变压器接线组别
- 格式:doc
- 大小:57.50 KB
- 文档页数:6
变压器联结组别含义变压器联结组别含义是指变压器的不同接线方式。
变压器联结组别主要分为三种:Y型联结、△型联结和Y/△型联结。
首先来讲讲Y型联结。
Y型联结是将三相电源线连接到三个独立的变压器绕组端子上,在这种情况下,每个变压器绕组都与相邻的变压器绕组串联,且每个相都连接到中性点,中性点上可以接地。
这种联结方式常用于需要中性点的场合。
在进行电力负载时,Y型联结使得负载电流能够均匀分布,并且能够有效降低相间电压的峰值,从而实现较好的电力负载平衡。
其次是△型联结。
在△型联结中,三相电源线被连接到变压器的三个端子上,通过三个相相连的连接而形成一个封闭环路。
这样的联结方式可在任何负载情况下实现三相平衡,且能够实现较好的电力负载和相邻变压器之间的电压平衡。
在△型联结中,负载电流既能够沿着相线流动,也能从其中一个相线流到另外一个相线,因此,它最适合用于高电压负载。
最后是Y/△型联结。
Y/△型联结实际上是Y型联结和△型联结的结合。
在一个三相电源线连接到变压器的一个端子上的情况下,此种联接方式的变压器绕组中包含了两种不同的绕组:一个是Y型绕组,另一个是△型绕组。
电力负载时,正常工作时使用△型联结,负载不足时使用Y型联结。
总之,变压器联结组别是指变压器绕组的连接方式。
不同的变压器联结组别对应着不同的电力负载情况,能够实现较好的电力负载平衡,同时,还能够获得多相电流的优点。
实际应用中,需要根据电压、电流和功率等因素选择不同的联结方式,尤其是在高电压负载情况下,需要选定合适的联结方式以保证稳定的电力负载。
变压器的四种接线组别Dd,Yy,Yd,Dy变压器的四种接线组别Dd,Yy,Yd,Dy变压器Dd接线的优点是:(1)没有三次谐波电动势和Yy接法的主要弊病。
(2)由平衡的线电压,可供较大的三相不平衡负载。
(3)对于输出较大电流的低压变压器,这种接法是比较经济的,因为变压器的各线圈流的是相电流,输给用户的则是比相电流大√3倍的线电流。
变压器Dd接线的缺点是:(1)和Y形比较,绝缘物用得较多,导线截面小使耐受短路时机械力的能力减弱。
(2)不能抽取中性点,有时满足不了系统及用户的要求。
(3)在单相变压器组成的三相变压器组中,如果各相电压不一致时,将在线圈中产生环流,影响效率。
变压器Yd接线的优缺点:变压器Yd接线的优点是:(1)二次电动势中没有三次谐波电动势和Yy接法的主要弊病。
(2)根据需要可在Y一侧抽取中性点。
(3)由于其中有一侧接成△形,可基本上维持另一侧Y形接法的中性点稳定(使中性点的电压变动不大)。
(4)因为接线组别是单数组,有一个优点,即不同组别的两台单数组变压器可以在改变外部首、尾端标号的条件下并列,不需抽出器身重新接线。
(5)降压变压器接成Yd,则可充分利用Y接法和△形接法的优点。
变压器Yy(包括Yyn)接线的优缺点:变压器Yy(包括Yyn)接线的优点是:(1)Y形和△形相比,在承受同样线电压情况下Y形的每相线圈承受的电压较小,故在制造上用的绝缘材料较少。
而由于每相流过的电流较大(Y形的相电流等于线电流),选用导线截面较粗,故线圈的机械强度较好,较能耐受短路时的机械力。
(2)中性点可以任意抽取,适用于三相四线制,且Y 形接法抽头放在中性点,三相抽头间正常电压很小。
分接开关可共用一盘,结构简单。
(3)在同样绝缘的水平下,Y形接法比△形接法可获得较高的电压(高√3倍)。
(4)由于选用导线较粗,可使匝间有较高的电容,能耐受较高的冲击电压。
变压器Yy(包括Yyn)接线的缺点是:(1)二次相电动势中有三次谐波存在将危及线圈绝缘,这是这种接法致命的缺点,限制了它在大容量变压器中使用,一般只能用于容量在1800KV A以下的小容量变压器。
变压器的接线组别就是变压器一次绕组和二次绕组组合接线形式的一种表示方法;常见的变压器绕组有二种接法,即“三角形接线”和“星形接线”;在变压器的联接组别中“D表示为三角形接线,“Yn”表示为星形带中性线的接线,Y表示星形,n表示带中性线;“11”表示变压器二次侧的线电压Uab滞后一次侧线电压UAB 330度(或超前30度)。
