线粒体以及叶绿体
- 格式:ppt
- 大小:2.47 MB
- 文档页数:69
第七章线粒体与叶绿体第一节线粒体1890年R. Altaman首次发现线粒体,命名为bioblast,以为它可能是共生于细胞内独立生活的细菌。
1898年Benda首次将这种颗命名为mitochondrion。
1900年L. Michaelis用Janus Green B对线粒体进行染色,发现线粒体具有氧化作用。
Green(1948)证实线粒体含所有三羧酸循环的酶,Kennedy和Lehninger(1949)发现脂肪酸氧化为CO2的过程是在线粒体内完成的,Hatefi等(1976)纯化了呼吸链四个独立的复合体。
Mitchell(1961-1980)提出了氧化磷酸化的化学偶联学说。
一、结构(一)形态与分布线粒体一般呈粒状或杆状,但因生物种类和生理状态而异,可呈环形,哑铃形、线状、分杈状或其它形状。
主要化学成分是蛋白质和脂类,其中蛋白质占线粒体干重的65-70%,脂类占25-30%。
一般直径0.5~1μm,长1.5~3.0μm,在胰脏外分泌细胞中可长达10~20μm,称巨线粒体。
数目一般数百到数千个,植物因有叶绿体的缘故,线粒体数目相对较少;肝细胞约1300个线粒体,占细胞体积的20%;单细胞鞭毛藻仅1个,酵母细胞具有一个大型分支的线粒体,巨大变形中达50万个;许多哺乳动物成熟的红细胞中无线粒体。
通常结合在维管上,分布在细胞功能旺盛的区域。
如在肝细胞中呈均匀分布,在肾细胞中靠近微血管,呈平行或栅状排列,肠表皮细胞中呈两极性分布,集中在顶端和基部,在精子中分布在鞭毛中区。
线粒体在细胞质中可以向功能旺盛的区域迁移,微管是其导轨,由马达蛋白提供动力。
(二)超微结构线粒体由内外两层膜封闭,包括外膜、内膜、膜间隙和基质四个功能区隔(图7-1、7-2)。
在肝细胞线粒体中各功能区隔蛋白质的含量依次为:基质67%,内膜21%,外8%膜,膜间隙4%。
图7-1线粒体的TEM照片图7-2线粒体结构模型1、外膜(out membrane)含40%的脂类和60%的蛋白质,具有孔蛋白(porin)构成的亲水通道,允许分子量为5KD 以下的分子通过,1KD以下的分子可自由通过。
用高倍镜观察线粒体和叶绿体同学们,在这节课之前我们已经学习过线粒体和叶绿体这两种细胞器,现在我请问:线粒体和叶绿体分布分布在哪些细胞中呢?(叶绿体分布在叶肉细胞中,线粒体普遍存在于动物细胞和植物细胞中)。
今天我们的实验是用高倍镜观察线粒体和叶绿体,目的是为了观察它们的形态和分布。
首先我们来看一下实验原理。
1、叶绿体的辨认依据:叶绿体是绿色的,呈扁平的椭圆球形或球形。
我们可以直接在高倍镜下观察它的形态和分布。
2、线粒体的辨认依据:线粒体的形态多样,有短棒状、圆球状、线形、哑铃型等。
3、健那绿染液是专一性染线粒体的活细胞染料,可以使活细胞中线粒体呈现蓝绿色。
线粒体形态多样,无色,而细胞质接近无色。
线粒体能在健那绿染液中维持活性数小时,通过染色,可以在高倍镜下观察到生活状态的线粒体的形态和分布。
接下来我们来看一下实验材料。
观察叶绿体时我们可以选择新鲜的藓类的叶(或菠菜叶、黑藻叶等)。
若是藓类的叶,镊子取其一片小叶即可;若用菠菜的叶,在撕取下表皮时,一定要稍带些叶肉,因为我们所观察的叶绿体就分布在叶肉细胞中,表皮细胞不含叶绿体,否则很难如愿以偿。
(至于为什么是撕取下表皮和叶肉细胞而不是上表皮是因为上表皮受光照强,叶绿体小而多(小,保护自己不被灼伤。
多,保证光合速率足够大)下表皮的叶绿体大而少。
