线段、射线、直线知识点总结及习题
- 格式:doc
- 大小:107.00 KB
- 文档页数:6
七年级数学上册第四章知识点及练习题第四章:平面图形及其位置关系知识梳理一、线段、射线、直线1、线段、射线、直线的定义线段是有两个端点的崩直线,可以量出长度。
将线段向一个方向无限延伸就形成了射线,射线有一个端点,无法量出长度。
将线段向两个方向无限延伸就形成了直线,直线没有端点,也无法量出长度。
结论:射线是直线的一部分,线段是射线和直线的一部分。
2、线段、射线、直线的表示方法线段的表示方法有两种:一是用两个端点来表示,二是用一个小写的英文字母来表示。
射线的表示方法只有一种:用端点和射线上的另一个点来表示,端点要写在前面。
直线的表示方法有两种:一是用直线上的两个点来表示,二是用一个小写的英文字母来表示。
3、直线公理过两点有且只有一条直线,简称两点确定一条直线。
4、线段的比较线段的比较有叠合比较法和度量比较法。
5、线段公理连接两点的线段是最短的,叫做这两点的距离。
6、线段的中点如果线段上有一点,把线段分成相等的两条线段,这个点叫这条线段的中点。
若C是线段AB的中点,则AC=BC=1/2 AB或AB=2AC=2BC。
例题:1、如果线段AB=5cm,BC=3cm,那么A、C两点间的距离是()解:无法确定A、B、C三点位置是否共线,无法确定答案,选D。
2、已知线段AB=20㎝,C为AB中点,D为CB上一点,E为DB的中点,且EB=3㎝,则CD= ________cm.解:BC=0.5AB=10cm,DB=2EB=6cm,CD=BC-DB=10-6=4cm。
3、平面上有三个点,可以确定直线的条数是()解:由直线公理,过两点有且只有一条直线,所以三个点可以确定三条直线,选C。
二、角1、角的概念角是由两条有共同端点的射线组成的图形,两条射线叫角的边,共同的端点叫角的顶点。
角还可以看成是一条射线绕着他的端点旋转所成的图形。
2、角的表示方法角用“∠”符号表示,分别用两条边上的两个点和顶点来表示(顶点必须在中间),或在角的内部写上阿拉伯数字或小写的希腊字母来表示。
直线、射线、线段(基础)知识讲解
【学习目标】
1.理解直线、射线、线段的概念,掌握它们的区别和联系;
2. 利用直线、线段的性质解决相关实际问题;
3.利用线段的和差倍分解决相关计算问题.
【要点梳理】
要点一、直线
1.概念:直线是最简单、最基本的几何图形之一,是一个不作定义的原始概念,直线常用“一根拉得紧的细线”、“一张纸的折痕”等实际事物进行形象描述.
2. 表示方法:(1)可以用直线上的表示两个点的大写英文字母表示,如图1所示,可表示为直线AB(或直线BA).
(2)也可以用一个小写英文字母表示,如图2所示,可以表示为直线l.
3.基本性质:经过两点有一条直线,并且只有一条直线.简单说成:两点确定一条直线.要点诠释:
直线的特征:(1)直线没有长短,向两方无限延伸.
(2)直线没有粗细.
(3)两点确定一条直线.
(4)两条直线相交有唯一一个交点.
4.点与直线的位置关系:
(1)点在直线上,如图3所示,点A在直线m上,也可以说:直线m经过点A.
(2)点在直线外,如图4,点B在直线n外,也可以说:直线n不经过点B.
要点二、线段
1.概念:直线上两点和它们之间的部分叫做线段.
2.表示方法:
(1)线段可用表示它两个端点的两个大写英文字母来表示,如图所示,记作:线段AB或线段BA.
(2)线段也可用一个小写英文字母来表示,如图5所示,记作:线段a.
3. “作一条线段等于已知线段”的两种方法:
法一:用圆规作一条线段等于已知线段.例如:下图所示,用圆规在射线AC上截取AB=a.
