹣=.【分析】根据分式加减的运算法则,将分式通分、化简即可.解:原式=﹣===.10.函数的定义域是x≤2.【分析】根据二次根式的意义,被开方数是非负数可:4﹣2x≥0,求解即可.解:根据题意得:4﹣2x≥0,解得x≤2.故答案为x≤2.11.已知:反比例函数的图象经过点A(2,﹣3),那么k=﹣6.【分析】根据反比例函数图象上点的坐标特征,将点A(2,﹣3)代入反比例函数,然后解关于k的方程即可.解:根据题意,得﹣3=,解得,k=﹣6.故答案是:﹣6.12.将一次函数y=x+3的图象沿着y轴向下平移5个单位,那么平移后所得图象的函数解析式为y=x﹣2.【分析】根据“上加下减,左加右减”的原则进行解答即可.解:将一次函数y=x+3的图象沿着y轴向下平移5个单位所得函数解析式为:y=x+3﹣5,即y=x﹣2.故答案为:y=x﹣2.13.一布袋里装有4个红球、5个黄球、6个黑球,这些球除颜色外其余都相同,那么从这个布袋里摸出一个黄球的概率为.【分析】由于每个球被摸到的机会是均等的,故可用概率公式解答.解:∵布袋里装有4个红球、5个黄球、6个黑球,∴P(摸到黄球)==.故答案为:.14.如果一组数a,2,4,0,5的中位数是4,那么a可以是4(所填答案满足a≥4即可)(只需写出一个满足要求的数).【分析】由于一共5个数,4一定排在第3个才能是中位数,所以a可以在第4个或第5个,从而确定a的取值即可.解:∵这组数据有5个数,且中位数是4,∴4必须在5个数从小到大排列的正中间,即这组数据的重新排列是0,2,4,a,5或0,2,4,5,a,∴a≥4或a≥5,故答案是4(答案不唯一).15.已知:在平行四边形ABCD中,设=,=,那么=﹣﹣(用向量、的式子表示).【分析】由在平行四边形ABCD中,可得==,即可得=﹣,=﹣,又由=+,即可求得答案.解:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴==,∵=,∴=﹣,=﹣,∴=+=﹣﹣.故答案为:﹣﹣.16.在四边形ABCD中,BD是对角线,∠ABD=∠CDB,要使四边形ABCD是平行四边形只须添加一个条件,这个条件可以是AB=CD或AD∥BC(只需写出一种情况).【分析】用反推法,如果四边形ABCD是平行四边形,会推出什么结论,那么这些结论就是我们要添加的条件.解:∵∠ABD=∠CDB,∴AB∥CD,要使四边形ABCD是平行四边形,可添AB=CD,根据一组对边平行且相等的四边形是平行四边形,可使四边形ABCD是平行四边形;或添AD∥BC,根据由两组对边分别平行的四边形是平行四边形,可使四边形ABCD是平行四边形.17.某中学组织九年级学生春游,有m名师生租用45座的大客车若干辆,共有2个空座位,那么租用大客车的辆数是(用m的代数式表示).【分析】让汽车上一共可坐的人数除以每辆汽车可坐的人数即为租用大客车的辆数.解:共有2个空座位,那么一共可以坐(m+2)人,∴租用大客车的辆数是,故答案为:.18.在Rt△ABC中,∠C=90°,AC=3,以点A为圆心,1为半径作⊙A,将⊙A绕着点C 顺时针旋转,设旋转角为α(0<α<90°),若⊙A与直线BC相切,则∠α的余弦值为.【分析】根据切线的性质得到∠A′DC=90°,根据旋转变换的性质得到CA′=CA=3,根据余弦的定义计算,得到答案.解:设将⊙A绕着点C顺时针旋转,点A至点A′时,⊙A′与直线BC相切相切于点D,连接A′D,则∠A′DC=90°,A′D=1,由旋转的性质可知,CA′=CA=3,∴cos∠CA′D==,∵AC∥A′D,∴α=∠CA′D,∴∠α的余弦值为,故答案为:.三、解答题:(本大题共7题,满分78分)19.先化简,再求值:,其中.【分析】首先对括号内的分式进行通分,计算分式的加减,然后把除法转化成乘法,然后计算分式的乘法即可化简,然后代入数值进行计算即可求解.解:原式=•=.当x=2+时,原式===.20.解方程组:.【分析】先由②得到关于y,并代入①,从而求得.解:由②得y=2x﹣1.③(1分)把③代入①,得3x2﹣(2x﹣1)2﹣(2x﹣1)+3=0.整理后,得x2﹣2x﹣3=0.解得x1=﹣1,x2=3.把x1=﹣1代入③,得y1=﹣3.把x2=3代入③,得y2=5.所以,原方程组的解是(1分)21.如图,在梯形ABCD中,AD∥BC,AB=CD=5,对角线BD平分∠ABC,cos C=.(1)求边BC的长;(2)过点A作AE⊥BD,垂足为点E,求cot∠DAE的值.【分析】(1)过点D作DH⊥BC,垂足为点H.在Rt△CDH中,由,可求得CH,再根据角平分线的定义以及平行线的性质,得∠ABD=∠ADB.则AD=AB=5.即可求出BC;(2)在Rt△CDH中,可求得DH,进而得出BH,将角∠DAE转化成∠BDH,即可得出答案.解:(1)过点D作DH⊥BC,垂足为点H.在Rt△CDH中,由∠CHD=90°,CD=5,,得.(1分)∵对角线BD平分∠ABC,∴∠ABD=∠CBD.(1分)∵AD∥BC,∴∠ADB=∠DBC.∴∠ABD=∠ADB.即得AD=AB=5.于是,由等腰梯形ABCD,可知BC=AD+2CH=13.(1分)(2)∵AE⊥BD,DH⊥BC,∴∠BHD=∠AED=90°.∵∠ADB=∠DBC,∴∠DAE=∠BDH.(1分)在Rt△CDH中,.(1分)在Rt△BDH中,BH=BC﹣CH=13﹣4=9.(1分)∴.(1分)∴cot∠DAE=cot∠BDH=.(1分)22.某宾馆有客房200间供游客居住,当每间客房的定价为每天180元时,客房恰好全部住满;如果每间客房每天的定价每增加10元,就会减少4间客房出租.设每间客房每天的定价增加x元,宾馆出租的客房为y间.求:(1)y关于x的函数关系式;(2)如果某天宾馆客房收入38400元,那么这天每间客房的价格是多少元?【分析】(1)设每间客房每天的定价增加x元,宾馆出租的客房为y间,根据某宾馆有客房200间供游客居住,当每间客房的定价为每天180元时,客房恰好全部住满;如果每间客房每天的定价每增加10元,就会减少4间客房出租可列出函数式.(2)38400是利润,根据价格和住房的关系可列方程求出解解:(1)设每间客房每天的定价增加x元,宾馆出租的客房为y间,根据题意,得:y=200﹣4×,∴.(2)设每间客房每天的定价增加x元根据题意,得.整理后,得x2﹣320x+6000=0.解得x1=20,x2=300.当x=20时,x+180=200(元).当x=300时,x+180=480(元).答:这天的每间客房的价格是200元或480元.23.如图,已知在△ABC中,∠BAC=90°,AB=AC,点D在边BC上,以AD为边作正方形ADEF,联结CF,CE.(1)求证:FC⊥BC;(2)如果BD=AC,求证:CD=CE.【分析】(1)根据正方形的性质得出AD=AF,∠FAD=90°=∠BAC,求出∠FAC=∠BAD,证出△ABD≌△ACF,推出∠B=∠FCA即可;(2)根据△ABD≌△ACF,推出BD=CF=AC,求出∠DAC=∠EFC,根据SAS推出△DAC≌△EFC即可.【解答】证明:(1)∵四边形ADEF是正方形,∴AD=AF,∠FAD=90°=∠BAC,∴∠FAD﹣∠DAC=∠BAC﹣∠DAC,∴∠FAC=∠BAD,在△ABD和△ACF中,∴△ABD≌△ACF(SAS),∴∠B=∠FCA,∵∠BAC=90°,∴∠B+∠ACB=90°,∴∠ACB+∠ACF=90°,∴FC⊥BC.(2)∵△ABD≌△ACF,∴BD=CF,∵BD=AC,∴AC=CF,∴∠CAF=∠CFA,∵四边形ADEF是正方形,∴AD=EF,∠DAF=∠EFA=90°,∴∠DAF﹣∠CAF=∠EFA﹣∠CFA,∴∠DAC=∠EFC,在△DAC和△EFC中,∴△DAC≌△EFC(SAS),∴CD=CE.24.如图,在直角坐标平面xOy内,点A在x轴的正半轴上,点B在第一象限内,且∠OAB =90°,∠BOA=30°,OB=4.二次函数y=﹣x2+bx的图象经过点A,顶点为点C.(1)求这个二次函数的解析式,并写出顶点C的坐标;(2)设这个二次函数图象的对称轴l与OB相交于点D,与x轴相交于点E,求的值;(3)设P是这个二次函数图象的对称轴l上一点,如果△POA的面积与△OCE的面积相等,求点P的坐标.【分析】(1)由∠OAB=90°,在直角三角形OAB中求得点A,代入函数式解得.(2)直角三角形OAB中求得AB的长度,由抛物线的对称轴可知DE∥AB,OE=AE.求得DE,进而求得CD,从而求得.(3)利用三角形OCE和三角形POA的面积相等即求得.解:(1)∵∠OAB=90°,∠BOA=30°,OB=4,∴.∴A(,0).(1分)∵二次函数y=﹣x2+bx的图象经过点A,∴.解得.∴二次函数的解析式为.顶点C的坐标是(,3).(1分)(2)∵∠OAB=90°,∠BOA=30°,OB=4,∴AB=2.(1分)由DE是二次函数的图象的对称轴,可知DE∥AB,OE=AE.∴.即得DE=1.(1分)又∵C(,3),∴CE=3.即得CD=2.(1分)∴.(1分)(3)根据题意,可设P(,n).∵,CE=3,∴.(1分)∴.解得.(1分)∴点P的坐标为P1(,)、P2(,).25.已知:如图,△ABC为等边三角形,AB=,AH⊥BC,垂足为点H,点D在线段HC上,且HD=2,点P为射线AH上任意一点,以点P为圆心,线段PD的长为半径作⊙P,设AP=x.(1)当x=3时,求⊙P的半径长;(2)如图1,如果⊙P与线段AB相交于E、F两点,且EF=y,求y关于x的函数解析式,并写出它的定义域;(3)如果△PHD与△ABH相似,求x的值(直接写出答案即可).【分析】(1)∵△ABC为等边三角形,∴,∠B=60°.又∵,AH⊥BC,∴.即得PH=AH﹣AP=6﹣x=3.利用勾股定理即可证明;(2)过点P作PM⊥EF,垂足为点M,连接PE.在Rt△PHD中,HD=2,PH=6﹣x.利用勾股定理求出PD,然后在Rt△PEM中,由勾股定理得PM2+EM2=PE2.从而可求出答案;(3)△PHD与△ABH相似,则有,代入各线段的长短即可求出x的值.解:(1)∵△ABC为等边三角形,∴,∠B=60°.又∵,AH⊥BC,∴.即得PH=AH﹣AP=6﹣x=3.在Rt△PHD中,HD=2,利用勾股定理,得.∴当x=3时,⊙P的半径长为.(2)过点P作PM⊥EF,垂足为点M,连接PE.在Rt△PHD中,HD=2,PH=6﹣x.利用勾股定理,得.∵△ABC为等边三角形,AH⊥BC,∴∠BAH=30°.即得.在⊙P中,PE=PD.∵PM⊥EF,P为圆心,∴.于是,在Rt△PEM中,由勾股定理得PM2+EM2=PE2.即得.∴所求函数的解析式为,定义域为.(3)∵①△PHD∽△ABH,则有,,解得:PH=,∴x=AP=6﹣,当P在AH的延长线上时,x=6+;②当△PHD∽△AHB时,,即,解得:PH=2,∴x=AP=6﹣2,当P在AH的延长线上时,x=6+2;,,,.。
2021年九年级中考模拟考试数学试题一、选择题(每小题3分,共30分)下列各小题均有四个答案,其中只有一个是正确的。
