动量定理在流体问题上的应用.pptx
- 格式:pptx
- 大小:121.46 KB
- 文档页数:8
流体力学08动量定理导读:给出动量定理在流动中的体现形式。
首先分析流动与受力的关系,然后得出简单流动的动量方程。
当流动较为复杂时,要采用微分形式,也就是拉维斯托克斯方程简称NS方程最后分析动量方程中各项的含义,并针对具体的流动粒子看一下它的应用。
流体与受力流体的运动遵循牛顿定律,所以流动形式直接作用于流体上的力。
来看一个变截面通道内的流动与压力变化。
这个流动属于不可压缩流动,流速与流道横截面积成反比。
而各截面处的压力则可以从吸上来的水柱高度来判断。
可以看出,截面越小,流速越大,而压力就越低。
一般这种流动用于伯努利原理的解释,但从根本上来说,流体遵循的是牛顿定律。
这里给出三个流向位置的速度,从截面积判断,V2大于V1,V3小于V2。
流体的加减速是如何产生的呢?现在只研究收缩段,来分析流体经过收缩段加速的原因。
在收缩段中部,取一个流体微团。
显然,这个流体微团具有向右的加速度,那么它所受到的合力就应该是向右的。
这个合力只能是它四周的流体给他的,确切的说是压差力产生的。
这里画出微团表面的压力分布,可以看出左侧的压力大于右侧形成压差力,这就是微团加速运动的原因了。
通过收缩段的所有流体微团都是在这样的压差力作用下加速的。
把整个收缩段看作一个控制体,一定是进口的压力大,出口的压力小。
与压差力对应,收缩段进口流速小,出口流速大。
所以流体的加减速运动从根本上来看是遵循牛顿第二定律的。
现在我们再来看一个气球放气时的推力问题。
如果直接对气球内的气体应用牛顿第二定律,公式是这样: 为气体的质量,为气体的速度,这属于拉格朗日法。
如果用表示示气体单位时间内的动量变化,这个动量变化是多少呢?这要把气体分为两部分,考虑保持在气球内的,和从喷口排出的。
假设从喷口排出的气体流速是,单位时间排出的气体质量是,那么所有气体的动量变化是乘以吗?不完全是,因为气球内的气体质量发生了变化,并且产生了一定的流动,所以整体的动量变化是两部分之和。
动量定理流体问题考点规律分析1.解答质量连续变动问题的基本思路(1)建立“柱体”模型。
对于流体,可沿流速v的方向选取一段柱形流体,设在Δt时间内通过某一横截面积为S的流体长度为Δl,如图所示,若流体的密度为ρ,那么,在这段时间内流过该截面的流体的质量为Δm=ρSΔl=ρSvΔt;(2)掌握“微元”方法。
当所取时间Δt足够短时,图中流体柱长度Δl就足够短,质量Δm也很小,这种以一微小段为研究对象的方法就是微元法;(3)运用动量定理,即流体微元所受的合外力的冲量等于微元动量的增量,Δt=Δp。
即F合2.解答质量连续变动问题的具体步骤应用动量定理分析连续体相互作用问题的方法是微元法,具体步骤为:(1)确定一小段时间Δt内的连续体为研究对象;(2)写出Δt内连续体的质量Δm与Δt的关系式;(3)分析连续体的受力情况和动量变化;(4)应用动量定理列式、求解。
典型例题1.飞船在飞行过程中有很多技术问题需要解决,其中之一就是当飞船进入宇宙微粒尘区时如何保持飞船速度不变的问题。
我国科学家已将这一问题解决,才使得“神舟五号”载人飞船得以飞行成功。
假如有一宇宙飞船,它的正面面积为S=0.98 m2,以v=2×103 m/s的速度进入宇宙微粒尘区,尘区每1 m3空间有一微粒,每一微粒平均质量m=2×10-4g,若要使飞船速度保持不变,飞船的牵引力应增加多少?(设微粒与飞船相碰后附着到飞船上)[规范解答]由于飞船速度保持不变,因此增加的牵引力应与微粒对飞船的作用力相等,据牛顿第三定律知,此力也与飞船对微粒的作用力相等。