法二:用刻度尺作一条线段等于已知线段.例如:可以先量出线。
第四章 几何图形初步4.2 直线、射线、线段一、知识考点知识点1【直线】1、直线:把线段向两端无限延伸形成的图形叫做直线。
2、特点:是直的;无粗细之分;无端点;不可以度量;不可以比较长短,无限长。
3、基本性质:经过两点有且只有一条直线(两点确定一条直线);4、直线有两种表示方法:(1)用直线上任意两点的大写字母,如:表示为直线AB 或直线BA 。
(2)也可以用一个小写字母表示,如:直线l5、直线和点的位置关系:(1)在直线上:点O 在直线l 上,或者说说直线l 经过点O(2)点在直线外:点P 在直线l 外,或者说说直线l 不经过点P6、交点:当两条不同的直线有一个公共点时,我们就称这两条直线相交,这个公共点叫做他们的交点。
O Pl知识点2【射线】1、射线:将线段向一个方向无限延长,就形成了射线,射线有一个端点。
2、特点:是直的,有一个端点,不可以度量,不可以比较长短,无限长。
3、射线有两种表示方法:(1)可以用两个大写英文字母表示,其中一个是射线的端点,另一个是射线上除端点外的任意的一点,端点写在前面。
(如图:可以记作射线OM,但不能记作射线MO) (2)可以用一个小写英文字母表示,比如:射线OM也可以记为射线l。
4、射线的画法:画射线一要画出射线端点,二要画出射线经过一点,并向一旁延伸的情况。
知识点3【线段】1、线段:直线上两个点和它们之间的部分叫做线段,这两个点叫做线段的端点。
2、特点:线段是直的,它有两个端点,他的长度是有限的,可以度量的,可以比较长短。
3、基本性质:(1) 线段公理:两点之间的所有连线中,线段最短(两点之间,线段最短)(2) 两点之间的距离:两点之间线段的长度,叫做这两点之间的距离。
注意:两点间的距离是指线段的长度,是一个数值,而不是指线段本身。
(3) 线段的中点到两端点的距离相等。
(4) 线段的大小关系和它们的长度的大小关系是一致的4、线段有两种表示方法:(1)可以用它的两个端点的大写英文字母来表示,如线段AB(或线段BA)(2)可以用一个小写字母来表示,如线段a5、线段的画法:用直尺和尺规作图(尺规作图)已知:线段a(如图所示),用直尺和圆规画一条线段,使它等于已知线段a第一步:任意画一条射线AC第二步:用圆规量取已知线段a的长度。
第四章:基本的平面图形4.1 线段、射线、直线1、线段、射线、直线线段:绷紧的琴弦,人行横道线都可以近似的看做线段。
线段有两个端点。
射线:将线段向一个方向无限延长就形成了射线。
射线有一个端点。
直线:将线段向两个方向无限延长就形成了直线。
直线没有端点。
3(1)直线公理:经过两个点有且只有一条直线。
(两点确定一条直线。
)(2)过一点的直线有无数条。
(3)直线是是向两方面无限延伸的,无端点,不可度量,不能比较大小。
4、点和直线的位置关系有两种:①点在直线上,或者说直线经过这个点。
②点在直线外,或者说直线不经过这个点。
※课时达标1.填写下表:2.如图,共有 条线段.3.用两个钉子就可以把木条钉在墙上,其依据是_________ .4.平面上有五条直线,则这五条直线最多有_____交点,最少有_____个交点.5.平面上两条直线的位置关系只有两种,即__________和_________________.6.平面上有四个点,无三点共线,以其中一点为端点,并且经过另一点的射线共有_______条.4.2 比较线段的长短1、线段的性质(1)线段公理:两点之间的所有连线中,线段最短。
(两点之间线段最短。
)(2)两点之间的距离:两点之间线段的长度,叫做这两点之间的距离。
(3)线段的大小关系和它们的长度的大小关系是一致的。
2.线段的中点:点M把线段AB分成相等的两条相等的线段AM与BM,点M叫做线段AB 的中点。
AM = BM =1/2AB (或AB=2AM=2BM)。
线段的中点到两端点的距离相等。
※课时达标1.如图:这是A、B两地之间的公路,在公路工程改造计划时,为使A、B两地行程最短,应如何设计线路?在图中画出.并说明你的理由.2.在直线AB上,有AB=5 cm,BC=3 cm,求AC的长.(1)当C在线段AB上时,AC=_______.(2)当C在线段AB的延长线上时,AC=____.3.比较右图中二人的身高,我们有_______种方法.一种为直接用卷尺量出,另一种可以让两人站在一块平地上,再量出差.这两种方法都是把身高看成一条_______.方法(1)是直接量出线段的_______,再作比较.方法(2)是把两条线段的一端_______,再观察另一个_______.4.已知两条线段的差是10 cm,这两条线段的比是2∶3,求这两条线段的长.※课后作业★基础巩固1.如图,点C分AB为2∶3,点D分AB为1∶4,若AB为 5 cm,则AC=_____cm,BD=____cm,CD=_______cm.中,BC_____AB+AC(填“>”“<”“=”),理由是___________________.2.在ABC3.直线l 上依次有三点A,B,C,AB:BC=2:3,如果AB=2,那么AC=_______.4.3 角1. 角:有公共端点的两条射线组成的图形叫做角,两条射线的公共端点叫做这个角的顶点,这两条射线叫做这个角的边。