大叶绿体观察方便。
苔藓类植物叶子薄而小,直接取一个小叶片即可;菠菜叶下表皮是菠菜叶的背阳面,叶绿体大而少,撕取时要少带些叶肉。
当然,实验时应首选葫芦藓、墙藓的叶为宜。
我们实验室是用韭菜做实验,它的好处就在于取材容易,不受季节限制,观察到的叶绿体多而清晰。
生理盐水是指生理学实验或临床上常用的渗透压与动物或人体血浆的渗透压相等的氯化钠溶液。
生理学或临床上常用的渗透压与动物或人体血浆相等的氯化钠溶液,其浓度用于两栖类时是0.67~0.70%,用于哺乳类和人体时是0.85~0.9%生理盐水的作用:能够避免细胞破裂,它的渗透压和细胞外的一样,所以不会让细胞脱水或者过度吸水,所以各种医疗操作中需要用液体的地方很多都用它至于显微镜,在之前我们也已经很详细的学过它的使用方法,我今天就不过多的介绍,我就先简单的介绍它的使用方法:1.低倍镜的使用方法(1)取镜和放置:显微镜平时存放在柜或箱中,用时从柜中取出,右手紧握镜臂,左一手托住镜座,将显微镜放在自己左肩前方的实验台上,镜座后端距桌边1-2寸为宜,便于坐着操作。
细胞的能量转换器——线粒体与叶绿体线粒体与叶绿体是真核细胞内两种重要的细胞器,线粒体是有氧呼吸的主要场所,在线粒体内有机物被彻底氧化分解成无机物,其中的能量被转移到ATP 中,所以线粒体是细胞内供应能量的“动力工厂”。
叶绿体是绿色植物光合作用的场所,通过光合作用太阳光能转变成有机物中的化学能,可以进一步被各种生物所利用。
所以,线粒体与叶绿体是真核细胞内的能量转换器。
此外,线粒体与叶绿体内都有少量的DNA,与细胞质遗传有关。
线粒体与叶绿体外包双层生物膜,叶绿体内还有生物膜构成的基粒。
围绕线粒体与叶绿体可以把细胞呼吸、光合作用、细胞质遗传、生物膜等重要知识综合起来。
1 基础知识线粒体与叶绿体都是真核细胞内具有双层膜结构的细胞器,都与细胞内的能量代谢有关,都含有少量DNA和RNA。
1.1在细胞内的分布线粒体普遍存在于各种真核细胞内,绿色植物细胞内的线粒体普遍少于细胞。
在正常的细胞中,一般在需要能量较多的部位比较密集:细胞的新陈代谢越旺盛的部位,线粒体的含量就越多。
而哺乳动物成熟的红细胞(没有细胞核和各种细胞器)、蛔虫等寄生虫,细菌等原核生物没有线粒体。
叶绿体只存在于绿色植物细胞内,如叶肉细胞,植物幼嫩的茎、幼嫩的果实等绿色器官。
叶绿体在细胞中的分布与光照强度有关:在强光下常以侧面对着光源,避免被强光灼伤;在弱光下,均匀分布在细胞质基质中,并以正面(最大面积)对着光源,以利于吸收更多的光能。
而蓝藻等进行光合作用的原核生物、植物的根细胞没有叶绿体。
1.2 结构显微观察形态:线粒体一般呈球状、粒状、棒状,并且随细胞类型及生理条件的不同而存在较大的差别。
叶绿体一般呈扁平的球形或椭球形。
线粒体大致有外膜、内膜和基质(线粒体基质)三部分构成。
外膜平整无折叠,内膜向内折叠凹陷而形成突起的嵴,从而扩大了化学反应的膜面积。
叶绿体由外膜、内膜两层膜包被,内含有几个到几十个基粒,每个基粒都是由很多个类囊体(囊状结构)堆叠而成,基粒与基粒之间充满叶绿体基质。
叶绿体和线粒体的功能叶绿体和线粒体是细胞内的两个重要细胞器,它们分别在植物细胞和动物细胞中发挥着不同的功能。
叶绿体是植物细胞中的特有细胞器,主要参与光合作用,而线粒体则是动物细胞和植物细胞中共有的细胞器,主要参与细胞呼吸。
下面将详细介绍叶绿体和线粒体的功能及其在细胞代谢中的重要作用。
一、叶绿体的功能叶绿体是植物细胞中的独特细胞器,其主要功能是进行光合作用。