1.下列各数中,最小的数是()A.3B.﹣2C.﹣D.02.据统计,2021年第一季度全球手机出货量达到3.4亿部,将数据3.4亿用科学记数法表示为()A.3.4×108B.3.4×1010C.0.34×109D.34×1073.下列图形中,不能经过折叠围成正方体的是()A.B.C.D.4.下列计算正确的是()A.a+b=ab B.3a2+2a2=5a4C.(﹣a3b)2=a6b2D.a2b3c÷(﹣ab2)=﹣ab5.下列说法中,错误的是()A.明天会下雨是随机事件B.某发行量较大的彩票中奖概率是,那么购买1001张彩票一定会中奖C.要了解某市初中生每天的睡眠时间,应该采用抽样调查的方式进行D.乘客乘坐飞机前的安检应采取全面调查的方式进行6.已知y是x的一次函数,下表给出5组自变量x及其对应的函数y的值.x…﹣2﹣1012…y…﹣3﹣1136…其中只有1个函数值计算有误,则这个错误的函数值是()A.﹣1B.1C.3D.67.如图,点A、C在∠FBD的两条边BF、BD上,BE平分∠FBD,CE平分∠ACD,连接AE,若∠BEC=35°,则∠FAE的度数为()A.35°B.45°C.55°D.65°8.如图,一次函数y=﹣x+2的图象与坐标轴的交点为A和B,下列说法中正确的是()A.点(2,﹣1)在直线AB上B.y随x的增大而增大C.当x>0时,y<2D.△AOB的面积是29.如图,菱形OABC的边OA在x轴上,点B坐标为(9,3),分别以点B、C为圆心,以大于BC 的长为半径画弧,两弧交于点D、E,作直线DE,交x轴于点F,则点F的坐标是()A.(7.5,0)B.(6.5,0)C.(7,0)D.(8,0)10.如图,矩形ABCD中,AB=8cm,BC=4cm,动点E和F同时从点A出发,点E以每秒2cm的速度沿A→D的方向运动,到达点D时停止,点F以每秒4cm的速度沿A→B→C→D的方向运动,到达点D时停止.设点F运动x(秒)时,△AEF的面积为y(cm2),则y关于x的函数的图象大致为()A.B.C.D.二、填空题(每小题3分,共15分)11.写出一个比﹣3大且比2小的负无理数.12.有4张全新的扑克牌,其中黑桃、红桃各2张,它们的背面都一样,将它们洗匀后,背面朝上放到桌面上,从中任意摸出2张牌,摸出的花色不一样的概率是.13.已知关于x的一元二次方程mx2+x﹣3=0有两个不相等的实数根,则m的取值范围是.14.如图,半圆O的直径AB=4cm,=,点C是上的一个动点(不与点B,G重合),CD ⊥OG于点D,CE⊥OB于点E,点E与点F关于点O中心对称,连接DE、DF,则△DEF面积的最大值为cm2.15.如图,正方形ABCD的边长为3,点G在边AD上,GD=1,GH⊥BC于点H,点E是边AB 上一动点(不与点A,B重合),EF⊥CD于点F,交GH于点Q,点O、P分别是EH和GQ的中点,连接OP,则线段OP的长度为.三、解答题(本大题共8个小题,满分75分)16.(1)化简:(a﹣2)2﹣(a+1)(a﹣6);(2)计算:2sin45°﹣20210﹣+|﹣1|.17.为了解某校七年级男生的身高情况,某数学活动小组进行了抽样和分析,过程如下:[收集数据]随机抽取了七年级若干名男生,测得他们的身高(单位:cm),记录如下:152 153 154 155 155 155 156 156 157 157 158 160 160 160161 161 162 162 162 163 163 163 163 164 164 164 165 165165 166 167 168 169 169 170 170 172 172 175 175[整理数据]整理以上数据,得到如下尚不完整的频数分布表和直方图:调查结果频数分布表组别身高(单位:cm)频数频率A150≤x<155a0.075B155≤x<16080.2C160≤x<165150.375D165≤x<1700.2E170≤x<17560.15 [分析数据]根据以上频数分布表和直方图,即可对数据进行针对性的分析.根据以上信息解答下列问题:(1)此次抽样调查的样本容量是,统计表中a=.(2)所抽取的样本中,男生身高的中位数所在的组别是.(3)请把频数分布直方图补充完整.(4)若该校七年级有男生400人,根据调查数据估计身高不低于165cm的大约有多少人?18.某数学兴趣小组进行了一次有趣的数学探究:如图①所示,在钝角∠AOB的边OB上任取一点C,过点C作CE∥OA,以点C为圆心,CO的长为半径画弧,交射线CE于点D,在上任取一点P,作射线OP,交射线CE于点F,当点P在上移动时,点F也随之移动,是否存在某个时刻,∠AOF恰好等于∠AOB呢?经过试验、猜想、推理验证,他们发现:当PF与OC满足某种数量关系时,∠AOF=∠AOB.请你根据以上信息,把如下不完整的“图②”和“已知”补充完整,并写出“证明”过程.已知:如图②,点C在钝角∠AOB的边OB上,CE∥OA,以点C为圆心、CO的长为半径画弧,交射线CE于点D,点P在上,射线OP交CE于点F,(填PF与OC的数量关系).求证:∠AOF=∠AOB.19.钓鱼岛是我国固有领土,2021年4月26日,中华人民共和国自然资源部在其官网上公布《钓鱼岛及其附属岛屿地形地貌调查报告》,报告公布了钓鱼岛及其附属岛屿的高分辨率海岛地形数据.如图所示,点A是岛上最西端“西钓角”,点B是岛上最东端“东钓角”,AB长约3641米,点D是岛上的小黄鱼岛,且A、B、D三点共线.某日中国海监一艘执法船巡航到点C处时,恰好看到正北方的小黄鱼岛D,并测得∠ACD=70°,∠BCD=45°.根据以上数据,请求出此时执法船距离小黄鱼岛D的距离CD的值.(参考数据:tan70°≈2.75,sin70°≈0.94,cos70°≈0.34,结果精确到1米.)20.如图,已知二次函数y=x2﹣2mx﹣2+m2的顶点为P,矩形OABC的边OA落在x轴上,点B的坐标是(6,2).(1)求点P的坐标,并说明随着m值的变化,点P的运动轨迹是什么?(2)若该二次函数的图象与矩形OABC的边恰好有2个交点,请直接写出此时m的取值范围.21.某水果批发店销售粑粑柑和苹果,均按整箱出售,粑粑柑比苹果每箱贵30元.某天粑粑柑销售额为1800元,苹果销售额为3600元,该日苹果销售量恰好是粑粑柑销售量的3倍.(1)求粑粑柑、苹果每箱各是多少元?(2)某单位决定去该水果批发店购买粑粑柑、苹果共30箱,恰逢批发店对售价进行调整,苹果单价提高了5%,粑粑柑按九折销售,本次购买预算总费用不超过2100元,那么可最多购买多少箱粑粑柑?22.研究函数y=+3的图象和性质,可以通过列表、描点、连线画出函数图象,然后结合函数图象进行分析.探究过程如下:(1)函数y=+3的自变量x的取值范围是.(2)y与x的几组对应值如表:x…﹣3﹣2﹣101 1.5 2.534567…y… 2.8 2.75m 2.52154 3.5n 3.25 3.2…根据表格中的数据,在同一平面直角坐标系中描点,并用平滑的曲线进行连线,画出图象的另外一支,并写出m+n﹣2=.(3)观察图象可知,函数图象既是中心对称图形,又是轴对称图形,它的对称中心的坐标是,它的对称轴的解析式是.(4)当x满足时,y随x的增大而减小.(5)结合函数图象填空:当关于x的方程+3=k(x﹣2)+3有两个不相等的实数根时,实数k的取值范围是;关于x的方程+3=k(x﹣2)+3无实数根时,实数k的取值范围是.23.已知点M是矩形ABCD的边AB上一个动点,过点M作MG⊥CD于点G,交对角线AC于点E,连接BE,过点E作EF⊥BE,交射线DC于点F.(1)如图1,若AB=AD,则FG与DG的数量关系是;(2)如图2.若AB=4,AD=3,①当点M在边AB上移动时,FG与DG的数量关系是否保持不变?若不变,请仅就图2求出它们之间的数量关系;若变化,请说明理由.②当时,请直接写出AM的最大值和最小值.参考答案一、选择题(每小题3分,共30分)下列各小题均有四个答案,其中只有一个是正确的。
中考全真模拟测试数学试卷一、选择题:1. 我市南水北调配套工程建设进展顺利,工程运行调度有序.截止2015年12月底,已累计接收南水北调来水812000000立方米.使1100余万市民喝上了南水;通过“存水”增加了约550公顷水面,密云水库蓄水量稳定在10亿立方米左右,有效减缓了地下水位下降速率.将812000000用科学记数法表示应为A. 812×106B. 81.2×107C. 8.12×108D. 8.12×1092. 下列运算正确的是()A. 3a2+5a2=8a4B. a6•a2=a12C. (a+b)2=a2+b2D. (a2+1)0=13. 如图所示的标志中,是轴对称图形的有( )A. 1个B. 2个C. 3个D. 4个4. 为估计池塘两岸A,B间的距离,杨阳在池塘一侧选取了一点P,测得PA=16m,PB=12m,那么AB间的距离不可能是()A. 15mB. 17mC. 20mD. 28m5. 如图,已知AB∥CD,∠A=40°,∠D=45°,则∠1的度数是( )A. 80°B. 85°C. 90°D. 95°6. 估计7+1的值( ) A. 在1和2之间B. 在2和3之间C. 3和4之间D. 在4和5之间7. 在平面直角坐标系中,点(-1,2)在( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限8. 已知一次函数y =kx -k ,y 随x 的增大而减小,则该函数的图像不经过( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限9. 计算8-2的结果是( )A. 6B. 6C. 2D. 210. 一个暗箱里装有10个黑球,8个红球,12个白球,每个球除颜色外都相同,从中任意摸出一球,不是白球的概率是( )A . 415B. 13C. 25D. 35 11. 如图,1l ∥2l ∥3l ,两条直线与这三条平行线分别交于点A 、B 、C 和D 、E 、F .已知32AB BC ,则DE DF 的值为( )A. 32B. 23C. 25D. 3512. 如图,假设篱笆(虚线部分)的长度16m,则所围成矩形ABCD 最大面积是( )A. 60 m2B. 63 m2C. 64 m2D. 66 m2二、填空题:13. 分解因式:x3y﹣2x2y+xy=______.14. 函数y=12 -x的自变量x的取值范围是_____.15. 化简221(1)11x x-÷+-的结果是.16. 某直角三角形三条边的平方和为200,则这个直角三角形的斜边长为.17. 如图,△ABC中,AB=AC=10,BC=8,AD平分∠BAC交BC于点D,点E为AC的中点,连接DE,则△CDE的周长为.18. 已知⊙O的半径为5,AB是⊙O的直径,D是AB延长线上一点,DC是⊙O的切线,C是切点,连接AC,若∠CAB=30°,则BD的长为____.三、计算题:19. 解方程组:3(1)4(4)05(1)3(5)x yy x---=⎧⎨-=+⎩20. 解不等式组2102323xx x+>⎧⎪-+⎨≥⎪⎩.四、解答题:21. 如图,四边形ABCD中,90,1,3A ABC AD BC︒∠=∠===,E是边CD中点,连接BE并延长与AD的延长线相较于点F.(1)求证:四边形BDFC是平行四边形;(2)若△BCD是等腰三角形,求四边形BDFC的面积.22. 如图,已知△ABC中,AC=BC,以BC为直径的⊙O交AB于E,过点E作EG⊥AC于G,交BC的延长线于F.(1)求证:AE=BE;(2)求证:FE是⊙O的切线;(3)若FE=4,FC=2,求⊙O的半径及CG的长.23. 为了更好的治理西流湖水质,保护环境,市治污公司决定购买10 台污水处理设备.现有A、B 两种型号的设备,其中每台的价格,月处理污水量如下表:A 型B 型价格(万元/台) a b处理污水量(吨/月)240 200经调查:购买一台A 型设备比购买一台B 型设备多2 万元,购买2 台A 型设备比购买3 台B 型设备少6 万元.(1)求a,b 值;(2)经预算:市治污公司购买污水处理设备的资金不超过105 万元,你认为该公司有哪几种购买方案;(3)在(2)问的条件下,若每月要求处理西流湖的污水量不低于2040 吨,为了节约资金,请你为治污公司设计一种最省钱的购买方案.24. 对于某一函数给出如下定义:若存在实数p,当其自变量值为p时,其函数值等于p,则称p为这个函数的不变值.在函数存在不变值时,该函数的最大不变值与最小不变值之差q称为这个函数的不变长度.特别地,当函数只有一个不变值时,其不变长度q为零.例如:下图中的函数有0,1两个不变值,其不变长度q等于1.(1)分别判断函数y=x-1,y=x-1,y=x2有没有不变值?如果有,直接写出其不变长度;(2)函数y=2x2-bx.①若其不变长度为零,求b的值;②若1≤b≤3,求其不变长度q的取值范围;(3) 记函数y=x2-2x(x≥m)的图象为G1,将G1沿x=m翻折后得到的函数图象记为G2,函数G的图象由G1和G2两部分组成,若其不变长度q满足0≤q≤3,则m的取值范围为 .答案与解析一、选择题:1. 我市南水北调配套工程建设进展顺利,工程运行调度有序.截止2015年12月底,已累计接收南水北调来水812000000立方米.使1100余万市民喝上了南水;通过“存水”增加了约550公顷水面,密云水库蓄水量稳定在10亿立方米左右,有效减缓了地下水位下降速率.