4.1线段、射线、直线
1、线段、射线、直线的定义
(1)线段:线段可以近似地看成是一条有两个端点的崩直了的线。
线段可以量出长度。
(2)射线:将线段向一个方向无限延伸就形成了射线,射线有一个端点。
射线无法量出长度。
(3)直线:将线段向两个方向无限延伸就形成了直线,直线没有端点。
直线无法量出长度。
结论:直线、射线、线段之间的区别:联系:射线是直线的一部分。
线段是射线的一部分,也是直线的一部分。
2、点和直线的位置关系有两种:
①点在直线上,或者说直线经过这个点。
②点在直线外,或者说直线不经过这个点。
3、直线的性质
(1)直线公理:经过两个点有且只有一条直线。
简称两点确定一条直线。
(2)过一点的直线有无数条。
(3)直线是是向两方面无限延伸的,无端点,不可度量,不能比较大小。
(4)直线上有无穷多个点。
(5)两条不同的直线至多有一个公共点。
直线、射线、线段1.直线:直,向两边无限延伸,无宽窄。
2.直线的性质(公理):经过两点能够做一条直线,且只有一条直线。
两点确定一条直线。
.........3.关系【同一平面内】1)相交(垂直) 2)平行相交:如果两条直线有一个..公共点,则两条直线相交。
平行:两条直线没有公共点。
关系【不在同一平面内】1)相交(垂直) 2)平行 3)异面直线1.射线:直线上一点和它一旁的部分。
2.射线直线关系:射线是直线的一部分。
3.规律若直线上有N个点,则有2N条射线。
射线只能..反向延伸。
1.线段:直线上两点和它们之间的的部分。
2.线段的性质(公理):连接两点的所有线中,线段最短。
两点之间线段最短........。
3.两点间的距离叫连结两点间的线段的长度..。
距离不是线段,线段是一个几何图形,而距离是一个数值,它反映的是线段长短。
重要规律当一条直线有N个点时射线 2N条线段 N(N-1)÷2(射线和线段都是直线上的一部分:将射线反向延伸就可得到直线;将线段一方延伸就得到射线,两方延伸就得到直线。
)线段的比较一、线段的比较大小【长度】1.度量法2.叠合法:a.两条线段一个端点重合。
b.共线c.看另一端位置二.线段和、差、倍、分倍、分1.线段的中点线段上一点把这条线段分成两条相等的线段。
若三条线段中满足两条线段之和等于第三线段,则三点共线。
角1.角的定义:(1)有公共端点的两条射线所组成的图形叫做角,这个公共端点叫做角的顶点,这两条射线叫做角的边.(2)角也可看成是由一条射线绕着它的端点旋转而成的图形.(3)角定义包含两层含义:①有公共端点;②两条射线.2. 1周角=2平角=4直角 【度、分、秒的转换计算】160160''''︒==(1)平角是指射线旋转到与起始位置成一直线时所成的角.(2)周角是指射线旋转回到起始位置所成的角.注意:平角的特点是两边成一条直线,但直线与平角的意义是不同的,不要误认为直线就是平角.同样,周角的特点是两边重合成一条射线,不要误说射线就是周角,射线和周角的意义也是不一样的.3.角的平分线一条射线把一个角分成两个相等的角,这条射线叫做这个角的平分线4.余角:如果两个角的和等于90︒(直角),就说这两个角互为余角.5.补角:如果两个角的和等于180︒(平角),就说这两个角互为补角.90,αβαβ+=︒⇔互余180,αβαβ+=︒⇔互补6.方向表示(应用题)(1)东北方向(即北偏东45︒或东偏北45︒)————射线OA(2)北偏西60︒方向(或西偏北30︒方向) ————射线OB7.时钟上的时针与分针的角度注意半点的时候时针的位置5:30时,时针与分针的夹角的度数为:8.角的个数数角的个数必须不重不漏,从一点引出n (n ≥2)条射线组成的角有n (n-1)÷2个。
直线、射线、线段知识点1.直线(1)定义:一点在空间沿着一个方向及它的相反方向运动,所形成的图形就是直线.(2)直线公理:经过两点___________直线,并且___________直线.简单说成:___________.(3)表示方法:直线AB或直线a.(4)当两条不同的直线有一个公共点时,我们就称这两条直线___________,这个公共点叫做它们的___________.2.射线(1)定义:直线上的一点和它一旁的部分叫做射线.(2)特征:是直的,有一个端点,不可以度量,不可以比较长短,无限长.(3)表示方法:射线AB或射线a.3.线段(1)定义:直线上两个点和它们之间的部分叫做线段.(2)特征:线段是直的,它有两个端点,它的长度是有限的,可以度量,可以比较长短.(3)表示方法:线段AB或线段a.(4)两点的所有连线中,___________最短.简单说成:两点之间,___________.(5)连接两点间的___________,叫做这两点的距离.4.