变压器的联接组别的表示方法是:大写字母表示一次侧(或原边)的接线方式,小写字母表示二次侧(或副边)的接线方式。
Y(或y)为星形接线,D(或d)为三角形接线。
数字采用时钟表示法,用来表示一、二次侧线电压的相位关系,一次侧线电压相量作为分针,固定指在时钟12点的位置,二次侧的线电压相量作为时针。
“Yn,d11”,其中11就是表示:当一次侧线电压相量作为分针指在时钟12点的位置时,二次侧的线电压相量在时钟的11点位置。
也就是,二次侧的线电压Uab滞后一次侧线电压UAB330度(或超前30度)。
变压器二个绕组组合起来就形成了4种接线组别:“Y,y”、“D,y”、“Y,d”和“D,d”。
我国只采用“Y,y”和“Y,d”。
由于Y连接时还有带中性线和不带中性线两种,不带中性线则不增加任何符号表示,带中性线则在字母Y后面加字母n表示。
n表示中性点有引出线。
Yn0接线组别,UAB与uab相重合,时、分针都指在12上。
“12”在新的接线组别中,就以“0”表示。
(一)变压器接线组别变压器的极性标注采用减极性标注。
减极性标注是将同一铁心柱上的两个绕组在某个瞬间相对高电位点或相对低电位点称为同极性,标以同名端“A”、“a”或“·”.采用减极性标注后,当电流从原绕组“A”流入,副绕组电流则由“a”流出。
变压器的接线组别是三相权绕组变压器原,副边对应的线电压之间的相位关系,采用时钟表示法。
分针代表原边线电压相量,并且将分外固定指向12上,时针代表对应的副边线电压相量,指向几点即为几点钟接线。
变压器空载运行中,Yyn0接线组别高压侧为“Y”接线,激磁电流为正弦波。
变压器接线组别与差动保护分析一、变压器的接线组别在电力系统中,变压器是很重要的电力设备之一,其主要作用是将电压进行变换,以适应不同的电力需求。
变压器的接线组别是影响其性能的重要因素之一。
1.1 变压器接线组别的定义变压器接线组别是指在变压器的同种绕组中,导线首尾间的连接不同所形成的各种互不相同的接线组合形式。
以三相变压器为例:1.Yyn0接线组:这是标准的变压器接线组合,其中,每个相位上的中点点称为“零点”,用“0”表示;主绕组接成Y形,副绕组接成D形。
变压器的中性点与地接触。
2.Ynd11接线组:主绕组接成Y形,副绕组接成D形,中性点未接地,改由中性刀闸接通地网,副绕组中性点接地。
3.Dd0接线组:主绕组接成D形,副绕组接成D形,不设中性点。
1.2 不同接线组别对变压器性能的影响不同的接线组别会对变压器的性能造成影响:1.不同的接线组合方式对于同一变压器,其短路阻抗不同,进而会影响容量和符合的不短路容率。
2.其中,Dd0和Yyn0两种接线组性能比较接近,Dd0接线组变压器具有较大的短路阻抗,能承受较大的瞬时电流冲击,隔离性能较好,一般适合在高压电网上使用,消弧性能较好;而Yyn0接线组变压器具有较小的短路阻抗、较大的不短路容量,适合在低压电网中使用,但隔离性能较差。
二、差动保护差动保护是变压器最主要的保护方式之一,采取对变压器主副绕组接线点的电流进行比较,从而检测变压器内部是否有故障。
2.1 差动保护原理差动保护的原理是,变压器的主副绕组接到差动保护装置的两个输入端口上,差动保护装置对两个输出电流进行比较,如果两个电流值之差的绝对值大于设定值,则表示有故障,在差动保护装置输出的信号下,断路器动作,使故障的电流断开。
2.2 差动保护的分类差动保护按照性质、作用和结构可以分为多种形式。
1.比率差动保护(R差动保护),是通过比较变压器主副绕组电流之比判断差动电流的方式。
2.移相差动保护(Angle差动保护),采用相序变换装置,将原始电流变换为辐角差相等电流进行比较。
变压器常用连接组和适用范围
变压器的连接组别是用来表示变压器高低压绕组的接线方式以及它们之间的相位关系的。
连接组别的表示方法通常是用一个或两个字母加上一个数字来表示的,其中字母表示高压绕组的接线方式,数字表示低压绕组的接线方式。