光合作用是植物细胞中最重要的代谢过程之一,它能够将光能转化为化学能,合成有机物,同时释放出氧气。
光合作用由两个阶段组成:光依赖反应和暗反应。
1. 光依赖反应:光依赖反应发生在叶绿体的叶绿体内膜上,主要依赖于光能。
在这个过程中,叶绿体中的叶绿素吸收光能,并将其转化为电子能。
这些电子通过一系列电子传递链的传递和光合作用色素分子的参与,最终被用来产生能量丰富的化合物ATP和还原剂NADPH。
这些能量和还原剂将在暗反应中用于合成有机物。
2. 暗反应:暗反应发生在叶绿体的基质中,不依赖于光能。
在这个过程中,通过使用光依赖反应产生的ATP和NADPH,二氧化碳被还原为有机物。
暗反应的最终产物是葡萄糖,它是植物细胞中最重要的有机物之一,不仅供能,还可以用于构建其他有机物。
总的来说,叶绿体通过光合作用将光能转化为化学能,并合成有机物,为植物细胞提供能量和物质基础。
二、线粒体的功能线粒体是动物细胞和植物细胞中都存在的细胞器,其主要功能是进行细胞呼吸。
细胞呼吸是细胞内最主要的能量供应途径,通过氧化有机物产生能量,并生成细胞所需的ATP。
线粒体的细胞呼吸过程主要分为三个阶段:糖酵解、三羧酸循环和呼吸链。
1. 糖酵解:糖酵解是细胞呼吸的起始阶段,它发生在细胞质中。
在这个过程中,葡萄糖分子被分解成两个分子的丙酮酸,同时产生少量的ATP和还原剂NADH。
2. 三羧酸循环:三羧酸循环发生在线粒体的基质中。
在这个过程中,丙酮酸被氧化成二氧化碳,同时释放出更多的ATP和还原剂NADH。
线粒体和叶绿体是细胞内能量转换的主要场所。
线粒体大小不一,形状大多为棒状,细丝状或球状颗粒,长1~2纳米。
线粒体超微结构可大致分为外膜,内膜,膜间隙与基质。
外膜通透性较高,含孔蛋白,是线粒体的通道蛋白,允许较大的分子通过,如蛋白质,rRNA等。
内膜具有高度不通透性,向内折叠形成嵴。
含有与能量转换相关的蛋白,如ATP合成酶,线粒体内膜转运蛋白等,是执行氧化反应的电子传递链所在地。
膜间隙含许多可溶性酶,底物及辅助因子。
基质含三羧酸循环酶系、线粒体基因表达酶系等以及线粒体DNA, RNA,核糖体。
核糖体主要由蛋白质与脂质组成,蛋白质占线粒体干重的65~70%,脂类占线粒体干重的25~30%,磷脂占3/4以上,外膜主要是卵磷脂,内膜主要是心磷脂。
在内膜上,脂类与蛋白质的比值为0.3:1,在外膜上为1:1。
在线粒体的不同部位含有不同数量不同种类的酶,外膜上含有单胺氧化酶,NADH-细胞色素c还原酶等;内膜上含有细胞色素b,c,c1,a,a3氧化酶,ATP合成酶系等;膜间隙上含有腺苷酸激酶,二磷酸激酶等;基质上含有柠檬酸合成酶,苹果酸脱氢酶等。
线粒体主要功能是进行氧化磷酸化,合成ATP,为细胞生命活动提供直接能量;与细胞中氧自由基的生成、细胞凋亡、细胞的信号转导、细胞内多种离子的跨膜转运及电解质稳态平衡的调控有关。
线粒体ATP合成系统的解离与重建实验证明电子传递与ATP合成是由两个不同的结构体系执行, F1颗粒具有ATP 酶活性,ATP合成酶是可逆性复合酶,即既能利用质子电化学梯度储存的能量合成ATP, 又能水解ATP将质子从基质泵到膜间隙,这是ATP合成酶磷酸化的分子基础。
化学渗透假说:电子传递链各组分在线粒体内膜中不对称分布,当高能电子沿其传递时,所释放的能量将H+从基质泵到膜间隙,形成H+电化学梯度。
在这个梯度驱使下,H+穿过ATP合成酶回到基质,同时合成ATP,电化学梯度中蕴藏的能量储存到ATP高能磷酸键。
线粒体和叶绿体的功能线粒体和叶绿体是两个特殊的细胞器,它们都承担着细胞代谢的重要功能。