方法归纳:(1)过一点的直线有___________;直线是是向___________方向无限延伸的,无端点,不可度量,不能比较大小;(2)要注意区别直线公理与线段的性质:直线公理是指___________,线段的性质是指两点之间线段最短;在线段的计算过程中,经常涉及线段的性质、线段的中点以及方程思想.(3)延伸与延长是不同的,线段不能___________,但可以___________,直线和射线能___________,但是不能___________;(4)直线和线段用两个大写字母表示时,与字母的前后顺序___________,但射线必须是表示端点的字母写在前面,不能互换;(5)直线中“有且只有”中的“有”的含义是___________,“只有”的含义是,“有且只有”与“确定”的意义相同;(6)射线:一要确定___________,二要确定___________,二者缺一不可.K知识参考答案:1.(2)有一条,只有一条,两点确定一条直线;(4)相交,交点3.(4)线段,线段最短;(5)线段的长度4.(1)无数条,两个(2)两点确定一条直线(3)延伸,延长,延伸,延长(4)无关(5)存在性,唯一性(6)端点,延伸方向K—重点(1)直线公理;(2)线段的性质K—难点直线、射线、线段的概念K—易错直线、射线、线段的联系和区别一、直线、射线、线段【例1】下列说法中正确的个数为①射线OP和射线PO是同一条射线;②连接两点的线段叫两点间的距离;③两点确定一条直线;④若AC=BC,则C是线段AB的中点.A.1个B.2个C.3个D.4个【答案】A【解析】①射线OP端点是O,从O向P无限延伸,射线PO端点是P,从P向O无限延伸,所以不是同一条射线,故①错误;【名师点睛】(1)直线、射线、线段的表示方法①直线:用一个小写字母表示,如:直线l,或用两个大写字母(直线上的)表示,如直线AB.②射线:是直线的一部分,用一个小写字母表示,如:射线l;用两个大写字母表示,端点在前,如:射线OA.注意:用两个字母表示时,端点的字母放在前边.③线段:线段是直线的一部分,用一个小写字母表示,如线段a;用两个表示端点的字母表示,如:线段AB(或线段BA).(2)点与直线的位置关系:①点经过直线,说明点在直线上;②点不经过直线,说明点在直线外.二、直线的性质(1)直线公理:经过两点有且只有一条直线.简称:两点确定一条直线.(2)经过一点的直线有无数条,过两点就唯一确定,过三点就不一定了.【例2】平面上有四点,过其中每两点画出一条直线,可以画直线的条数为A.1或4 B.1或6C.4或6 D.1或4或6【答案】D【解析】如图所示:分别根据四点在同一直线上、三点在同一条直线上、任意三点均不在同一条直线上描出各点,再根据两点确定一条直线画出各直线可知:平面上有四点,过其中每两点画出一条直线,可以画直线的条数为1或4或6.故选D.三、线段的性质线段公理:两点的所有连线中,可以有无数种连法,如折线、曲线、线段等,这些所有的线中,线段最短.简单说成:两点之间,线段最短.【例3】把一条弯曲的公路改为直路,可以缩短路程,其理由是A.两点之间,线段最短B.两点确定一条直线C.线段有两个端点D.线段可以比较大小【答案】A【解析】把一条弯曲的公路改为直路,其理由是:两点之间,线段最短.故选A.四、两点之间的距离(1)两点间的距离连接两点间的线段的长度叫两点间的距离.(2)平面上任意两点间都有一定距离,它指的是连接这两点的线段的长度,学习此概念时,注意强调最后的两个字“长度”,也就是说,它是一个量,有大小,区别于线段,线段是图形.线段的长度才是两点的距离.可以说画线段,但不能说画距离.【例4】已知线段AB=8cm,在线段AB的延长线上取一点C,使线段AC=12cm,那么线段AB和AC中点的距离为A.2cm B.3cm C.4cm D.5cm【答案】A五、比较线段的长短(1)比较两条线段长短的方法有两种:度量比较法、重合比较法.就结果而言有三种结果:AB>CD、AB=CD、AB<CD.(2)线段的中点:把一条线段分成两条相等的线段的点.(3)线段的和、差、倍、分及计算做一条线段等于已知线段,可以通过度量的方法,先量出已知线段的长度,再利用刻度尺画条等于这个长度的线段,也可以利用圆规在射线上截取一条线段等于已知线段.【例5】如图,四条线段中,最短和最长的一条分别是A.ac B.bdC.ad D.bc【答案】B【解析】通过观察测量比较可得:d线段长度最长,b线段最短.故选B.。
M O a线段、射线、直线【知识要点】知识点1、线段、直线、射线的概念:线段:一段拉直的棉线可近似地看作线段,线段有两个端点。
线段的画法:(1)画线段时,要画出两个端点之间的部分,不要画出向任何一方延伸的情况.(2)以后我们说“连结 ”就是指画以A 、B 为端点的线段.射线:将线段向一个方向无限延长,就形成了射线,射线有一个端点。
如手电筒、探照灯射出的光线等。
射线的画法:画射线 一要画出射线端点 ;二要画出射线经过一点,并向一旁延伸的情况.直线:将线段向两个方向无限延长就形成了直线,直线没有端点。
如笔直的铁轨等。