以下是一些常用的变压器连接组别及其适用范围:
1. Yyn0:
适用范围:主要用于6-10kV电压等级的配电变压器,低压侧引出中性线,构成三相四线制供电。
2. Yd11:
适用范围:主要用于35-60kV,低压侧为6-10kV的输配电系统。
其低压侧采用三角形接法可以改善电网的电压波形,从而使三次谐波电流只能在三角形绕组内形成环流,不至于传输到用户和供电线路中去。
3. YNd11:
适用范围:主要用于高压侧为110kV及以上的大电流接地系统中的变压器。
4. Dyn11:
适用范围:这种连接组别在近年来逐步推广使用,主要用于高压侧为6-10kV,低压侧为380/220V的配电变压器。
Dyn11接线的变压器中性线电流不得超过二次绕组额定电流的75%。
5. Yd1:
适用范围:用于电力系统中的中性点不接地或经消弧线圈接地系统中,能够限制短路电流,降低故障时的电压降。
6. Yn:
适用范围:主要用于星形接线的变压器,中性点直接接地或经消弧线圈接地,广泛应用于电力系统中。
7. D:
适用范围:表示三角形接线的变压器,常用于高压侧为35kV及以下,低压侧为10kV及以下的电力系统中。
这些连接组别的选择取决于系统的电压等级、运行条件、负载特性和对电压质量的要求。
在选择变压器的连接组别时,需要考虑系统的稳定性和经济性,确保变压器能够高效和安全地运行。
变压器的接线组别及其物理意义变压器的接线组别就是变压器一次绕组和二次绕组组合接线形式的一种表示方法;常见的变压器绕组有二种接法,即“三角形接线”和“星形接线”;在变压器的联接组别中“D”表示为三角形接线,“Y n”表示为星形带中性线的接线,Y表示星形,n表示带中性线;“11”表示变压器二次侧的线电压U ab滞后一次侧线电压U AB330度(或超前30度)。
变压器的联接组别的表示方法是:大写字母表示一次侧(或原边)的接线方式,小写字母表示二次侧(或副边)的接线方式。
Y(或y)为星形接线,D (或d)为三角形接线。
数字采用时钟表示法,用来表示一、二次侧线电压的相位关系,一次侧线电压相量作为分针,固定指在时钟12点的位置,二次侧的线电压相量作为时针。
“Y n,d11”,其中11就是表示:当一次侧线电压相量作为分针指在时钟12点的位置时,二次侧的线电压相量在时钟的11点位置。
也就是,二次侧的线电压U ab滞后一次侧线电压U AB330度(或超前30度)。
变压器二个绕组组合起来就形成了4种接线组别:“Y,y”、“D,y”、“Y,d”和“D,d”。
我国只采用“Y,y”和“Y,d”。
由于Y连接时还有带中性线和不带中性线两种,不带中性线则不增加任何符号表示,带中性线则在字母Y后面加字母n表示。
n表示中性点有引出线。
Yn0接线组别,U AB与u ab相重合,时、分针都指在12上。
“12”在新的接线组别中,就以“0”表示。
下面是变压器接线组别的向量图及原、副边绕组的接线示意图。
例1:一台三绕组变压器,高压为中性点引出的星形联结绕组,额定电压为121kV;中压为中性点引出的星形联结绕组,额定电压为38.5kV,低压为三角形联结绕组,额定电压为10.5kV。
两个星形联结绕组的电压是同相位(钟时序数0),而三角形联结绕组上的电压超前于其他电压30°(钟时序数11)。
所以,该台变压器的联结组标号为:YN,yn0,d11。
同名端与异名端:变压器的同一相高、低压绕组都是绕在同一铁芯柱上,并被同一主磁通链绕,当主磁通交变时,在高、低压绕组中感应的电势之间存在一定的极性关系。
在任一瞬间,高压绕组的某一端的电位为正时,低压绕组也有一端的电位为正,这两个绕组间同极性的一端称为同名端,记作“˙”,反之则为异名端,记作“-”。
Yy联结的三相变压器,共有Yy0、Yy4、Yy8、Yy6、Yy10、Yy2六种联结组别,标号为偶数Yd联结的三相变压器,共有Yd1、Yd5、Yd9、Yd7、Yd11、Yd3六种联结组别,标号为奇数为了避免制造和使用上的混乱,国家标准规定对单相双绕组电力变压器只有ⅠⅠ0联结组别一种。