将812000000用科学记数法表示应为A. 812×106B. 81.2×107C. 8.12×108D. 8.12×109【答案】C【解析】试题解析:将812000000用科学记数法表示为:8.12×108.故选C.考点:科学记数法—表示较大的数.2. 下列运算正确的是()A. 3a2+5a2=8a4B. a6•a2=a12C. (a+b)2=a2+b2D. (a2+1)0=1【答案】D【解析】试题分析:A、原式合并同类项得到结果,即可做出判断;B、原式利用同底数幂的乘法法则计算得到结果,即可做出判断;C、原式利用完全平方公式展开得到结果,即可做出判断;D、原式利用零指数幂法则计算得到结果,即可做出判断.解:A、原式=8a2,故A选项错误;B、原式=a8,故B选项错误;C、原式=a2+b2+2ab,故C选项错误;D、原式=1,故D选项正确.故选D.点评:此题考查了完全平方公式,合并同类项,同底数幂的乘法,以及零指数幂,熟练掌握公式及法则是解本题的关键.3. 如图所示的标志中,是轴对称图形的有( )A. 1个B. 2个C. 3个D. 4个【答案】C【解析】【详解】试题分析:四个标志中是轴对称图形的有:,所以共有3个.故应选C.考点:轴对称图形4. 为估计池塘两岸A,B间的距离,杨阳在池塘一侧选取了一点P,测得PA=16m,PB=12m,那么AB间的距离不可能是()A. 15mB. 17mC. 20mD. 28m【答案】D【解析】试题分析:根据三角形的三边关系定理:三角形两边之和大于第三边,三角形的两边差小于第三边可得16﹣12<AB<16+12,再解即可.解:根据三角形的三边关系可得:16﹣12<AB<16+12,即4<AB<28,故选D.考点:三角形三边关系.5. 如图,已知AB∥CD,∠A=40°,∠D=45°,则∠1的度数是( )A. 80°B. 85°C. 90°D. 95°【答案】B【解析】试题分析:∵AB∥CD,∴∠A=∠C=40°,∵∠1=∠D+∠C,∵∠D=45°,∴∠1=∠D+∠C=45°+40°=85°,故选B.考点:平行线的性质.6. 7+1的值()A. 在1和2之间B. 在2和3之间C. 在3和4之间D. 在4和5之间【答案】C【解析】∵7,∴7,7在在3和4之间.故选C.7. 在平面直角坐标系中,点(-1,2)在()A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】B【解析】【分析】根据各象限内点的坐标特征解答即可.【详解】∵点(-1,2)的横坐标为负数,纵坐标为正数,∴点(-1,2)在第二象限.故选B.【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).8. 已知一次函数y=kx-k,y随x的增大而减小,则该函数的图像不经过( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】C【解析】解:∵一次函数y=kx﹣k的图象y随x的增大而减小,∴k<0.即该函数图象经过第二、四象限,∵k<0,∴﹣k>0,即该函数图象与y轴交于正半轴.综上所述:该函数图象经过第一、二、四象限,不经过第三象限.故选C.点睛:本题主要考查一次函数图象在坐标平面内的位置与k、b的关系.解答本题注意理解:直线y=kx+b 所在的位置与k、b的符号有直接的关系.k>0时,直线必经过一、三象限.k<0时,直线必经过二、四象限.b>0时,直线与y轴正半轴相交.b=0时,直线过原点;b<0时,直线与y轴负半轴相交.9. 的结果是( )A. 6 C. 2【答案】D【解析】-==D.考点:二次根式的加减法.10. 一个暗箱里装有10个黑球,8个红球,12个白球,每个球除颜色外都相同,从中任意摸出一球,不是白球的概率是()A.415B.13C.25D.35【答案】D【解析】1231305-=,故选D.11. 如图,1l∥2l∥3l,两条直线与这三条平行线分别交于点A、B、C和D、E、F.已知32ABBC=,则DEDF的值为()A. 32B.23C.25D.35【答案】D 【解析】试题分析:∵1l∥2l∥3l,32ABBC=,∴DEDF=ABAC=332+=35,故选D.考点:平行线分线段成比例.12. 如图,假设篱笆(虚线部分)的长度16m,则所围成矩形ABCD最大面积是()A. 60 m2B. 63 m2C. 64 m2D. 66 m2【答案】C【解析】试题分析:设BC=xm,表示出AB,矩形面积为ym2,表示出y与x的关系式为y=(16﹣x)x=﹣x2+16x=﹣(x﹣8)2+64,,利用二次函数性质即可求出求当x=8m时,y max=64m2,即所围成矩形ABCD的最大面积是64m2.故答案选C.考点:二次函数的应用.二、填空题:13. 分解因式:x3y﹣2x2y+xy=______.【答案】xy(x﹣1)2【解析】【分析】原式提取公因式,再利用完全平方公式分解即可.【详解】解:原式=xy(x2-2x+1)=xy(x-1)2.故答案为:xy (x-1)2【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键. 14. 函数y=12-x x 的自变量x 的取值范围是_____. 【答案】x≤12且x≠0 【解析】【详解】根据题意得x≠0且1﹣2x≥0,所以12x ≤且0x ≠. 故答案为12x ≤且0x ≠. 15. 化简221(1)11x x -÷+-的结果是 . 【答案】(x-1)2.【解析】试题解析:原式=11x x -+•(x+1)(x-1) =(x-1)2.考点:分式的混合运算.16. 某直角三角形三条边的平方和为200,则这个直角三角形的斜边长为 .【答案】10.【解析】解:∵一个直角三角形的三边长的平方和为200,∴斜边长的平方为100,则斜边长为:10.故答案为10. 17. 如图,△ABC 中,AB=AC=10,BC=8,AD 平分∠BAC 交BC 于点D ,点E 为AC 的中点,连接DE ,则△CDE 的周长为 .【答案】14.【解析】试题解析:∵AB=AC ,AD 平分∠BAC ,BC=8,∴AD⊥BC,CD=BD=12BC=4,∵点E为AC的中点,∴DE=CE=12AC=5,∴△CDE的周长=CD+DE+CE=4+5+5=14.【点睛】本题考查了直角三角形斜边上的中线等于斜边的一半的性质,等腰三角形三线合一的性质,熟记性质并准确识图是解题的关键.18. 已知⊙O的半径为5,AB是⊙O的直径,D是AB延长线上一点,DC是⊙O的切线,C是切点,连接AC,若∠CAB=30°,则BD的长为____.【答案】5.【解析】解:连接OC,BC.∵AB是圆O的直径,DC是圆O的切线,C是切点,∴∠ACB=∠OCD=90°.∵∠CAB=30°,∴∠COD=2∠A=60°,∴OD=2OC=10,∴BD=OD-OB=10-5=5.故答案为5.三、计算题:19. 解方程组:3(1)4(4)0 5(1)3(5)x yy x---=⎧⎨-=+⎩【答案】x=5,y=7.【解析】试题分析:先把组中的方程化简后,再求方程组的解.试题解析:解:原方程化简得:3413 5320x yy x-=-⎧⎨-=⎩①②①+②,得:y=7,把y=7代入①,得:x=5,所以原方程组的解为:57 xy=⎧⎨=⎩.20. 解不等式组210 23 23xx x+>⎧⎪-+⎨≥⎪⎩.【答案】﹣0.5<x≤0.【解析】【分析】先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集.【详解】解:2102323xx x+>⎧⎪⎨-+≥⎪⎩①②由①得:x>﹣0.5,由②得:x≤0,则不等式组的解集是﹣0.5<x≤0.【点睛】本题考查了一元一次不等式组的解法:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.四、解答题:21. 如图,四边形ABCD中,90,1,3A ABC AD BC︒∠=∠===,E是边CD的中点,连接BE并延长与AD的延长线相较于点F.(1)求证:四边形BDFC平行四边形;(2)若△BCD是等腰三角形,求四边形BDFC的面积.【答案】(1)见解析;(2)2或35【解析】【分析】(1)根据平行线的性质和中点的性质证明三角形全等,然后根据对角线互相平分的四边形是平行四边形完成证明;(2)由等腰三角形的性质,分三种情况:①BD=BC,②BD=CD,③BC=CD,分别求四边形的面积.【详解】解:(1)证明:∵∠A=∠ABC=90°∴AF∥BC∴∠CBE=∠DFE,∠BCE=∠FDE∵E是边CD的中点∴CE=DE∴△BCE≌△FDE(AAS)∴BE=EF∴四边形BDFC是平行四边形(2)若△BCD是等腰三角形①若BD=BC=3 在Rt△ABD中,AB=229122BD AD-=-=∴四边形BDFC的面积为S=22×3=62;②若BC=DC=3 过点C作CG⊥AF于G,则四边形AGCB是矩形,所以,AG=BC=3,所以,DG=AG-AD=3-1=2,在Rt△CDG中,由勾股定理得,2222325CG CD DG=-=-=∴四边形BDFC的面积为S=35③BD=CD时,BC边上的中线应该与BC垂直,从而得到BC=2AD=2,矛盾,此时不成立;综上所述,四边形BDFC的面积是2或35【点睛】本题考查了平行四边形的判定与性质,等腰三角形的性质,全等三角形的判定与性质,(1)确定出全等三角形是解题的关键,(2)难点在于分情况讨论.22. 如图,已知△ABC中,AC=BC,以BC为直径的⊙O交AB于E,过点E作EG⊥AC于G,交BC的延长线于F.(1)求证:AE=BE;(2)求证:FE是⊙O的切线;(3)若FE=4,FC=2,求⊙O的半径及CG的长.【答案】(1)详见解析;(2)详见解析;(3)6 5 .【解析】(1)证明:连接CE,如图1所示:∵BC是直径,∴∠BEC=90°,∴CE⊥AB;又∵AC=BC,∴AE=BE.(2)证明:连接OE,如图2所示:∵BE=AE,OB=OC,∴OE是△ABC的中位线,∴OE∥AC,AC=2OE=6.又∵EG⊥AC,∴FE⊥OE,∴FE是⊙O的切线.(3)解:∵EF是⊙O的切线,∴FE2=FC•FB.设FC=x,则有2FB=16,∴FB=8,∴BC=FB﹣FC=8﹣2=6,∴OB=OC=3,即⊙O的半径为3;∴OE=3.∵OE∥AC,∴△FCG∽△FOE,∴CG FCOE FO=,即2323CG=+,解得:CG=65.点睛:本题利用了等腰三角形三线合一定理,三角形中位线的判定,切割线定理,以及勾股定理,还有平行线分线段成比例定理,切线的判定等知识.23. 为了更好的治理西流湖水质,保护环境,市治污公司决定购买10 台污水处理设备.现有A、B 两种型号的设备,其中每台的价格,月处理污水量如下表:A 型B 型价格(万元/台) a b处理污水量(吨/月)240 200经调查:购买一台A 型设备比购买一台B 型设备多2 万元,购买2 台A 型设备比购买3 台B 型设备少6 万元.(1)求a,b 的值;(2)经预算:市治污公司购买污水处理设备的资金不超过105 万元,你认为该公司有哪几种购买方案;(3)在(2)问的条件下,若每月要求处理西流湖的污水量不低于2040 吨,为了节约资金,请你为治污公司设计一种最省钱的购买方案.【答案】(1)1210ab==⎧⎨⎩;(2)①A型设备0台,B型设备10台;②A型设备1台,B型设备9台;③A型设备2台,B型设备8台. ;(3)为了节约资金,应选购A型设备1台,B型设备9台.【解析】【分析】(1)根据“购买一台A型设备比购买一台B型设备多2万元,购买2台A型设备比购买3台B型设备少6万元”即可列出方程组,继而进行求解;(2)可设购买污水处理设备A型设备x台,B型设备(10-x)台,则有12x+10(10-x)≤105,解之确定x 的值,即可确定方案;(3)因为每月要求处理流溪河两岸的污水量不低于2040吨,所以有240x+200(10-x)≥2040,解之即可由x的值确定方案,然后进行比较,作出选择.