直线的画法:用直尺画直线,但只能画出一部分,不能画端点。
知识点2、线段、直线、射线的表示方法:(1) 点的记法:用一个大写英文字母(2) 线段的记法:①用两个端点的字母来表示 ②用一个小写英文字母表示 如图:记作线段AB 或线段BA , 记作线段a ,与字母顺序无关 此时要在图中标出此小写字母(3) 射线的记法:用端点及射线上一点来表示,注意端点的字母写在前面如图:记作射线OM,但不能记作射线MO(4) 直线的记法:①用直线上两个点来表示 ②用一个小写字母来表示如图:记作直线AB 或直线BA , 记作直线l与字母顺序无关。
此时要在图中标出此小写字母知识点3、线段、射线、直线的区别与联系:联系:三者都是直的,线段向一个方向延长可得到射线,线段向两个方向延长可得到直线,故射线、线段都是直线的一部分,线段是射线的一部分。
区别:直线可以向两方延伸,射线可以向一方无限延伸,线段不能延伸,三者的区别见下表:BA BAlB AaMOBAkB A名称图形表示方法界限端点长度线段线段AB(或线段BA)(字母无序)线段a 两方有界两个有射线射线AB(字母有序)一方有界,一方无限一个无直线直线AB(或直线BA)(字母无序)直线l 两方无限无无知识点4、直线的基本性质(重点)(1)经过一点可以画无数条直线(2)经过两点只可以画一条直线直线的基本性质:经过两点有且只有一条直线(也就是说:两点确定一条直线)注:“确定”体现了“有”,又体现了“只有”。
线段、射线、直线【知识要点】1.线段的三个特征:直的、有长短、没有粗细.2.线段的表示方法:①一条线段可以用它的两个端点字母表示(如线段AB或者BA)。
②一条线段可以用一个小写字母表示(如线段a).A B a3。
射线:将线段向一个方向无限延长就形成了射线,射线有一个端点。
4.射线的表示方法:①以O表示射线的端点,M表示射线上的除O点外的任意一点,这条射线就可以表示为射线OM,表示端点的字母一定要写在前面(如OM).②用一个小写字母表示(射线l)。
lO M5.直线:将线段向两方无限延长就形成直线。
6.直线的表示方法:①在直线上任取两点,用表示这两点的大写字母表示这条直线(如直线AB或者直线BA)。
②用一个小写字母代表一条直线(如直线l)。
lA B7.直线的性质:①直线公理:过两点有且只有一条直线(两点之间直线最短)。
②直线是向两方无限延长的,无端点,不可度量,不能比较大小.③直线上有无穷多个点.♍经过一点的直线有无穷多条。
♎两条不同直线至多有一个公共点。
8.线段、射线、直线的区别与联系:①联系:射线、线段都是直线的一部分,线段是射线的一部分.②区别:名称图形区别和联系性质直线无端点无长短(1)直线向两个方向无限延伸(2)过两点有且只有一条直线(直线公理)(3)两条直线相交,有且只有一个交点射线有1个端点,无长短,射线是直的一部分射线向一个方向无限延伸.线段有两个端点,有长短,它是射线、直线的一部分在所有连接两点的线中,线段最短9.直线上有两个点,就有1条线段,有三个点,就有1+2=3条线段....。
有n个点,就有2)1()1(54321-=-++++++n nn条线段.一点把直线分成两条射线,两点分直线为4条射线,三点分直线为6条射线..。
..。
,n个点就将直线分为2n条射线。
【例题巧解点拨】例1.平面上有四个点,过其中每两点画直线,可以画多少条?例2。
如图,A,B,C,D是直线L上顺次四点,且线段AC=5, BD=4,则线段AB—CD 等于 ___________.例3。
线段射线与直线的概念与判断知识点总结线段、射线和直线是几何学中常见的概念,它们在图形分析和问题解决中起着重要的作用。
本文将对线段、射线和直线的概念进行总结,并介绍它们的判断方法。
1. 线段的概念线段是由两个不同点A和B确定的有限部分。
通常用直线上的两个点A和B来表示线段,记作AB。
线段AB的长度可以通过测量两个端点之间的距离来确定。
线段的长度是有限的,因此在直线上有起点A和终点B。
2. 射线的概念射线是由一个起点A和一个经过该点的方向确定的无限延伸部分。
射线通常用一个起点A和一个经过该点的方向线段来表示,记作→AB。
射线的长度是无限的,因此在直线上只有一个起点A,没有终点。
3. 直线的概念直线是由无数个点沿着同一方向无限延伸而成的。
直线通常用一个大写字母表示,如直线L。
直线上的任意两个点可以确定一条直线,也可以通过给定一点和一条经过该点的方向来确定一条直线。
4. 判断线段、射线和直线要判断一个几何图形是线段、射线还是直线,可以根据以下方法进行判断:4.1 判断线段:如果在直线上给出两个不同的点A和B,并且这两个点之间有明显的起点和终点,那么这个几何图形就是线段。
线段的长度是有限的,可以通过测量两个端点之间的距离得到。
4.2 判断射线:如果在直线上给出一个点A和一个经过该点的方向,且这个方向与直线上其他点的连接方向不同,那么这个几何图形就是射线。
射线的长度是无限的,只有一个起点,没有终点。
4.3 判断直线:如果一个几何图形上的所有点都沿着同一方向无限延伸,那么这个几何图形就是直线。