对三相双绕组电力变压器规定只有Yyn0、Yd11、YNd11、YNy0和Yy0五种。
标准组别的应用:Yyn0组别的三相电力变压器用于三相四线制配电系统中,供电给动力和照明的混合负载;Yd11组别的三相电力变压器用于低压高于0.4kV的线路中;YNd11组别的三相电力变压器用于110kV以上的中性点需接地的高压线路中;YNy0组别的三相电力变压器用于原边需接地的系统中;Yy0组别的三相电力变压器用于供电给三相动力负载的线路中。
在变压器的联接组别中“Yn”表示一次侧为星形带中性线的接线,Y表示星形,n 表示带中性线;“d”表示二次侧为三角形接线。
“11”表示变压器二次侧的线电压Uab 滞后一次侧线电压UAB330度(或超前30度)。
变压器的联接组别的表示方法是:大写字母表示一次侧(或原边)的接线方式,小写字母表示二次侧(或副边)的接线方式。
Y(或y)为星形接线,D(或d)为三角形接线。
数字采用时钟表示法,用来表示一、二次侧线电压的相位关系,一次侧线电压相量作为分针,固定指在时钟12点的位置,二次侧的线电压相量作为时针。
“Yn,d11”,其中11就是表示:当一次侧线电压相量作为分针指在时钟12点的位置时,二次侧的线电压相量在时钟的11点位置。
变压器的接线组别及其物理意义变压器的接线组别就是变压器一次绕组和二次绕组组合接线形式的一种表示方法;常见的变压器绕组有二种接法,即“三角形接线”和“星形接线”;在变压器的联接组别中“D”表示为三角形接线,“Y n”表示为星形带中性线的接线,Y表示星形,n表示带中性线;“11”表示变压器二次侧的线电压U ab滞后一次侧线电压U AB330度(或超前30度)。
变压器的联接组别的表示方法是:大写字母表示一次侧(或原边)的接线方式,小写字母表示二次侧(或副边)的接线方式。
Y(或y)为星形接线,D (或d)为三角形接线。
数字采用时钟表示法,用来表示一、二次侧线电压的相位关系,一次侧线电压相量作为分针,固定指在时钟12点的位置,二次侧的线电压相量作为时针。
“Y n,d11”,其中11就是表示:当一次侧线电压相量作为分针指在时钟12点的位置时,二次侧的线电压相量在时钟的11点位置。
也就是,二次侧的线电压U ab滞后一次侧线电压U AB330度(或超前30度)。
变压器二个绕组组合起来就形成了4种接线组别:“Y,y”、“D,y”、“Y,d”和“D,d”。
我国只采用“Y,y”和“Y,d”。
由于Y连接时还有带中性线和不带中性线两种,不带中性线则不增加任何符号表示,带中性线则在字母Y后面加字母n表示。
n表示中性点有引出线。
Yn0接线组别,U AB与u ab相重合,时、分针都指在12上。
“12”在新的接线组别中,就以“0”表示。
下面是变压器接线组别的向量图及原、副边绕组的接线示意图。
例1:一台三绕组变压器,高压为中性点引出的星形联结绕组,额定电压为121kV;中压为中性点引出的星形联结绕组,额定电压为38.5kV,低压为三角形联结绕组,额定电压为10.5kV。
两个星形联结绕组的电压是同相位(钟时序数0),而三角形联结绕组上的电压超前于其他电压30°(钟时序数11)。
所以,该台变压器的联结组标号为:YN,yn0,d11。
在变压器的联接组别中“Yn”表示一次侧为星形带中性线的接线,Y表示星形,n表示带中性线;“d”表示二次侧为三角形接线。
“11”表示变压器二次侧的线电压Uab滞后一次侧线电压UAB330度(或超前30度)。
变压器的联接组别的表示方法是:大写字母表示一次侧(或原边)的接线方式,小写字母表示二次侧(或副边)的接线方式。
Y(或y)为星形接线,D(或d)为三角形接线。
数字采用时钟表示法,用来表示一、二次侧线电压的相位关系,一次侧线电压相量作为分针,固定指在时钟12点的位置,二次侧的线电压相量作为时针。
楼主提供的“Yn,d11”,其中11就是表示:当一次侧线电压相量作为分针指在时钟12点的位置时,二次侧的线电压相量在时钟的11点位置。