【详解】(1)根据题意得:2326a bb a-=-=⎧⎨⎩,∴1210ab==⎧⎨⎩;(2)设购买污水处理设备A型设备x台,B型设备(10−x)台,则:12x+10(10−x)⩽105,∴x⩽2.5,∵x取非负整数,∴x=0,1,2,∴有三种购买方案:①A型设备0台,B型设备10台;②A型设备1台,B型设备9台;③A型设备2台,B型设备8台.(3)由题意:240x+200(10−x)⩾2040,∴x⩾1,又∵x⩽2.5,x取非负整数,∴x为1,2.当x=1时,购买资金为:12×1+10×9=102(万元),当x=2时,购买资金为:12×2+10×8=104(万元),∴为了节约资金,应选购A型设备1台,B型设备9台.【点睛】此题考查一元一次不等式的应用,二元一次方程组的应用,解题关键在于理解题意列出方程.24. 对于某一函数给出如下定义:若存在实数p,当其自变量的值为p时,其函数值等于p,则称p为这个函数的不变值.在函数存在不变值时,该函数的最大不变值与最小不变值之差q称为这个函数的不变长度.特别地,当函数只有一个不变值时,其不变长度q为零.例如:下图中的函数有0,1两个不变值,其不变长度q等于1.(1)分别判断函数y=x-1,y=x-1,y=x2有没有不变值?如果有,直接写出其不变长度;(2)函数y=2x2-bx.①若其不变长度为零,求b的值;②若1≤b≤3,求其不变长度q取值范围;(3) 记函数y=x2-2x(x≥m)的图象为G1,将G1沿x=m翻折后得到的函数图象记为G2,函数G的图象由G1和G2两部分组成,若其不变长度q满足0≤q≤3,则m的取值范围为 .【答案】详见解析.【解析】试题分析:(1)根据定义分别求解即可求得答案;(2)①首先由函数y=2x2﹣bx=x,求得x(2x﹣b﹣1)=0,然后由其不变长度为零,求得答案;②由①,利用1≤b≤3,可求得其不变长度q的取值范围;(3)由记函数y=x2﹣2x(x≥m)的图象为G1,将G1沿x=m翻折后得到的函数图象记为G2,可得函数G的图象关于x=m对称,然后根据定义分别求得函数的不变值,再分类讨论即可求得答案.试题解析:解:(1)∵函数y=x﹣1,令y=x,则x﹣1=x,无解;∴函数y=x﹣1没有不变值;∵y=x-1 =1x,令y=x,则1xx=,解得:x=±1,∴函数1yx=的不变值为±1,q=1﹣(﹣1)=2.∵函数y=x2,令y=x,则x=x2,解得:x1=0,x2=1,∴函数y=x2的不变值为:0或1,q=1﹣0=1;(2)①函数y=2x2﹣bx,令y=x,则x=2x2﹣bx,整理得:x(2x﹣b﹣1)=0.∵q=0,∴x=0且2x﹣b﹣1=0,解得:b=﹣1;②由①知:x(2x﹣b﹣1)=0,∴x=0或2x﹣b﹣1=0,解得:x 1=0,x 2=12b +.∵1≤b ≤3,∴1≤x 2≤2,∴1﹣0≤q ≤2﹣0,∴1≤q ≤2; (3)∵记函数y =x 2﹣2x (x ≥m )的图象为G 1,将G 1沿x =m 翻折后得到的函数图象记为G 2,∴函数G 的图象关于x =m 对称,∴G :y =22)22()(2(2)()m x x x x m m x x m -⎧-≥⎨--<⎩ .∵当x 2﹣2x =x 时,x 3=0,x 4=3; 当(2m ﹣x )2﹣2(2m ﹣x )=x 时,△=1+8m ,当△<0,即m <﹣18时,q =x 4﹣x 3=3;当△≥0,即m ≥﹣18时,x 5x 6 ①当﹣18≤m ≤0时,x 3=0,x 4=3,∴x 6<0,∴x 4﹣x 6>3(不符合题意,舍去); ②∵当x 5=x 4时,m =1,当x 6=x 3时,m =3;当0<m <1时,x 3=0(舍去),x 4=3,此时0<x 5<x 4,x 6<0,q =x 4﹣x 6>3(舍去);当1≤m ≤3时,x 3=0(舍去),x 4=3,此时0<x 5<x 4,x 6>0,q =x 4﹣x 6<3;当m >3时,x 3=0(舍去),x 4=3(舍去),此时x 5>3,x 6<0,q =x 5﹣x 6>3(舍去);综上所述:m 的取值范围为1≤m ≤3或m <﹣18. 点睛:本题属于二次函数的综合题,考查了二次函数、反比例函数、一次函数的性质以及函数的对称性.注意掌握分类讨论思想的应用是解答此题的关键.。
2021中考数学模拟试题附答案2021年中考数学信息试卷一、选择题(每题3分,共24分)1.绝对值是表示一个数距离0的距离,因此|-6|=6,选A。
2.32x*x=32x^2,(x^2)^3=x^6,x/x=1,选D。
3.一个几何体的主视图和左视图都是正方形,俯视图是一个圆,只有长方体符合这个条件,选A。
4.根据圆的性质,∠BOC=1/2(∠BAC+∠ABC)=1/2(90°+50°)=70°,选C。
5.众数是出现次数最多的数,中位数是将一组数据按大小排列后,处于中间位置的数。
3、4、5、5、6、7中,5出现了两次,是众数,也是中位数,选B。
6.圆锥的侧面积为8π,母线长为4,根据圆锥的公式,侧面积=πrl,其中r是底面半径,l是母线长。
代入数据得8π=πr×4,解得r=2,选A。
7.折叠后重叠部分的形状是等腰直角三角形,底边长为1,高为1,面积为1/2,选B。
8.八个边长为1的正方形组成一个边长为4的正方形,该直线将这个正方形分成两个面积相等的部分,因此该直线过中心点,解析式为y=x,选B。
二、填空题(每题3分,共30分)9.25的平方根是5.10.一个大于1且小于2的无理数可以是√2或1+√2.11.太阳的半径约是6.97×10^5千米。
12.函数y=1/(x+1)中,自变量x的取值范围是x≠-1.13.分解因式:a-ab=a(1-b)。
14.平均增长率是每次增长的比率的平均值,设第一次涨价为x,第二次为y,则(1+x)(1+y)=1.44,解得xy=0.2,平均增长率为√(1+xy)-1=0.1.15.将a2+2a-3分解因式得(a+3)(a-1)=0,因此a=-3或a=1,代入2016-2a2-4a得答案为2016-2(-3)^2-4(-3)=2012.16.线段EF的长为2√5.17.内接正四边形和正六边形的边长都是2,因此阴影部分是由两个等腰直角三角形组成的,面积为2×(1/2)×2×2=4,选D。
2021年贵州省铜仁市松桃县中考数学模拟试卷(3月份)一、选择题(共10小题).1.有理数2021的相反数为()A.2021B.﹣2021C.﹣D.2.下列计算正确的是()A.2a+3b=5ab B.(﹣a2)3=a6C.a3•a2=a5D.(a+b)2=a2+b23.下列说法中,正确的是()A.过圆心的线段叫直径B.长度相等的两条弧是等弧C.与半径垂直的直线是圆的切线D.圆既是中心对称图形,又是轴对称图形4.如表是某学校篮球队12名队员年龄结构统计表:年龄13岁14岁15岁16岁人数2451这支篮球队员年龄的众数和中位数分别是()A.15,14.5B.15,14C.15,15D.14.5,155.已知⊙O的半径为10cm,如果一条直线和圆心O的距离为10cm,那么这条直线和这个圆的位置关系为()A.相离B.相切C.相交D.相交或相离6.若关于x的一元二次方程ax2﹣2x+1=0有两个实数根,则实数a的取值范围是()A.a≤1且a≠0B.a<1且a≠0C.a≤1D.a<17.已知一次函数y=k(x﹣1)与反比例函数y=,那么它们在同一坐标系中的图象可能是()A.B.C.D.8.某同学从家骑自行车上学,先上坡到达A地后再下坡到达学校,所用的时间与行驶的路程如图所示,如果返程上、下坡速度保持不变,那么他从学校回到家需要的时间是()A.14分钟B.12分钟C.9分钟D.7分钟9.已知⊙O的直径CD=100cm,AB是⊙O的弦,AB⊥CD,垂足为M,且AB=96cm,则AC的长为()A.36cm或64cm B.60cm或80cm C.80cm D.60cm10.如图,在正方形ABCD中,边长为2的等边三角形AEF的顶点E、F分别在BC和CD 上,下列结论:①CE=CF;②∠AEB=75°;③BE+DF=EF;④S正方形ABCD=2+,其中正确的序号是()A.①②③B.②③④C.①③④D.①②④二、填空题(本题共8个小题,锯小题4分,共32分)11.因式分解:4a2﹣1=.12.不等式组的整数解是.13.已知太阳与地球之间的平均距离约为150000000km,用科学记数法表示太阳与地球的平均距离为km.14.从长为2,4,6,7的四条线段中随机选取三条作为边,能构成三角形的概率是.15.如图,在3×3的方格纸中,每个小方格都是边长为1cm的正方形,点A、B、O是格点,则图中扇形OAB中阴影部分的面积是.16.在菱形ABCD中,两条对角线相交于点O,且AB=10cm,AC=12cm.则菱形ABCD 的面积是cm2.17.如图,在△ABC中,AB=AC=1cm,∠A=36°,BD是∠ABC的角平分线,则底边BC 的长是cm.18.两小朋友在玩上楼梯游戏,规定一步只能上一级或二级台阶,玩着玩着两人发现:当楼梯的台级数为一级、二级、三级、…逐步增加时,楼梯的上法依次为:1,2,3,5,8,13,21,…(这就是著名的斐波拉契数列),请你认真观察这一列数规律,探究一下,上11级台阶共有种上法.三、解答题(本题共4个小题,第19题每小题10分,第20、21、22题每小题10分,共40分,要有解题的主要过程)19.(1)计算:|﹣|﹣2cos60°+(1﹣)0+(﹣1)2021.(2)先化简,再求值:(﹣)÷,其中x=.20.如图,线段AD与BC相交于O,连接AB,AC和BD,且OD=OC,∠ABC=∠BAD.求证:∠ABD=∠BAC.21.在不平凡的2020年新冠疫情期间,甲乙两所学校进行了抗疫捐款活动,其中甲学校共捐款18000元,乙学校共捐款20000元,已知乙学校平均每人捐款比甲学校多20元,且两学校师生人数相等,则乙学校平均每人捐款多少元?22.为了传承中华优秀传统文化,某中学团委决定开展“文化润校”系列活动,其中参加“经典诵读活动”的人数共50人,赛后对学生此项活动的成绩进行整理,得到下列不完整的统计图:组别分数段频次频率A60≤x<7090.18B70≤x<8021bC80≤x<90a0.32D90≤x<10040.08请根据所给信息,解答以下问题:(1)表中a=,b=.(2)请计算扇形统计图中B组对应扇形的圆心角的度数.(3)若在D组的4名同学中,其中是男、女生各2名,随机抽收2名同学外出参加活动,请用列表法或树状图法表示抽到的两名同学均为男生的概率.四、(本大题满分12分)23.为深入贯彻落实“四不摘”政策,切实把服务人民群众的宗旨落到实处,某县引导某易地移民搬迁安置点开办惠民生活超市,方便安置点群众生活.该超市以160元/千克的进价新进一批茶叶,经调查发现,在一段时间内,销售单价w(元/千克)与销售量x(千克)之间的函数关系如图所示,设利润为y(元).(1)求w与x的函数关系式;(2)当商店的销售量x为多少千克时,获得的利润最大?最大利润是多少元?五、(本大题满分12分)24.如图,AB是⊙O的直径,延长AB到点P,过点P作⊙O的切线PC,C为切点,连接AC和BC.(1)求证:△APC∽△CPB;(2)当BP=AB时,求∠P的度数.六、(本大题满分14分)25.如图,直线y=﹣x+3与x轴交于点A,与轴交于点B,过A、B两点作一条抛物线y=﹣x2+bx+c,L是抛物线的对称轴.(1)求A、B两点的坐标;(2)求抛物线的解析式;(3)在对称轴L是否存在点P,使△ABP为等腰三角形,若不存在,请说明理由;若存在,求点P的坐标.参考答案一、选择题(本大题共10个小题,每小题4分,共40分)本题每小题均有A、B、C.D四个备选答案,其中只有一个是正确的,请你将正确答案的序号填涂在相应的答题卡上. 1.有理数2021的相反数为()A.2021B.﹣2021C.﹣D.【分析】利用相反数的定义分析得出答案.解:有理数2021的相反数是:﹣2021.故选:B.2.下列计算正确的是()A.2a+3b=5ab B.(﹣a2)3=a6C.a3•a2=a5D.(a+b)2=a2+b2【分析】直接利用同底数幂的乘法运算法则以及合并同类项法则、幂的乘方运算法则分别化简得出答案.解:A、2a+3b=a5,无法计算,故此选项错误;B、(﹣a2)3=﹣a6,故此选项错误;C、a3•a2=a5,故此选项正确;D、(a+b)2=a2+2ab+b2,故此选项错误.