直线上的任意两个点可以确定一条直线。
通过以上判断方法,我们可以正确地区分线段、射线和直线,并在几何图形分析和问题解决中应用它们。
再次强调,线段有明确的起点和终点,射线只有一个起点且无终点,而直线上的点可以无限延伸。
总结:线段、射线和直线在几何学中具有不同的定义和特征。
- 线段由两个不同点确定,有明确的起点和终点。
- 射线由一个起点和经过该点的方向确定,只有一个起点且无终点。
线段、射线、直线知识点总结及习题线段、射线、直线是几何学中的基本概念,它们在解决几何问题中起到了核心的作用。
本文将对线段、射线、直线的定义、特性以及常见习题进行总结,帮助读者更好地理解和掌握相关知识。
一、线段的定义与特性线段是由两个端点所确定的一段直线,具有以下特性:1. 线段的长度是有限的,可以通过两个端点的距离来计算。
2. 线段是有方向的,从一个端点指向另一个端点。
3. 线段可以任意延长,但是延长后的部分不再属于原来的线段。
二、射线的定义与特性射线是由一个起点和一个方向确定的一段直线,具有以下特性:1. 射线只有一个起点,但是没有终点。
2. 射线是无限延伸的,可以一直延伸出去。
3. 射线只有一个确定的方向,无法逆转。
三、直线的定义与特性直线是由无数个点连成的轨迹,具有以下特性:1. 直线是无限延伸的,没有起点和终点。
2. 直线上的任意两点可以确定一条直线,直线上的所有点都在同一直线上。
3. 直线没有宽度,是一维的。
四、习题示例1. 以下图形中,哪些是线段、哪些是射线、哪些是直线?(插入图示:线段AB、射线CD、直线EF)解答:线段AB是一段有限长度的直线,射线CD是由一个起点C 和一个方向确定的直线,直线EF是一条无数个点连成的轨迹,没有起点和终点。
2. 两个线段的长度分别是5cm和8cm,它们的和是多少?(插入图示:线段AB=5cm,线段CD=8cm)解答:线段AB和CD的长度分别是5cm和8cm,它们的和是5cm+8cm=13cm。
3. 从一个点出发,向两个不同的方向延伸的直线叫做什么?(插入图示:起点O,向左延伸的直线AB,向右延伸的直线CD)解答:从一个点出发,向两个不同的方向延伸的直线称为射线。
在图中,直线AB是一条由起点O向左延伸的射线,直线CD是一条由起点O向右延伸的射线。
通过以上习题,我们可以加深对线段、射线、直线的理解,并能够熟练运用相关知识解决几何问题。
总结:线段、射线、直线是几何学中的重要概念,它们的定义和特性对于解决几何问题至关重要。
射线直线线段知识点总结一、射线的概念与性质1.1 射线的定义射线是一条由一个端点开始,另一端无限延伸的直线。
用一个点标记射线的起始位置,用另一个点或箭头标记射线的延伸方向。
一般来说,射线的起点叫做端点,另一端叫做射线的延伸方向。
1.2 射线的表示方法射线通常用字母表示,如AB→表示从点A出发的射线,方向为→。
1.3 射线的性质(1)射线的长度是无限的,无法用具体的数字表示。
(2)任意两条射线相交于端点,且它们有且只有一个公共端点。
(3)射线可以延伸到无限远,也可以在某一点截断。
二、直线的概念与性质2.1 直线的定义直线是由无数个点连在一起形成的,没有起点和终点,也没有弯曲的部分,一直延伸到无穷远。
直线是最基本的几何图形之一。
2.2 直线的特征(1)直线上的任意两点可以连成一条射线。
(2)直线是无限长的,没有终点。
(3)直线是唯一的,两点确定一条直线。
2.3 直线的表示方法直线符号是两个一样的大写字母,比如AB表示直线上的点A和点B。
三、线段的概念与性质3.1 线段的定义线段是由两个端点和连接这两个端点的线段组成。
线段有一个确定的长度,可以通过测量得到。
3.2 线段的特征(1)线段的长度是有限的。
(2)线段的两个端点是确定的。
(3)连接两个端点的线段是唯一的。
3.3 线段的表示方法线段一般用字母表示,如AB表示连接点A和点B的线段。
四、射线、直线、线段间的关系4.1 射线与直线的关系射线与直线都是无限延伸的,但直线没有端点,射线有一个端点。
4.2 射线与线段的关系射线和线段的不同之处在于,射线是无限长的延伸出去的,而线段是有限长的。
4.3 直线与线段的关系直线与线段的不同之处在于,直线没有始点和终点,而线段有始点和终点。
五、射线、直线、线段的应用5.1 射线、直线、线段在图形和证明中的应用在证明几何问题时,射线、直线、线段可以帮助我们建立几何图形,从而解决问题。
5.2 射线、直线、线段在生活中的应用在日常生活中,射线、直线、线段广泛应用于建筑、设计、数学等领域,如建筑设计中的平行线、垂直线的应用等。
人教版直线射线线段知识点
人教版直线、射线、线段知识点如下:
1.直线的性质:经过两点有一条直线,并且只有一条直线。
2.线段的性质:两点之间,线段最短。
3.画一条线段等于已知线段的方法:度量法和尺规作图法。
4.线段的中点、三等分点、四等分点等定义:把一条线段平均
分成两条相等线段的点。
5.两点间的距离定义:连接两点的线段的长度叫做两点的距离