只要求出时间t内微粒的质量,再由动量定理求出飞船对微粒的作用力,即可得到飞船增加的牵引力。
时间t内附着到飞船上的微粒质量为M=m·S·vt,设飞船对微粒的作用力为F,由动量定理得Ft=Mv=mSvt·v,即F=mSv2,代入数据解得F=0.784 N,由牛顿第三定律得,微粒对飞船的作用力为0.784 N,故飞船的牵引力应增加0.784 N。
动量定理解决的流体类问题庆威邀请你一起研究物理,探索坚持的力量。
本文将介绍动量定理在流体类问题中的应用,以及一些有趣的物理实验。
1.XXX号的光帆利用太阳光的光压修正轨道,节约了燃料。
假设光帆为一个边长为a的正方形聚酰亚胺薄膜,已知太阳发光的总功率为P,伊卡洛斯号到太阳的距离为r,光速为c。
如果伊卡洛斯号正对太阳,并且80%反射太阳光,那么伊卡洛斯号受到的太阳光推力大小为多少?解析:在时间Δt内,照射到光帆上的光子总能量为ΔE=PΔt。
由于光子的能量为hν,动量表达式为p=h/λ,因此这些光的总动量为P/c。
80%反射太阳光造成的动量变化为ΔP=PΔt,根据动量定理有:FΔt=ΔP,解得:F=9Pa^2/(220πrc)。
2.我国研制的大推力新型火箭发动机联试成功,喷射出的气体速度约为3 km/s,产生的推力约为4.8×10^6 N。
如果在1s时间内喷射的气体质量为多少?解析:设该发动机在ts时间内,喷射出的气体质量为m,根据动量定理,Ft=mv,可知,在1 s内喷射出的气体质量m=4.8×10^6 N/3000 m/s=1.6×10^3 kg。
3.一座平顶房屋,顶的面积为S=40 m^2.第一次连续下了t=24小时的雨,雨滴沿竖直方向以v=5.0 m/s的速度落到屋顶,假定雨滴撞击屋顶的时间极短且不反弹,并立即流走。
第二次气温在摄氏零下若干度,而且是下冻雨,也下了24小时,全部冻雨落到屋顶便都结成冰并留在屋顶上,测得冰层的厚度d=25 mm。
已知两次下雨的雨量相等,水的密度为1.0×10^3kg/m^3,冰的密度为9×10^2 kg/m^3.根据以上数据估算,第一次下雨过程中,雨对屋顶的撞击使整个屋顶受到的压力为多少?解析:第一次下雨的雨量与第二次下雨的雨量相等,因此第一次下雨的总质量为m=ρSVt=1.0×10^3 kg/m^3×40 m^2×24h×3600 s/h=3.46×10^9 kg。
巧建模型求解流体问题流体问题涉及的对象有液体流、气体流、粒子流等,因其与外界作用具有一定的连续性,与平时研究的独立实物有所不同,故此它的有关计算成为同学们学习中的一个难点。
本文拟从巧妙构建模型、恰当选取规律出发,探究其解法,旨在培养同学们处理此类问题的能力。
一、 模型的建立。
大家之所以对此问题感到比较棘手,主要是不知道“选取谁作为研究对象去进行分析”。
求解此类问题,通常建立如下“柱状模型”:如图1所示,沿流体流动方向取一截面,面积为S ,取t ∆时间内流过该截面的流体为研究对象,则t ∆内流过该截面的流体的体积t Sv V ∆⋅=∆,这段流体的质量为t Sv V m ∆⋅=∆⋅=∆ρρ。
由此可近一步确定这段流体的其它物理量,如动量t Sv mv p ∆=∆=2ρ、动能t sv mv E K ∆=∆=322121ρ等。
这样,把流体转化成了我们熟悉的独立实物,具备了物体的特征,再选取合适的物理规律,便可求解。
因流体与外界作用时,作用时间短,涉及的物理量主要有力、时间及速度的变化,故此动量定理是处理流体问题的首选取规律。
二、模型的应用例1 水力采煤就是利用从高压水枪中喷出的强力水柱冲击煤层而使煤层碎裂。