故选:C.3.下列说法中,正确的是()A.过圆心的线段叫直径B.长度相等的两条弧是等弧C.与半径垂直的直线是圆的切线D.圆既是中心对称图形,又是轴对称图形【分析】根据直径的定义对A进行判断;根据等弧的定义对B进行判断;根据切线的判定定理对C进行判断;根据圆的性质对D进行判断.解:A、过圆心的弦叫直径,所以A选项错误;B、在同圆或等圆中,长度相等的两条弧是等弧,所以B选项错误;C、过半径的外端,与半径垂直的直线是圆的切线,所以C选项错误;D、圆既是中心对称图形,又是轴对称图形,所以D选项正确.故选:D.4.如表是某学校篮球队12名队员年龄结构统计表:年龄13岁14岁15岁16岁人数2451这支篮球队员年龄的众数和中位数分别是()A.15,14.5B.15,14C.15,15D.14.5,15【分析】根据众数和中位数的定义求解即可.解:这组数据中15岁出现次数最多,所以这组数据的众数为15岁,这组数据的中位数是第6、7个数据的平均数,而第6、7个数据分别为14岁、15岁,所以这组数据的中位数为=14.5(岁),故选:A.5.已知⊙O的半径为10cm,如果一条直线和圆心O的距离为10cm,那么这条直线和这个圆的位置关系为()A.相离B.相切C.相交D.相交或相离【分析】直线和圆的位置关系与数量之间的联系:若d<r,则直线与圆相交;若d=r,则直线于圆相切;若d>r,则直线与圆相离.解:根据圆心到直线的距离10等于圆的半径10,则直线和圆相切.故选:B.6.若关于x的一元二次方程ax2﹣2x+1=0有两个实数根,则实数a的取值范围是()A.a≤1且a≠0B.a<1且a≠0C.a≤1D.a<1【分析】由关于x的一元二次方程ax2﹣2x+1=0有两个实数根及一元二次方程的定义,即可得判别式△≥0,a≠0,继而可求得a的范围.解:∵关于x的一元二次方程ax2﹣2x+1=0有两个实数根,∴△=b2﹣4ac=(﹣2)2﹣4×a×1=4﹣4a≥0,解得:a≤1,∵方程ax2﹣2x+6=0是一元二次方程,∴a≠0,∴a的范围是:a≤1且a≠0.故选:A.7.已知一次函数y=k(x﹣1)与反比例函数y=,那么它们在同一坐标系中的图象可能是()A.B.C.D.【分析】先一次函数y=k(x﹣1)化为一次函数的一般形式,再对各选项进行逐一分析即可.解:一次函数y=k(x﹣1)可化为y=kx﹣k的形式,A、由一次函数的图象经过一三四象限可知k>0,由反比例函数的图象可知k>0,故此选项符合题意;B、由一次函数图象经过二三四象限可知k<0,﹣k>0,与函数图象经过y轴负半轴相矛盾,故本选项不合题意;C、由一次函数图象经过二三四象限可知k<0,﹣k>0,与函数图象经过y轴负半轴相矛盾,故本选项不合题意;D、由一次函数的图象经过一三四象限可知k>0,由反比例函数的图象可知k<0,故本选项不合题意.故选:A.8.某同学从家骑自行车上学,先上坡到达A地后再下坡到达学校,所用的时间与行驶的路程如图所示,如果返程上、下坡速度保持不变,那么他从学校回到家需要的时间是()A.14分钟B.12分钟C.9分钟D.7分钟【分析】根据图象可知:该同学从家骑车上学,上坡的路程是2千米,用10分钟,则上坡速度是0.2千米/分钟;下坡路长是1千米,用2分钟,因而速度是0.5千米/分钟,由此即可求出答案.解:由图象可知,该同学上坡的速度为:(千米/分钟),下坡的速度为:(千米/分钟),则他从学校回到家需要的时间是:(分钟).故选:C.9.已知⊙O的直径CD=100cm,AB是⊙O的弦,AB⊥CD,垂足为M,且AB=96cm,则AC的长为()A.36cm或64cm B.60cm或80cm C.80cm D.60cm【分析】分两种情况,根据题意画出图形,根据垂径定理求出AM的长,连接OA,由勾股定理求出OM的长,进而可得出结论.解:连接AC,AO,∵⊙O的直径CD=100cm,AB⊥CD,AB=96cm,∴AM=AB=×96=48(cm),OD=OC=50(cm),如图1,∵OA=50cm,AM=48cm,CD⊥AB,∴OM===14(cm),∴CM=OC+OM=50+14=64(cm),∴AC===80(cm);如图2,同理可得,OM=14cm,∵OC=50cm,∴MC=50﹣14=36(cm),在Rt△AMC中,AC==60(cm);综上所述,AC的长为80cm或60cm,故选:B.10.如图,在正方形ABCD中,边长为2的等边三角形AEF的顶点E、F分别在BC和CD 上,下列结论:①CE=CF;②∠AEB=75°;③BE+DF=EF;④S正方形ABCD=2+,其中正确的序号是()A.①②③B.②③④C.①③④D.①②④【分析】根据三角形的全等的知识可以判断①的正误;根据角角之间的数量关系,以及三角形内角和为180°判断②的正误;根据线段垂直平分线的知识可以判断③的正误,利用解三角形求正方形的面积等知识可以判断④的正误.解:∵四边形ABCD是正方形,∴AB=AD,∵△AEF是等边三角形,∴AE=AF,在Rt△ABE和Rt△ADF中,,∴Rt△ABE≌Rt△ADF(HL),∴BE=DF,∵BC=DC,∴BC﹣BE=CD﹣DF,∴CE=CF,∴①说法正确;∵CE=CF,∴△ECF是等腰直角三角形,∴∠CEF=45°,∵∠AEF=60°,∴∠AEB=75°,∴②说法正确;如图,连接AC,交EF于G点,∴AC⊥EF,且AC平分EF,∵∠CAF≠∠DAF,∴DF≠FG,∴BE+DF≠EF,∴③说法错误;∵EF=2,∴CE=CF=,设正方形的边长为a,在Rt△ADF中,AD2+DF2=AF2,即a2+(a﹣)2=4,解得a=,则a2=2+,S正方形ABCD=2+,④说法正确,故选:D.二、填空题(本题共8个小题,锯小题4分,共32分)11.因式分解:4a2﹣1=(2a+1)(2a﹣1).【分析】直接利用平方差公式分解因式得出答案.解:4a2﹣1=(2a+1)(2a﹣1).故答案为:(2a+1)(2a﹣1).12.不等式组的整数解是﹣1,0,1.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集,继而可得答案.解:解不等式6x﹣7≤0,得:x≤,解不等式3x≤5x+2,得:x≥﹣1,则不等式组的解集为﹣1≤x≤,则不等式组的整数解为﹣1、0、1,故答案为:﹣1、0、1.13.已知太阳与地球之间的平均距离约为150000000km,用科学记数法表示太阳与地球的平均距离为 1.5×108km.【分析】科学记数法就是将一个数字表示成(a×10的n次幂的形式),其中1≤|a|<10,n表示整数,即从左边第一位开始,在首位非零的后面加上小数点,再乘以10的n次幂.解:150 000 000=1.5×108,故答案为:1.5×108.14.从长为2,4,6,7的四条线段中随机选取三条作为边,能构成三角形的概率是.【分析】画树状图,共有24个等可能的结果,能构成三角形的结果有12个,再由概率公式求解即可.解:画树状图如图:共有24个等可能的结果,能构成三角形的结果有12个,∴能构成三角形的概率为=,故答案为:.15.如图,在3×3的方格纸中,每个小方格都是边长为1cm的正方形,点A、B、O是格点,则图中扇形OAB中阴影部分的面积是﹣.【分析】证明△ACO≌△ODB,根据相似三角形的性质得到∠AOB=90°,根据勾股定理求出OA、OB,根据扇形面积公式计算,得到答案.解:∵∠ACO=90°,∴∠CAO+∠AOC=90°,在△ACO和△ODB中,,∴△ACO≌△ODB(SAS),∴∠CAO=∠BOD,∴∠BOD+∠AOC=90°,∴∠AOB=90°,由勾股定理得,OA=OB==,∴扇形OAB中阴影部分的面积=﹣××=﹣,故答案为:﹣.16.在菱形ABCD中,两条对角线相交于点O,且AB=10cm,AC=12cm.则菱形ABCD的面积是96cm2.解:∵四边形ABCD为菱形,∴AC⊥BD,OA=OC=AC=6cm,OB=OD,∴OB===8(cm),∴BD=2OB=16cm,∴S菱形ABCD=AC•BD=×12×16=96(cm2).故答案为:96.17.如图,在△ABC中,AB=AC=1cm,∠A=36°,BD是∠ABC的角平分线,则底边BC 的长是cm.【分析】先根据等腰三角形的性质和三角形内角和定理计算出∠ABC=∠C=72°,再由BD是△ABC的角平分线得到∠ABD=∠DBC=36°,易得BC=BD=AD,接着证明△BDC∽△ABC得到=,所以=,根据黄金分割点的定义得AD=AC =cm,即可得到BC的长.解:∵AB=AC,∠A=36°,∴∠ABC=∠C=72°,∵BD是△ABC的角平分线,∴∠ABD=∠DBC=36°,∴DA=BD,∵∠BDC=∠A+∠ABD=72°,∴BD=BC,∴BC=BD=AD,∵∠A=∠CBD,∠BCD=∠ACB,∴△BDC∽△ABC,∴=,∴=,∴D点为AC的黄金分割点,∴AD=AC=cm,∴BC=cm.故答案为:.18.两小朋友在玩上楼梯游戏,规定一步只能上一级或二级台阶,玩着玩着两人发现:当楼梯的台级数为一级、二级、三级、…逐步增加时,楼梯的上法依次为:1,2,3,5,8,13,21,…(这就是著名的斐波拉契数列),请你认真观察这一列数规律,探究一下,上11级台阶共有144种上法.解:由题意,可得:第8个台阶有13+21=34种上法,第9个台阶有34+21=55种上法,第10个台阶有55+34=89种上法,因此上这11级台阶共有89+55=144种上法.故答案为:144.三、解答题(本题共4个小题,第19题每小题10分,第20、21、22题每小题10分,共40分,要有解题的主要过程)19.(1)计算:|﹣|﹣2cos60°+(1﹣)0+(﹣1)2021.(2)先化简,再求值:(﹣)÷,其中x=.解:(1)原式=﹣2×+1﹣1=﹣+1﹣1=﹣;(2)原式=[﹣]•=•=,当x=时,原式==﹣1.20.如图,线段AD与BC相交于O,连接AB,AC和BD,且OD=OC,∠ABC=∠BAD.求证:∠ABD=∠BAC.【分析】根据∠ABC=∠BAD,可以得到OB=OA,然后即可证明△OCA和△ODB全等,从而可以得到∠OAC=∠ODB,然后即可证明结论成立.【解答】证明:∵∠ABC=∠BAD,∴OB=OA,在△OCA和△ODB中,,∴△OCA≌△ODB(SAS),∴∠OAC=∠ODB,又∵∠ABC=∠BAD,∴∠ABC+∠OBD=∠BAD+∠OAC,∴∠ABD=∠BAC.21.在不平凡的2020年新冠疫情期间,甲乙两所学校进行了抗疫捐款活动,其中甲学校共捐款18000元,乙学校共捐款20000元,已知乙学校平均每人捐款比甲学校多20元,且两学校师生人数相等,则乙学校平均每人捐款多少元?【分析】设乙学校平均每人捐款x元,则甲学校平均每人捐款(x﹣20)元,根据学校师生人数=捐款总额÷人均捐款金额,结合两学校师生人数相等,即可得出关于x的分式方程,解之经检验后即可得出结论.解:设乙学校平均每人捐款x元,则甲学校平均每人捐款(x﹣20)元,依题意得:=,解得:x=200,经检验,x=200是原方程的解,且符合题意.答:乙学校平均每人捐款200元.22.为了传承中华优秀传统文化,某中学团委决定开展“文化润校”系列活动,其中参加“经典诵读活动”的人数共50人,赛后对学生此项活动的成绩进行整理,得到下列不完整的统计图:组别分数段频次频率A60≤x<7090.18B70≤x<8021bC80≤x<90a0.32D90≤x<10040.08请根据所给信息,解答以下问题:(1)表中a=16,b=0.42.(2)请计算扇形统计图中B组对应扇形的圆心角的度数.(3)若在D组的4名同学中,其中是男、女生各2名,随机抽收2名同学外出参加活动,请用列表法或树状图法表示抽到的两名同学均为男生的概率.解:(1)a=50﹣9﹣21﹣4=16,b==0.42,故答案为:16,0.42;(2)扇形统计图中B组对应扇形的圆心角的度数为360°×0.42=151.2°;(3)画树状图如图:共有12个等可能的结果,抽到的两名同学均为男生的结果有2个,∴抽到的两名同学均为男生的概率为=.四、(本大题满分12分)23.为深入贯彻落实“四不摘”政策,切实把服务人民群众的宗旨落到实处,某县引导某易地移民搬迁安置点开办惠民生活超市,方便安置点群众生活.