(距离是线段的长度,而不是线段本身)。
6.点与直线的位置关系有:点在直线上(或者直线经过点)和
点在直线外(或者直线不经过点)。
7.角的定义:有公共端点的两条射线所组成的图形叫做角。
8.角的比较方法:度量法和叠合法。
9.角的四则运算:角的和、差、倍、分及其近似值。
10.画一个角等于已知角的方法:借助三角尺能画出15°的倍数的
角,在0~180°之间共能画出11个角;借助量角器能画出给定度数的角;用尺规作图法。
此外,还有一些关于线段和角的计算法则和统计知识,如计算法则中的相同数位对齐,按照整数计算方法进行计算,得数的小数点要和横线上的小数的小数点对齐;竖式计算以及验算;整数的四则运算顺序和运算定律在小数中同样适用等。
在统计知识
中,条形统计图和折线统计图的特点和作用,以及折线统计图中变化趋势的含义等也需要掌握。
如需更多关于人教版直线、射线、线段的知识点总结,建议查询教辅练习资料或咨询数学老师获取更全面的信息。
直线、线段、射线考点总结分类训练本讲要点1.直线射线线段的概念和性质2.直线线段射线数量统计问题3.线段长度的计算4.线段中的动点问题考点1.直线射线线段的概念和性质(1)经过一点的直线有无数条,(2)直线公理:经过两点有且只有一条直线.简称:两点确定一条直线.(3)两点的所有连线中,线段最短.简单说成:两点之间,线段最短(4)连接两点间的线段的长度,叫做这两点的距离.[例题精讲]例1.下列说法正确的是( )A.线段可以比较长短B.射线可以比较长短C.直线可以比较长短D.直线比射线长例2.下列叙述中正确的是( )①线段AB可表示为线段BA;②射线AB可表示为射线BA③直线AB可表示为直线BA;④直线比射线长①②③④ B.②③ C.①③ D.①②③例3.如图,从A到B有①、②、③三条路线,最短的路线是①,其理由是( )A.因为它最直B.两点确定一条直线C.两点间的距离的概念D.两点之间,线段最短[强化训练]1-1.在下列现象中,可以用基本事实“两点确定一条直线”来解释的是( )①用两颗钉子就可以把木条固定在墙上;②把笔尖看成一个点,当这个点运动时便得到一条线;③把弯曲的公路改直,就能缩短路程;④植树时,只要栽下两棵树,就可以把同一行树栽在同一条直线上。
A.①③B.②④C.①④D.②③1-2.下列语句表述正确的是( )A.延长射线OC B.射线BA与射线AB是同一条射线C.作直线AB=BC D.已知线段AB,作线段CD=AB1-3.如图,直线l、线段a及射线DA,能相交的图形是()①②③④⑤⑥lDAA DllA.①③④B.①④⑥C.①④⑤D.②③⑥1-4.下列语句中:正确的个数有( )①画直线AB=3cm;②延长直线OA;③直线AB与直线BA是同一条直线,所以射线AB与射线BA也是同一条射线;④在同一个图形中,线段AB与线段BA是同一条线段A.1B.2C.3D.01-5.下列说法中正确的个数为( )①射线OP和射线PO是同一条射线;②连接两点的线段叫两点间的距离;③两点确定一条直线;④若AC=BC,则C是线段AB的中点.A.1个 B .2 C.3个 D.4个考点2.直线线段射线数量统计问题 [例题精讲]例4.图中共有线段 条。
直线、线段、射线讲义
知识点1、线段、直线、射线的概念
线段:一段拉直的棉线可近似地看作线段,线段有两个端点。
射线:将线段向一个方向无限延长,就形成了射线,射线有一个端点。
如手电筒、探照灯射出的光线等。
直线:将线段向两个方向无限延长就形成了直线,直线没有端点。
如笔直的铁轨等。
直线,故射线、线段都是直线的一部分,线段是射线的一部分。
【典型例题】
【例1】如图,下列几何语句不正确的是()
A、直线AB与直线BA是同一条直线
B、射线OA与射线OB是同一条射线
C、射线OA与射线AB是同一条射线
D、线段AB与线段BA是同一条线段
【例2】指出右图中的射线(以O为端点)和线段。
【例3】下列说法错误的是( )
A、线段AB与线段BA是同一条线段
B、射线AB与射线BA是同一条射线
C、直线AB与直线BA是同一条直线
D、线段AB在直线BA上
【例4】下列说法正确的是( )
A、直线虽然没有端点,但长度可以度量B、射线只有一个端点,但长度是可以确定的
C、线段虽然有两个端点,但长度却可以变化的D、只有线段的长度是可以确定的,直线、射线的长度不可以度量
【例5】读出下列语句,并画出图形。
(1)直线AB经过点M .
(2)点A在直线l外.
(3)经过M点的三条直线.
(4)直线AB与CD相交于点O.
(5)直线l经过A、B、C三点,点C在点A与点B之间.
【例6】读句画图(在右图中画)
(1) 连结BC、AD
D
(2) 画射线AD
(3) 画直线AB、CD相交于E
(4)延长线段BC,反向延长线段DA相交与F
(5)连结AC、BD相交于O
知识点4、直线
类型一、点和直线的位置关系:点在直线上或点在直线外。
题型一、过平面上的点画直线
例1已知同一平面内有ABCD四个点,经过这四个点中的任意两个点共能画多少条直
线?