设水枪的直径为d ,水速为v ,水的密度为ρ,水柱垂直地冲击到竖直煤壁上后,沿竖直煤壁流下,求水柱施于煤层上的冲力大小。
解析 如图2所示取t ∆时间内射到煤层的水为研究对象,设这部分水的质量为m ∆,则 t v d m ∆⋅⋅=∆024πρ这部分水经t ∆时间,其水平方向的动量由m ∆v 0变成零,以水喷出方向为正方向,由动量定理得00mv t F -=∆(F 表示水受到的煤层的作用力),故42020v d t mv F ρπ-=∆∆-= 由牛顿第三定律,水柱对煤层的作用力为 42020/v d t mv F F ρπ=∆∆=-=。
S 图1 图2v例2 竖直发射的火箭质量M =kg 3106⨯,已知每秒喷出气体的质量为m 0=200kg ,若使火箭最初能得到20m/s 2的向上加速度,喷气的速度应为多大?(g 取10 m/s 2)解析 取t ∆时间内喷出的气体为研究对象,则t m m ∆⋅=∆0因m ∆相对火箭质量很小,故可忽略喷出气体后火箭重力的变化,设火箭受到的推力为F ,对火箭应用牛顿第二定律得 Ma Mg F =-以这部分气体为研究对象,由动量定理得mv t F ∆=∆⋅/由于F =F /,所以火箭喷射气体的速度为 s m m a g M m t a g M v /900)()(0=+=∆∆+=。
应用动量定理处理“流体模型”的冲击力问题1.研究对象:常常需要选取流体为研究对象,如水、空气等.2.研究方法:是隔离出一定形状的一部分流体作为研究对象,然后列式求解.3.基本思路(1)在极短时间Δt内,取一小柱体作为研究对象.(2)求小柱体的体积ΔV=v SΔt(3)求小柱体质量Δm=ρΔV=ρv SΔt(4)求小柱体的动量变化Δp=vΔm=ρv2SΔt(5)应用动量定理FΔt=Δp1.为估算池中睡莲叶面承受雨滴撞击产生的平均压强,小明在雨天将一圆柱形水杯置于露台,测得1小时内杯中水位上升了45 mm.查询得知,当时雨滴竖直下落速度约为12 m/s,据此估算该压强约为(设雨滴撞击睡莲后无反弹,不计雨滴重力,雨水的密度为1×103 kg/m3)()A.0.15 PaB.0.54 PaC.1.5 PaD.5.4 Pa2.宇宙飞船在飞行过程中有很多技术问题需要解决,其中之一就是当飞船进入宇宙微粒尘区时如何保持速度不变的问题.假设一宇宙飞船以v=2.0×103m/s的速度进入密度ρ=2.0×10-6kg/m3的微粒尘区,飞船垂直于运动方向上的最大截面积S=5 m2,且认为微粒与飞船相碰后都附着在飞船上,则飞船要保持速度v,所需推力多大?3.某游乐园入口旁有一喷泉,喷出的水柱将一质量为M的卡通玩具稳定地悬停在空中.为计算方便起见,假设水柱从横截面积为S的喷口持续以速度v0竖直向上喷出;玩具底部为平板(面积略大于S);水柱冲击到玩具底板后,在竖直方向水的速度变为零,在水平方向朝四周均匀散开.忽略空气阻力.已知水的密度为ρ,重力加速度大小为g.求:(1)喷泉单位时间内喷出的水的质量;(2)玩具在空中悬停时,其底面相对于喷口的高度.4.一股水流以10 m/s的速度从喷嘴竖直向上喷出,喷嘴截面积为0.5 cm2,有一质量为0.32 kg 的球,因受水对其下侧的冲击而停在空中,若水冲击球后速度变为0,则小球停在离喷嘴多高处?(g取10 m/s2)5.如图所示,由喷泉中喷出的水柱,把一个质量为M的垃圾桶倒顶在空中,水以速率v0、恒定的质量增率(即单位时间喷出的质量)ΔmΔt从地下射向空中.求垃圾桶可停留的最大高度.(设水柱喷到桶底后以相同的速率反弹)6.将质量为500 g的杯子放在台秤上,一个水龙头以每秒700 g水的流量注入杯中。