该超市以160元/千克的进价新进一批茶叶,经调查发现,在一段时间内,销售单价w(元/千克)与销售量x(千克)之间的函数关系如图所示,设利润为y(元).(1)求w与x的函数关系式;(2)当商店的销售量x为多少千克时,获得的利润最大?最大利润是多少元?解:(1)设w=kx+b,将(40,160)、(120,0)代入,得:,解得:,∴w=﹣2x+240;(2)由题意得:y=(x﹣40)(﹣2x+240)=﹣2(x﹣80)2+3200,∴当x=80时,利润达到最大,y max=3200.∴当商店的销售量x为80千克时,获得的利润最大,最大利润是3200元.五、(本大题满分12分)24.如图,AB是⊙O的直径,延长AB到点P,过点P作⊙O的切线PC,C为切点,连接AC和BC.(1)求证:△APC∽△CPB;(2)当BP=AB时,求∠P的度数.【分析】(1)连接CO,通过直径和切线,找到∠A=∠PCB,即可求证结论.(2)利用已知,可以找到CB=OB=BP,即可求解.解:(1)证明:连接OC.如图:∵AB是直径,∴∠ACB=90°.∵PC是切线,∴∠PCO=90°.∴∠PCO=∠ACB=90°.∵OA=OC.∴∠A=∠ACO.∴∠A=∠PCB.∵∠P=∠P.∴△APC∽△CPB.(2)∵,.∴BP=OB.∴B是OP中点,∵△OCP是直角三角形.∴.∴△OBC是等边三角形.∴∠COB=60°.∴∠P=30°.六、(本大题满分14分)25.如图,直线y=﹣x+3与x轴交于点A,与轴交于点B,过A、B两点作一条抛物线y=﹣x2+bx+c,L是抛物线的对称轴.(1)求A、B两点的坐标;(2)求抛物线的解析式;(3)在对称轴L是否存在点P,使△ABP为等腰三角形,若不存在,请说明理由;若存在,求点P的坐标.【分析】(1)分别令x=0,y=0即可得答案;(2)将A、B坐标代入即可得抛物线解析式;(3)设P纵坐标,表示出△ABP三边长,分类列方程即可得答案.解:(1)∵直线y=﹣x+3与x轴交于点A,与轴交于点B,在y=﹣x+3中令x=0得y=3,令y=0得x=3,∴A(3,0),B(0,3);(2)∵过A、B两点作一条抛物线y=﹣x2+bx+c,∴把A(3,0),B(0,3)代入得:,解得,∴抛物线的解析式为y=﹣x2+2x+3;(3)抛物线的解析式y=﹣x2+2x+3的对称轴L为x==1,∵P在对称轴L上,∴设P(1,m),而A(3,0),B(0,3),∴AP2=(3﹣1)2+(0﹣m)2=4+m2,BP2=(1﹣0)2+(m﹣3)2=m2﹣6m+10,AB2=(3﹣0)2+(0﹣3)2=18,△ABP为等腰三角形分三种情况:①AP=BP,则AP2=BP2,∴4+m2=m2﹣6m+10,解得m=1,∴P(1,1),②AP=AB,则AP2=AB2,∴4+m2=18,解得m=或m=﹣,∴P(1,)或(1,﹣),③BP=AB,则BP2=AB2,∴m2﹣6m+10=18,解得m=3+或m=3﹣,∴P(1,3+)或(1,3﹣),总上所述,△ABP为等腰三角形,P坐标为:(1,1)或(1,)或(1,﹣)(1,3+)或(1,3﹣).。
数学中考综合模拟检测试题学校________ 班级________ 姓名________ 成绩________一、选择题(本题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一个选项是正确的)1.实数4的相反数是( ) A. 14-B. -4C.14D. 42.如图是由4个相同的小正方体组成的一个立体图形,其主视图是( )A. B. C. D.3.2019年1月3日10时26分,“嫦娥四号”探测器飞行约380000千米,实现人类探测器首次在月球背面软着陆.数据380000用科学记数法表示为( ) A. 38×104B. 3.8×104C. 3.8×105D. 0.38×1064.(2018乌鲁木齐)在平面直角坐标系xOy 中,将点()12N --,绕点O 旋转180°,得到的对应点的坐标是( )A. ()12, B. ()12-, C. ()12--, D. ()12-, 5.不等式组12220360x x -<⎧⎨-≤⎩的解集是( )A. 46x -<≤B. 4x ≤-或2x >C. 42x -<≤D. 24x ≤<6.下列图形,既是轴对称图形又是中心对称图形的是( ) A 正三角形B. 正五边形C. 等腰直角三角形D. 矩形7.化简()22x 的结果是( ) A. x 4B. 2x 2C. 4x 2D. 4x8.在同一副扑克牌中抽取2张“方块”,3张“梅花”,1张“红桃”.将这6张牌背面朝上,从中任意抽取1张,是“红桃”的概率为( ) A.16B.13C.12D.239.如图,将矩形纸片ABCD 沿直线EF 折叠,使点C 落在AD 边的中点C′处,点B 落在点B′处,其中AB=9,BC=6,则FC′的长为( )A.103B. 4C. 4.5D. 510.二次函数2y ax bx c =++的图象如图,且,OA OC =则( )A. 1ac b +=B. 1ab c += C. 1bc a +=D. 以上都不是二、填空题(本题共6小题,每小题3分,共18分)11.如图,EABC ∆边CA 延长线上一点,过点E 作//ED BC .若070BAC ∠=,050CED ∠=,则B ∠=________°.12.如图,∠AOE =∠BOE =15°,EF ∥OB ,EC ⊥OB 于C ,若EC =1,则OF =_____.13.为了建设“书香校园”,某校七年级的同学积极捐书,下表统计了七(1)班40名学生的捐书情况: 捐书(本) 3 4 5 7 10 人数 5710117该班学生平均每人捐书______本.14.中国清代算书《御制数理精蕴》中有这样一题:“马四匹、牛六头,共价四十八两(我国古代货币单位);马三匹、牛五头,共价三十八两.问马、牛各价几何?”设马每匹x 两,牛每头y 两,根据题意可列方程组为_____________.15.如图,无人机于空中A 处测得某建筑顶部B 处的仰角为45,测得该建筑底部C 处的俯角为17.若无人机的飞行高度AD 为62m ,则该建筑的高度BC 为__m .(参考数据:sin170.29≈,cos170.96≈,tan170.31≈)16.甲、乙两人在直线道路上同起点、同终点、同方向,分别以不同的速度匀速跑步1500米,先到终点的人原地休息,已知甲先出发30秒后,乙才出发,在跑步的整个过程中,甲、乙两人的距离y(米)与甲出发的时间x(秒)之间的关系如图所示,则乙到终点时,甲距终点的距离是______米.三.解答下列各题(本题共4小题,其中17、18、19题9分、20题12分,共39分)17.计算:1332)182+18.化简: 2212(1)244x x xx x x +--÷--+ 19.如图,EF=BC ,DF=AC ,DA=EB .求证:∠F=∠C .20.某校为了解九年级学生每天参加体育锻炼的时间,从该校九年级学生中随机抽取20名学生进行调查,得到如下数据(单位:分钟):306070103011570607590,,,,,,,,,,157040751058060307045,,,,,,,,,对以上数据进行整理分析,得到下列表一和表二:根据以上提供的信息,解答下列问题:()1填空:①a=,b=;②c=,d=;()2如果该校现有九年级学生200名,请估计该校九年级学生每天参加体育锻炼的时间达到平均水平及以上的学生人数.四、解答题(本题共3小题,其中21、22题各9分,23题10分,共28分)21.改善小区环境,争创文明家园.如图所示,某社区决定在一块长(AD)16m,宽(AB)9m的矩形场地ABCD上修建三条同样宽的小路,其中两条与AB平行,另一条与AD平行,其余部分种草.要使草坪部分的总面积为1122m,则小路的宽应为多少?22.如图,函数12y x=的图象与函数kyx=(x>0)的图象相交于点P(4,m).(1)求m,k的值;(2)直线y=3与函数12y x =的图象相交于点A ,与函数k y x=(x >0)的图象相交于点B ,求线段AB 长.23.如图,△ABC 中,AB =AC ,以AC 为直径的⊙O 交BC 于点D ,点E 为AC 延长线上一点,且DE 是⊙O 的切线.(1)求证:∠CDE =12∠BAC ; (2)若AB =3BD ,CE =4,求⊙O 的半径.五、解答题(本题共3小题,其中24题11分,25、26题各12分,共35分)24.如图,在平面直角坐标系xOy 中,直线112y x =+与y 轴,x 轴分别相交于点A B 、.点D 是x 轴上动点,点D 从点B 出发向原点O 运动,点E 在点D 右侧,2DE BD =.过点D 作DH AB ⊥于点,H 将DBH △沿直线DH 翻折,得到,DCH 连接CE .设,BD t =DCH 与AOB 重合部分面积为.S 求:(1)求线段BC 的长(用含t 的代数式表示);(2)求S 关于t 的函数解析式,并直接写出自变量t 的取值范围. 25.阅读下面材料,完成()()13-题. 数学课上,老师出示了这样一道题:如图1,在ABC 中,,.BA BC AB kAC ==点F 在AC 上,点E 在BF 上,2BE EF =.点D 在BC 延长线上,连接,180AD AE ACD DAE ∠+∠=、.探究线段AD 与AE 的数量关系并证明.同学们经过思考后,交流了自己的想法:小明:“通过观察和度量,发现CAD ∠与EAB ∠相等.” 小亮:“通过观察和度量,发现FAE ∠与D ∠也相等.”小伟:“通过边角关系构造辅助线,经过进一步推理, 可以得到线段AD 与AE数量关系.”老师:“保留原题条件,延长图1中的,AE 与BC 相交于点H (如图2),若知道DH 与AH 的数量关系,可以求出ABCH的值.”(1)求证:CAD EAB ∠=∠; (2)求ADAE的值(用含k 的式子表示); (3)如图2,若,DH AH =则ABCH的值为 (用含k 的式子表示). 26.已知抛物线2y x bx c =++过点A(m-2,n), B (m+4,n ),C (m ,53n -). (1)b=__________(用含m 的代数式表示); (2)求△ABC 的面积; (3)当1222m x m ≤≤+时,均有6y m -≤≤,求m 的值.答案与解析一、选择题(本题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一个选项是正确的)1.实数4的相反数是()A.14B. -4C.14D. 4【答案】B【解析】【分析】根据相反数的定义即可解答.【详解】∵符号相反,绝对值相等的两个数互为相反数,∴4的相反数是﹣4;故选B.【点睛】本题考查了相反数的定义,熟知只有符号不同的两个数互为相反数是解决问题的关键.2.如图是由4个相同的小正方体组成的一个立体图形,其主视图是()A. B. C. D.【答案】A【解析】【分析】根据三视图的概念即可快速作答.【详解】解:立体图形的主视图,即正前方观察到的平面图,即选项A符合题意;故答案为A.【点睛】本题考查了三视图的概念及正确识别主视图,解题的关键在于良好的空间想象能力.3.2019年1月3日10时26分,“嫦娥四号”探测器飞行约380000千米,实现人类探测器首次在月球背面软着陆.数据380000用科学记数法表示为()A. 38×104B. 3.8×104C. 3.8×105D. 0.38×106【答案】C 【解析】 【分析】对于一个绝对值较大的数,用科学记数法写成10n a ⨯ 的形式,其中110a ≤<,n 是比原整数位数少1的数.【详解】380000=3.8×105. 故选C.【点睛】此题考查了科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.4.(2018乌鲁木齐)在平面直角坐标系xOy 中,将点()12N --,绕点O 旋转180°,得到的对应点的坐标是( )A. ()12, B. ()12-, C. ()12--, D. ()12-, 【答案】A 【解析】【详解】点N 绕着点O 旋转180°,恰好关于原点对称,点(1,2)N --的中心对称点为(1,2),故选A .5.