线粒体主要参与细胞的能量代谢,而叶绿体则参与光合作用。
以下将分别介绍线粒体和叶绿体的功能及其在细胞中的作用。
首先,我们来讨论线粒体。
线粒体是细胞内最重要的能量生产中心,它在细胞呼吸过程中合成并储存能量分子——三磷酸腺苷(ATP)。
线粒体内含有特殊的线粒体DNA,可以进行自我复制。
线粒体的功能主要包括三个方面:1. 呼吸链:线粒体是呼吸链的主要组成部分之一。
在线粒体内,通过氧化磷酸化反应将有机物(如葡萄糖)中的化学能转化为ATP分子,同时产生二氧化碳和水。
这个过程需要氧气参与,被称为有氧呼吸。
呼吸链中,线粒体内膜上的电子传递过程产生的能量被用来推动腺苷二磷酸(ADP)转化为ATP,为细胞提供能量。
2. 脂肪酸和碳水化合物代谢:线粒体是细胞中脂肪酸和碳水化合物的主要代谢组织。
在线粒体内,脂肪酸被氧化成乙酰辅酶A,并进一步通过三羧酸循环进行代谢。
此外,线粒体还可以通过某些途径合成胆固醇等重要物质,并参与胆固醇代谢。
3. 钙离子平衡:线粒体在细胞内钙离子(Ca2+)平衡中发挥重要作用。
它可以吸收和储存细胞内的钙离子,维持细胞内钙离子浓度的稳定,对于细胞的正常功能和信号传导至关重要。
接下来,我们来讨论叶绿体。
叶绿体是植物细胞和一些原生生物细胞中存在的特殊细胞器,它是光合作用的主要场所。
叶绿体具有以下功能:1. 光合作用:叶绿体是光合色素的储存和光合作用的主要场所。
光合作用是叶绿体利用光能将水和二氧化碳转化为有机物质(如葡萄糖)和氧气的过程。
叶绿体内的叶绿素等色素可以吸收光能,并将其转化为化学能,通过一系列的光合反应,最终生成葡萄糖,并释放氧气。
2. 淀粉合成:叶绿体不仅可以合成葡萄糖,还可以将多余的葡萄糖合成淀粉储存在叶绿体中。
当当地植物需要能量时,可以通过淀粉的分解来满足需求。
3. 蛋白质合成和修饰:叶绿体也参与合成细胞中的一些重要蛋白质。
(武汉大学)细胞7.线粒体与叶绿体●基本形态与动态特征●mitochondrion 线粒体定义:真核细胞中由双层高度特化的单位膜围成的细胞器。
主要功能是通过氧化磷酸化作用合成ATP,为细胞各种生理活动提供能量,还参与细胞凋亡等重要生理过程●结构●许多动、植物细胞或特定细胞周期时相中,线粒体的大小、形态可随着细胞生命活动的变化而变化●基本结构:由内外两层单位膜封闭包裹而成,外膜平展,内膜向内折叠延伸形成嵴,外膜与内膜之间的空间被称为膜间隙,内膜之内的空间成为基质●outer membrane 外膜●蛋白质 / 脂质比为1:1●分布有porin 孔蛋白构成的桶状通道●通透性很高,使膜间隙离子环境几乎与胞质相同●标志酶:单胺氧化酶●inner membrane 内膜●蛋白质 / 脂质比为3:1●缺乏胆固醇,富含心磷脂,决定了其不透性,限制分子和离子的自由通过●内膜向内延伸形成cristae 嵴,嵴上含有执行氧化磷酸化的大量呼吸链和ATP合酶●标志酶:细胞色素氧化酶●intermembrane space 膜间隙●液态介质中含有可溶性的酶、底物、辅助因子●标志酶:腺苷酸激酶●matrix 基质●含有三羧酸循环酶系,还可以进行脂肪酸氧化、氨基酸降解●含有DNA、RNA、核糖体、转录翻译所需的重要分子●标志酶:苹果酸脱氢酶●基本功能●将有机物中储存的能量转换ATP为细胞生命活动提供直接能源细胞界的能量通用货币:ATP●分布●与细胞内的能量需求密切相关骨骼肌细胞中,线粒体分布于肌原纤维之间精子中,线粒体呈手镯样套在鞭毛的轴丝上●依赖细胞骨架和马达蛋白的运动在神经元轴突中,线粒体依靠细胞骨架系统可以移动1m以上的距离●数目动态变化基本特征——融合与分裂融合与分裂把细胞中所有的线粒体联系成一个不连续的动态整体,形成一个网状的线粒体结构二者处于平衡状态时,细胞内线粒体的数目和体积基本保持不变。