解:1、四个点都在同一直线上只能画一条直线。
2、有三点在同一直线上能画四条直线。
3、任意三点都不在同一直线上画六条直线。
题型二、直线相交问题
例2、两条直线相交,有一个交点,三条直线相交最多有3个交点,四条直线相交最
多有6个交点,五条直线相交最多有10个交点,N条直线相交最多有N×(n-2)/
2个交点。
类型二、直线的基本性质:经过两点有且只有一条直线(也就是说:两点确定一条直
线)
例题1要整齐地载一行树,只要确定两端的树坑位置,就能确定这一行树坑所在的直
线,这里所用的数学知识是(两点确定一条直线)
练习:1、在正常情况下,射击时要保证瞄准的一只眼睛在准星和缺口确定的直线上,才能射中目标。
( )
2、用两个钉子把细木条钉在木板上,就能固定细木条。
()
知识点5线段
类型一、找线段
题型一、数线段
数线段,找规律:ﻫ(1)下列各图中,线段上的点依次增加,请你填写图中相
应的线段数。
(1)条线段;(3)条线段; (6)条线段;(15)条线段
(2)请猜想,当线段AB上有10个点时(含A、B两点),有几条线段?
(3)n个点呢(n≥2))
由上述规律如果10位同学聚会互相握手,则他们一共握了几次手?
若N个对参加比赛每两个对赛一场,这N个对一共要赛多少长?
题型二、往返于甲乙两地的列车,中途停靠3个站,试求最多有多少中不同的票价?要准备多少种不同的车票?
类型二、
线段的性质:两点的所有连线中,线段最短。
简单说成:两点之间线段最短
两点的距离:连接两点间的线段叫做两点的距离。
题型一:1、如图所示,在我国“西气东输”的过程中,从A城市往B城市架设管道,有三条路可供选择,在不考虑其他因素的情况下,架设管道的最短路线是________,依据是________.
2、如图,从A到B最短的路线是( )
A. A—G—E—B
B. A—C—E—B
C. A—D—G—E—B D. A—F—E—B
题型二:把弯曲的河道改直,能够缩短航程,这样做的道理(两
点之间线段最短)题型三:路径最短
1、如图,平原上有A、B、C、D四个村庄,为解决当地缺水问题,政府准
备投资建一个蓄水池,不考虑其它因素,请画图确定蓄水池H点的位置,使
它与四个村庄的距离之和最小.
答案:连接AD和BC,把蓄水池建在交点上,因为这样H点即在线段AD上,
又在线段BC上,两点之间线段最短.
2、如图,在一块平地上,雨后中间有一条积水沟,沟的两边是平行的,一只蚂蚁在A点,想过水沟来B点取食,几个学生在沟上沿与沟边垂直的方向放了四根小木棍,这只蚂蚁通过第( 2 )号木棍,才能使从A到B的路径最短.
答案:根据两点之间线段最短,连接AB,过与木棍相交的一根即可
类型三、线段计算
题型一比例计算题
例1线段AB上有两点P、Q,点P将AB分成两部分,AP:PB=2:3,点Q将AB也分成两部分,AQ:QB=4:1,PQ=3cm,求AP、QB的长
练习:1、如图,AB:BC:CD=2:3:4,AB的中点M与CD的中点N的距离是3cm,则B C=______.ﻫ
2、已知:如图,B、C两点把线段AD分成2:4:3三部分,M是AD的中点,
CD=6,求线段MC的长。
题型二:关于中点
例1如图,线段AB=4.8 cm,C是它的一个三等分点(AC>CB),D是它的中点,则C B=()cm,DC=( )cm.
练习:1、线段AB=8cm,C是AB的中点,D点在CB上,DB=1.5cm,则线段CD=( )
cm.
2、如图,AB=40,点C为AB的中点,点D为CB上的一点,点E为BD的中点,且
EB=5,求CD的长.ﻫ
3、如图,已知线段AB和CD的公共部分BD=1/3AB=1/4CD,线段AB、C
D的中点E、F之间距离是10cm,求AB、CD的长。
4、如图,已知点C为线段AB的中点,点D为线段BC的中点,AB=10cm,求AD的长度.
题型三实际问题中的线段和差问题
例1某班50名同学分别站在公路的A,B两点处,A,B两点相距1000米,A处有30人,B处有20人,要让两处的同学走到一起,并且使所有同学走的路程总和最小,那么集合地点应选在()
A、点A处B、线段AB的中点处
C、线段AB上,距点A1000/3米处
D、线段AB上,距点A400米处
例2在同一所学校上学的小明、小伟、小红三位同学分别住在A,B,C三个住宅区.如图,A,B,C三点在一条直线上,且AB=60 m,BC=100 m,他们打算合租一辆接送
车去上学,由于车位紧张,准备在三个住宅区之间只设一个停靠站,为使三位同学步行到停靠站的路程和最小,你认为停靠站应该设在哪一个小区呢?ﻫ
题型四分类讨论
例1已知线段AB=4.8cm,C为AB中点,D为CB中点,点E在AB上,且CE=1/3AC,求DE长。