不等式组12220360x x -<⎧⎨-≤⎩的解集是( )A. 46x -<≤B. 4x ≤-或2x >C. 42x -<≤D. 24x ≤<【答案】C 【解析】 【分析】分别求出每一个不等式的解集,再确定出解集的公共部分即可得解. 【详解】解不等式12220x -<,得:4x >-, 解不等式360x -≤,得:2x ≤, 则不等式组的解集为42x -<≤, 故选C .【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键. 6.下列图形,既是轴对称图形又是中心对称图形的是( )A. 正三角形B. 正五边形C. 等腰直角三角形D. 矩形【答案】D【解析】【分析】根据轴对称图形与中心对称图形的概念逐一进行分析判断即可得.【详解】A.正三角形是轴对称图形,不是中心对称图形;B.正五边形是轴对称图形,不是中心对称图形;C.等腰直角三角形是轴对称图形,不是中心对称图形;D.矩形是轴对称图形,也是中心对称图形,故选D.【点睛】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后两部分重合.7.化简()22x的结果是()A. x4B. 2x2C. 4x2D. 4x【答案】C【解析】【分析】利用积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘即可.【详解】(2x)²=2²·x²=4x²,故选C.【点睛】本题考查了积的乘方,解题的关键是掌握积的乘方的运算法则.8.在同一副扑克牌中抽取2张“方块”,3张“梅花”,1张“红桃”.将这6张牌背面朝上,从中任意抽取1张,是“红桃”的概率为()A. 16B.13C.12D.23【答案】A【解析】【分析】直接利用概率公式计算可得.【详解】解:从中任意抽取1张,是“红桃”的概率为16,故选A.【点睛】本题主要考查概率公式,随机事件A 的概率P (A )=事件A 可能出现的结果数÷所有可能出现的结果数.9.如图,将矩形纸片ABCD 沿直线EF 折叠,使点C 落在AD 边的中点C′处,点B 落在点B′处,其中AB=9,BC=6,则FC′的长为( )A. 103B. 4C. 4.5D. 5【答案】D【解析】【分析】设FC ′=x ,则FD=9-x ,根据矩形的性质结合BC=6、点C ′为AD 的中点,即可得出C ′D 的长度,在Rt △FC ′D 中,利用勾股定理即可找出关于x 的一元一次方程,解之即可得出结论.【详解】设FC′=x ,则FD=9﹣x ,∵BC=6,四边形ABCD 为矩形,点C′为AD 的中点,∴AD=BC=6,C′D=3,在Rt △FC′D 中,∠D=90°,FC′=x ,FD=9﹣x ,C′D=3,∴FC′2=FD 2+C′D 2,即x 2=(9﹣x )2+32,解得:x=5,故选D .【点睛】本题考查了矩形的性质以及勾股定理,在Rt △FC′D 中,利用勾股定理找出关于FC′的长度的一元二次方程是解题的关键.10.二次函数2y ax bx c =++的图象如图,且,OA OC =则( )A. 1ac b +=B. 1ab c +=C. 1bc a +=D. 以上都不是【答案】A【解析】【分析】 根据题意可知,本题考察二次函数图像与系数的关系,根据图像与坐标轴的交点,运用两边相等求出交点坐标,代入坐标进行求解.【详解】∵OA OC =∴点A 、C 的坐标为(-c ,0),(0,c)∴把点A 的坐标代入2y ax bx c =++得∴2=0ac bc c -+∴()10c ac b -+=∵0c ≠∴10ac b -+=∴1ac b +=故选A【点睛】本题考察二次函数图像与系数关系,解题关键是根据图像得出系数取值范围,再代入点的坐标进行解决. 二、填空题(本题共6小题,每小题3分,共18分)11.如图,E 为ABC ∆边CA 延长线上一点,过点E 作//ED BC .若070BAC ∠=,050CED ∠=,则B ∠=________°.【答案】60【解析】【分析】利用平行线的性质,即可得到∠CED=∠C=50°,再根据三角形内角和定理,即可得到∠B 的度数.【详解】解:∵ED ∥BC ,∴∠CED=∠C=50°,又∵∠BAC=70°,∴△ABC中,∠B=180°-50°-70°=60°,故答案为60.【点睛】本题主要考查了平行线的性质,解题时注意运用两直线平行,内错角相等.12.如图,∠AOE=∠BOE=15°,EF∥OB,EC⊥OB于C,若EC=1,则OF=_____.【答案】2【解析】【分析】作EH⊥OA于H,根据角平分线的性质求出EH,根据直角三角形的性质求出EF,根据等腰三角形的性质解答即可.【详解】作EH⊥OA于H.∵∠AOE=∠BOE=15°,EC⊥OB,EH⊥OA,∴EH=EC=1,∠AOB=30°.∵EF∥OB,∴∠EFH=∠AOB=30°,∠FEO=∠BOE,∴EF=2EH=2,∠FEO=∠FOE,∴OF=EF=2.故答案2.【点睛】本题考查了等腰三角形的判定、角平分线的性质、平行线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.13.为了建设“书香校园”,某校七年级的同学积极捐书,下表统计了七(1)班40名学生的捐书情况:捐书(本) 3 4 5 7 10人数 5 7 10 11 7该班学生平均每人捐书______本.【答案】6【解析】【分析】利用加权平均数公式进行求解即可得. 【详解】该班学生平均每人捐书3547510711107640⨯+⨯+⨯+⨯+⨯=(本), 故答案为6.【点睛】本题考查了加权平均数,熟练掌握加权平均数的计算公式是解题的关键.14.中国清代算书《御制数理精蕴》中有这样一题:“马四匹、牛六头,共价四十八两(我国古代货币单位);马三匹、牛五头,共价三十八两.问马、牛各价几何?”设马每匹x 两,牛每头y 两,根据题意可列方程组为_____________.【答案】46483538x y x y +=⎧⎨+=⎩【解析】【分析】直接利用“马四匹、牛六头,共价四十八两(我国古代货币单位);马三匹、牛五头,共价三十八两”,分别得出方程得出答案.【详解】解:设马每匹x 两,牛每头y 两,根据题意可列方程组为: 46483538x y x y +=⎧⎨+=⎩ 故答案是:46483538x y x y +=⎧⎨+=⎩【点睛】此题主要考查了二元一次方程组的应用,正确得出等式是解题关键.15.如图,无人机于空中A 处测得某建筑顶部B 处的仰角为45,测得该建筑底部C 处的俯角为17.若无人机的飞行高度AD 为62m ,则该建筑的高度BC 为__m .(参考数据:sin170.29≈,cos170.96≈,tan170.31≈)【答案】262【解析】【分析】作AE BC ⊥于E ,根据正切的定义求出AE ,根据等腰直角三角形的性质求出BE ,结合图形计算即可.【详解】作AE BC ⊥于E ,则四边形ADCE 为矩形,62EC AD ∴==,在Rt AEC ∆中,tan EC EAC AE ∠=, 则62200tan 0.31EC AE EAC =≈=∠, 在Rt AEB ∆中,45BAE ∠=,200BE AE ∴==,20032262()BC m ∴=+=,则该建筑的高度BC 为262m ,故答案为262.【点睛】本题考查的是解直角三角形的应用﹣仰角俯角问题,掌握仰角俯角的概念、熟记锐角三角函数的定义是解题的关键.16.甲、乙两人在直线道路上同起点、同终点、同方向,分别以不同的速度匀速跑步1500米,先到终点的人原地休息,已知甲先出发30秒后,乙才出发,在跑步的整个过程中,甲、乙两人的距离y(米)与甲出发的时间x(秒)之间的关系如图所示,则乙到终点时,甲距终点的距离是______米.【答案】175【解析】试题解析:根据题意得,甲的速度为:75÷30=2.5米/秒,设乙的速度为m 米/秒,则(m -2.5)×(180-30)=75,解得:m =3米/秒,则乙的速度为3米/秒, 乙到终点时所用的时间为:15003=500(秒), 此时甲走的路程是:2.5×(500+30)=1325(米),甲距终点的距离是1500-1325=175(米).【点睛】本题考查了一次函数的应用,读懂题目信息,理解并得到乙先到达终点,然后求出甲、乙两人所用的时间是解题的关键.三.解答下列各题(本题共4小题,其中17、18、19题9分、20题12分,共39分)17.计算:2)+【答案】-1.【解析】【分析】先利用平方差公式简便运算乘法,同时化简二次根式,再合并同类二次根式即可.【详解】解:2)+=3-4+=-1.【点睛】本题考查的是二次根式的混合运算,二次根式的化简,掌握利用平方差公式进行简便运算是解题的关键.18.化简: 2212(1)244x x x x x x +--÷--+ 【答案】3x . 【解析】【分析】先通分,计算括号内的减法,把除法转化为乘法,约分后得到结论. 【详解】解:原式=212(2)122()22(2)2x x x x x x x x x x x x+--+-+--÷=•----323.2x x x x-=•=- 【点睛】本题考查的是分式的化简,考查了分式的加减法,分式的除法,掌握以上运算是解题的关键. 19.如图,EF=BC ,DF=AC ,DA=EB .求证:∠F=∠C .【答案】见解析.【解析】【分析】欲证明∠F =∠C ,只要证明△ABC ≌△DEF(SSS)即可.【详解】证明:DA BE =,DE AB ∴=,在ABC ∆和DEF ∆中,AB DE AC DF BC EF =⎧⎪=⎨⎪=⎩,()ABC DEF SSS ∴∆≅∆,C F ∴∠=∠.【点睛】本题主要考查全等三角形的判定与性质.20.某校为了解九年级学生每天参加体育锻炼的时间,从该校九年级学生中随机抽取20名学生进行调查,得到如下数据(单位:分钟):306070103011570607590,,,,,,,,,,157040751058060307045,,,,,,,,,对以上数据进行整理分析,得到下列表一和表二:根据以上提供的信息,解答下列问题:()1填空:①a=,b=;②c=,d=;()2如果该校现有九年级学生200名,请估计该校九年级学生每天参加体育锻炼的时间达到平均水平及以上的学生人数.【答案】(1)①5,3;②65,70;(2)130人.【解析】【分析】(1)①根据数据统计出a、b;②根据中位数和众数的定义求出c,d即可;(2)先求出样本用样本达到平均水平及以上的学生的概率,然后用九年级学生数×样本达到平均水平及以上的学生的概率即可.【详解】解:()1①经统计:该组数据处于30≤t<60的数据有5个, 处于90≤t<120的数据有3个,∴a=5;b=3故答案为:5;3②将这组数据从小到大排序,位于第10个的数据是60,第11个的数据是70∴中位数为(60+70)÷2=65这组数据中出现次数最多的是70 ∴众数为70 ∴6570,c d==故答案为:65;70.()132********⨯=(人),答:估计该校九年级学生每天参加体育锻炼的时间达到平均水平及以上的学生人数为130人.【点睛】本题考查中位数、众数、平均数、样本估计总体的思想等知识,掌握中位数、众数、平均数等基本知识是解答本题的关键.四、解答题(本题共3小题,其中21、22题各9分,23题10分,共28分)21.改善小区环境,争创文明家园.如图所示,某社区决定在一块长(AD)16m,宽(AB)9m的矩形场地ABCD上修建三条同样宽的小路,其中两条与AB平行,另一条与AD平行,其余部分种草.要使草坪部分的总面积为1122m,则小路的宽应为多少?【答案】小路的宽应为1m .【解析】【分析】设小路的宽应为x 米,那么草坪的总长度和总宽度应该为(16-2x ),(9-x );那么根据题意得出方程,解方程即可.【详解】解:设小路的宽应为x 米,根据题意得:(162)(9)112x x --=,解得:11x =,216x =.∵169>,∴16x =不符合题意,舍去,∴1x =.答:小路的宽应为1米.【点睛】本题考查一元二次方程的应用,弄清“草坪的总长度和总宽度”是解决本题的关键. 22.如图,函数12y x =的图象与函数k y x=(x >0)的图象相交于点P (4,m ). (1)求m ,k 的值;(2)直线y=3与函数12y x =的图象相交于点A ,与函数k y x=(x >0)的图象相交于点B ,求线段AB 长.