反之则出现数目增加或减少均依赖GTPase●融合●Fzo 果蝇精细胞线粒体融合基因●最早发现于果蝇的线粒体融合必须基因●编码一个跨膜的大分子GTPase,定位在线粒体外膜上●通过水解GTP介导线粒体融合●Mfn 融合素基因●哺乳动物中编码mitofusin 融合素(GTPase)●Fzo、Mfn突变会使线粒体分裂单向发生,数目增加、体积减小——线粒体片段化●分裂●分子基础:dynamin 发动蛋白一类大分子GTPase 还介导网格蛋白介导的胞吞作用●过程●早期:内环首先形成于线粒体内膜下,随后在线粒体的外膜上出现外环●中期:当内环和外环分别形成时,线粒体膜上的着环区域开始发生内陷,线粒体分裂进入中期,随着线粒体膜内陷程度加深,外环不断加粗,而内环始终保持细薄的状态●后期:内环消失,外环则一直保留到分裂结束●内质网介导的分裂方式:内质网形成套索样的结构,线粒体在被套住的位置产生分裂不仅诱导了分裂,还促进了细胞器间膜脂分子的交流●意义●线粒体通过不断的融合和分裂平衡其基质中高水平氧化自由基的DNA损伤●线粒体大小、数目及分布调控的基础●植物细胞中的线粒体遗传信息在线粒体之间呈现出显著的不均等分布,需要依赖频繁的线粒体融合与分裂实现遗传信息的共享●chloroplast 叶绿体定义:真核植物细胞中行使光合作用完成能量转换的细胞器。
2、比较线粒体的氧化磷酸化与叶绿体的光合磷酸化的异同点。
1)相同点:线粒体的氧化磷酸化与叶绿体的光合磷酸化中,⑴需要完整的膜;
⑵ATP的形成都是由H+移动所推动;⑶叶绿体的CF1因子与线粒体的F1因子都具有催化ADP和Pi形成ATP的作用。
2)不同点:
线粒体的氧化磷酸化是在内膜上进行的一个形成ATP的过程。
它是在电子从NADH或FADH
2
经过电子传递链传递给的过程中发生的。
每一个NADH被氧化产生
3个ATP分子,而每一FADH
2被氧化产生2个ATP分子,电子最终被O
2
接收而生
成H
2
O。
即:1对电子的3次穿膜传递,将基质中的3对H+抽提到膜间隙中,每
2个H+穿过F
1-F
ATP酶,生成1个ATP分子。
叶绿体的光合磷酸化是在类囊体膜上进行的,是由光引起的光化学反应,其
产物是ATP和NADPH;碳同化(暗反应,在叶绿体基质中进行)利用光反应产生的ATP合NADPH的化学能,使CO
2
还原合成糖。
光合作用的电子传递是在光系统Ⅰ和光系统Ⅱ中进行的,这两个光系统互相配合,利用所吸收的光能把1对电子
从H
2
O传递给NADP+。
即:1对电子的2次穿膜传递,在基质中摄取3个H+,在
类囊体腔中产生4个H+,每3个H+穿过CF
1-CF
ATP酶,生成1个ATP分子。
比较线粒体和叶绿体的异同
(1)共同点
①结构上:它们都有内、外膜,即都具有双层膜,都有基质。
②功能上:它们均与能量代谢有关。
线粒体分解有机物,为生命活动提供能量,称为“动力工厂”。
叶绿体转换光能,把能量储存在合成的有机物中,称为“能量转换站”。
③在成分上:都含有少量DNA,与各自的独立遗传有密切关系。
(2)不同点
①分布上:线粒体在动、植物细胞中普遍存在,而叶绿体只存在于植物的叶肉细胞和幼茎皮层细胞中。
②形态上;线粒体呈椭球形,而叶绿体呈扁平的椭球形或球形。
③内膜结构上:线粒体内膜向内腔折叠形成嵴,而叶绿体内膜没有向内折叠。