【答案】(1)m=2,k=8;(2)103.【解析】【分析】(1)将点P(4,m)代入y=x,求出m=2,再将点P(4,2)代入kyx=即可求出k的值;(2) 分别求出A、B两点的坐标,即可得到线段AB的长.【详解】(1)∵函数12y x=的图象过点P(4,m),∴m=2,∴P(4,2),∵函数kyx=(x>0)的图象过点P,∴k=4×2=8;(2)将y=3代入12y x=,得x=6,∴点A(6,3).将y=3代入8yx=,得x=83,∴点B(83,3).∴AB=6﹣83=103.【点睛】本题主要考查了利用待定系数法求函数解析式以及函数图象上点的坐标特征,解题时注意:点在图象上,点的坐标就一定满足函数的解析式.23.如图,△ABC中,AB=AC,以AC为直径的⊙O交BC于点D,点E为AC延长线上一点,且DE是⊙O 的切线.(1)求证:∠CDE=12∠BAC;(2)若AB=3BD,CE=4,求⊙O的半径.【答案】(1)见解析;(2)14.【解析】【分析】(1)根据圆周角定理得出∠ADC=90°,按照等腰三角形的性质和已知的2倍角关系,证明∠ODE为直角即可得到答案;(2)通过证得△CDE∽△DAE,根据相似三角形的性质即可求得.【详解】(1)如图,连接OD,AD,∵AC是直径,∴∠ADC=90°,-∴AD⊥BC,∵AB=AC,∴∠CAD=∠BAD=12∠BAC,∵DE是⊙O的切线;∴OD⊥DE∴∠ODE=90°∴∠ADC=∠ODE∴∠CDE=∠ADO ∵OA=OD,∴∠CAD=∠ADO,∴∠CDE=∠CAD,∠CAD=12∠BAC,∴∠CDE=12∠BAC.(2)解:∵AB=AC,AD⊥BC,∴BD=CD,∵AB=3BD,∴AC=3DC,设DC=x,则AC=3x,∴AD2222,AC DC x-=∵∠CDE=∠CAD,∠DEC=∠AED,∴△CDE∽△DAE,∴CE DC DE DE AD AE∴==,即43422DE DE xx==+∴DE=82,,x=283,∴AC=3x=28,∴⊙O的半径为14.【点睛】本题考查了圆的切线的判定定理、圆周角定理、等腰三角形的性质、三角形相似的判定和性质,解题的关键是作出辅助线构造直角三角形或等腰三角形.五、解答题(本题共3小题,其中24题11分,25、26题各12分,共35分)24.如图,在平面直角坐标系xOy 中,直线112y x =+与y 轴,x 轴分别相交于点A B 、.点D 是x 轴上动点,点D 从点B 出发向原点O 运动,点E 在点D 右侧,2DE BD =.过点D 作DH AB ⊥于点,H 将DBH △沿直线DH 翻折,得到,DCH 连接CE .设,BD t =DCH 与AOB 重合部分面积为.S 求:(1)求线段BC 的长(用含t 的代数式表示);(2)求S 关于t 的函数解析式,并直接写出自变量t 的取值范围.【答案】(1)55t BC =;(2)222420536224825357734288523334t t S t t t t t t ⎧⎛⎫<≤ ⎪⎪⎝⎭⎪⎪⎛⎫=-+-<≤⎨ ⎪⎝⎭⎪⎪⎛⎫-+<≤⎪ ⎪⎝⎭⎩ 【解析】【分析】(1)先根据直线112y x =+求得点A 、B 的坐标,利用勾股定理求得AB 的长,进而可求得5555sin ABO cos ABO ∠=∠=,由翻折知DB DC t ==,12BH CH BC ==,最后根据255BH cos ABO BD ∠==求得55t BH =,即可求得BC 的长; (2)分类讨论:当203t <≤时,当2534t <≤时,当524t <≤时,分别画出相应图形,然后利用相似三角形的性质分别表示出对应的底和高,进而可得S 关于t 的函数解析式即可. 【详解】解:()1∵直线112y x =+与y 轴,x 轴分别相交于点A B 、, ∴点()()012,0A B -,,,∴由勾股定理得22125AB =+=∴在直角AOB 中,525,55sin ABO cos ABO ∠=∠=, 由翻折知:DB DC t ==,12BH CH BC ==, 255BH cos ABO BD∠==, 255t BH ∴=, 455t BC ∴=, ()2当203t <≤时, 过点C 做CG BO ⊥于点G ,45CG t ∴=, 55CG sin ABO BC∴∠==, 45GC t ∴=, 14225S t t ∴=⨯⨯ 245t = 当2534t <≤时, 设OA 交CE 于点F ,45CD BD t GC t ===,, ∴由勾股定理得35GD t =,37255GE t t t ∴=-=, 382255GO t t t =--=-, 78 23255OE EG OG t t t ∴=-=-+=-, //OF CG ,EOFCGE ∴, OF OE CG OG∴=, ()4327OF t ∴=-, 12OFE S OE OF =⋅ ()()14323227t t =⋅-⋅- 222(73)t -= , DCE OFE S S S =-∴2622483577t t =-+-, 当524t <≤时, 设CD 交OA 于点P ,//,OP CG,DOP DGC ∴OP OD CG DG∴=, 2OD t =-,()423OP OP t ∴==-,12S OD OP =⋅⋅∴ 2288333t t =-+, ∴综上所述,222420536224825357734288523334t t S t t t t t t ⎧⎛⎫<≤ ⎪⎪⎝⎭⎪⎪⎛⎫=-+-<≤⎨ ⎪⎝⎭⎪⎪⎛⎫-+<≤⎪ ⎪⎝⎭⎩ 【点睛】本题考查了一次函数的图像与性质,解直角三角形、相似三角形的判定及性质,根据点D 的位置画出相应的图形然后运用分类讨论思想以及相似三角形的性质是解决本题的关键.25.阅读下面材料,完成()()13-题.数学课上,老师出示了这样一道题:如图1,在ABC 中,,.BA BC AB kAC ==点F 在AC 上,点E 在BF 上,2BE EF =.点D 在BC 延长线上,连接,180AD AE ACD DAE ∠+∠=、.探究线段AD 与AE 的数量关系并证明.同学们经过思考后,交流了自己的想法:小明:“通过观察和度量,发现CAD ∠与EAB ∠相等.”小亮:“通过观察和度量,发现FAE ∠与D ∠也相等.”小伟:“通过边角关系构造辅助线,经过进一步推理, 可以得到线段AD 与AE 的数量关系.” 老师:“保留原题条件,延长图1中的,AE 与BC 相交于点H (如图2),若知道DH 与AH 的数量关系,可以求出AB CH的值.”(1)求证:CAD EAB ∠=∠;(2)求AD AE的值(用含k 的式子表示); (3)如图2,若,DH AH =则AB CH 的值为 (用含k 的式子表示). 【答案】(1)证明见解析;(2)3AD AE k =;(3)2115AB k CH ++= 【解析】【分析】(1)由BA BC =可知BAC BCA ∠=∠,再通过180ACD DAE ∠+∠=以及平角为180°,可以得到CAD EAB ∠=∠;(2)方法一:过点C 做ACM ABE ∠=∠,交AD 于点M ,通过AEB AMC 可知AC AM CM AB AE BE ==,通过DCM AFE 可知DM CM AE EF =,通过比例关系可推导出AD AE的值;方法二:过点B 做//BN AC 交AE 延长线于点N ,通过AHC DHA 和ACD ABN 相似得到的比例关系即可可推导出AD AE的值; (3)同方法二辅助线,通过证明AHC DHA ,AFE NBE ,然后由对应边成比例即可推导出结论.【详解】()1BA BC =,BAC BCA ∴∠=∠180,ACD DAE ∠+∠=180,ACD ACB ∠+∠=∴∠=∠ADE ACB,∴∠=∠DAE BAC,∴∠=∠DAC BAE,()2方法一:∠=∠,交AD于点M 过点C做ACM ABE∠=∠,DAC BAE∴AEB AMCAC AM CM∴==AB AE BE=AB kAC1∴=AM AEk1=CM BEk=2BE EF2∴=CM FEk∠=∠+∠AEF EAB ABE∠=∠+∠DMC MAC ACM∴∠=∠DMC AEFACB D DAC∠=∠+∠∠=∠+∠DAE DAC FAEDAE ACB∠=∠∴∠=∠D FAE∴DCM AFEDM CM∴=AE EF2∴=DM AEk3∴=+=AD AM DM AEkAD3∴=AE k方法二:BN AC交AE延长线于点,N 过点B做//,∴∠=∠N FAE∠=∠,AFE EBN∴,AFE NBEAE EF∴=NE BE=BE EF2,∴=NE EA2,NA EA∴=3,∠=∠+∠ACB D DAC,DAE DAC FAE∠=∠+∠,DAE ACB∠=∠,∴∠=∠,D FAE,DAC BAE ∴∠=∠ ACD ABN ∴ AC AD AB AN ∴= ,AB kAC = ,AN kAD ∴= 3,AE kAC ∴= 3AD AE k ∴= ()3同方法二辅助线,D CAH ∠=∠ ,AHC DHA ∠=∠ AHC DHA ∴ 2AH HC DH ∴=⋅ 23AH AC DH AD == 23AD AC ∴= AB kAC = 32AD AB k ∴= 3AD AE k =12AE AB ∴= 设2AH a AB BC b ===,13,2DH a AE b ∴== 2NE AE =NE b ∴=EH AH AE EN NH =-=-322NH b a ∴=- 2AH HC DH =⋅43CH a ∴= 53CD a ∴= ∴由方法二相似得53BN ak = ADHNBH ' AD DH NB NH∴= 33253232b a k ak b a ∴=- 222912200b ab a k ∴--=(123a b -∴=(舍),(223ab +=12AB CH +∴= 【点睛】本题考查了相似三角形的判定和性质,正确作出辅助线是解题的关键.26.已知抛物线2y x bx c =++过点A(m-2,n), B (m+4,n ),C (m ,53n -).(1)b=__________(用含m 的代数式表示);(2)求△ABC 的面积;(3)当1222m x m ≤≤+时,均有6y m -≤≤,求m 的值.【答案】(1)b=-2m-2;(2)24;(3)m =. 【解析】【分析】(1)根据A(m-2,n), B (m+4,n )纵坐标一致,结合对称轴即可求解;(2)先用含m 的代数式表示c ,再带入A 点坐标即可求出n=3,最后利用铅锤法即可求出△ABC 的面积; (3)先用只含m 的代数式表示二次函数解析式,再结合带取值范围的二次函数最值求法分类讨论即可.【详解】(1)∵2y x bx c =++过点A(m-2,n), B (m+4,n ), ∴对称轴2422b m m x -++=-= ∴22b m =--(2)∵22b m =--∴2(22)y x m x c =-++把C (m ,53n -)代入2(22)y x m x c =-++ ∴2523c m m n =+-∴225(22)23y x m x m m n =-+++-把A(m-2,n)代入225(22)23y x m x m m n =-+++-得583n n =-∴n=3∴A(m-2,3), B (m+4,3),C (m ,5-)∴AB=6C 点到x 轴的距离为:3﹣(-5)=8,∴S △ABC=12×6×8=24 (3)∵n=3∴22(22)25y x m x m m =-+++-∴2(1)6y x m =---∴当1x m =+时-6y =最小∵6y m -≤≤ ∴由函数增减性知11222m m m ≤+≤+ 即1m ≥-∴当10m -≤<时 由函数增减性知12x m =时,y m =最大 ∴21(1)62m m m =---∴m =±当0m ≥时由函数增减性知22x m =+时,y m =最大∴2(221)6m m m =+---∴1m =(舍)2m =∴12m -+=【点睛】本题考查二次函数综合运用,当参数比较多时可以带入解析式,利用解方程消元法消去多余的参数,在最后一问中对于带取值范围的二次函数最值需要根据对称轴与取值范围的关系确定范围内的最值.。