也就是,二次侧的线电压Uab滞后一次侧线电压UAB330度(或超前30度)。
变压器接线方式有4种基本连接形式:“Y,y”、“D,y”、“Y,d”和“D,d”。
我国只采用“Y,y”和“Y,d”。
由于Y连接时还有带中性线和不带中性线两种,不带中性线则不增加任何符号表示,带中性线则在字母Y后面加字母n表
1、测定极性
(1) 测定相间极性
被测变压器选用三相心式变压器DJ12,用其中高压和低压两组绕组,额定容量PN=152/152W,UN=220/55V,IN=0.4/1.6A,Y/Y接法。
测得阻值大的为高压绕组,用A、B、C、X、Y、Z标记。
低压绕组标记用a、b、c、x、y、z。
1) 按图3-8接线。
A、X接电源的U、V两端子,Y、Z短接。
2) 接通交流电源,在绕组A、X间施加约50%UN的电压。
3) 用电压表测出电压UBY、UCZ、UBC,若UBC=│UBY-UCZ│,则首末端标记正确;若UBC=│UBY+UCZ│,则标记不对。
须将B、C两相任一相绕组的首末端标记对调。
4) 用同样方法,将B、C两相中的任一相施加电压,另外两相末端相联,定出每相首、末端正确的标记。
3-8 测定相间极性接线图
(2) 测定原、副方极性
图3-9 测定原、副方极性接线图
1) 暂时标出三相低压绕组的标记a、b、c、x、y、z,然后按图3-9接线,原、副方中点用导线相连。
2) 高压三相绕组施加约50%的额定电压,用电压表测量电压UAX、UBY、UCZ、Uax、Uby、Ucz、UAa、UBb、UCc,若UAa=UAx-Uax,则A相高、低压绕组同相,并且首端A与a端点为同极性。
若UAa=UAX+Uax,则A与a端点为异极性。
3) 用同样的方法判别出B、b、C、c两相原、副方的极性。
4) 高低压三相绕组的极性确定后,根据要求连接出不同的联接组。
2、检验联接组
(1) Y/Y-12
图3-10 Y/Y-12联接组(α)接线图(b)电势相量图
按图3-10接线。
A、a两端点用导线联接,在高压方施加三相对称的额定电压,测出UAB、Uab、UBb、UCc及UBc。
根据Y/Y-12联接组的电势相量图可知:
为线电压之比
若用两式计算出的电压UBb,UCc,UBc的数值与实验测取的数值相同,则表示绕组连接正确,属Y/Y-12联接组。
(2) Y/Y-6
图3-11 Y/Y-6联接组(α)接线图(b)电势相量图
将Y/Y-12联接组的副方绕组首、末端标记对调,A、a两点用导线相联,如图3-11所示。
按前面方法测出电压UAB、Uab、UBb、UCc及UBc。
根据Y/Y-6联接组的电势相量图可得
若由上两式计算出电压UBb、UCc、UBc的数值与实测相同,则绕组连接正确,属于Y/Y-6联接组。
(3)Y/△-11 按图3-12接线。
A、a两端点用导线相连,高压方施加对称额定电压,测取UAB、Uab、UBb、UCc及UBc。
图3-12 Y/Δ-11联接组(α)接线图(b)电势相量图
根据Y/Δ-11联接组的电势相量可得若由上式计算出的电压UBb、UCc、UBc的数值与实测值相同,则绕组连接正确,属Y/Δ-11联接组。
(4) Y/Δ-5
将Y/Δ-11联接组的副方绕组首、末端的标记对调,如图3-13所示。
实验方法同前,测取UAB、Uab、UBb、UCc和UBc。
图3-13 Y/Δ-5联接组(α)接线图(b)电势相量图
根据Y/Δ-5联接组的电势相量图可得若由上式计算出的电压UBb、UCc、UBc的数值与实测相同,则绕组联接正确,属于Y/Δ-5联接组。
3、不对称短路
(1) Y/Y0连接单相短路
<1> 三相心式变压器
按图3-14接线。
被试变压器选用三相心式变压器。
将交流电压调到输出电压为零的位置,接通电源,逐渐增加外施电压, 直至副方短路电流I2K≈I2N为止,测取副方短路电流I2K和原方电流IA、IB、IC。
图3-14 Y/Y0连接单相短路接线图
<2> 三相组式变压器
被测变压器改为三相组式变压器,接通电源,逐渐施加外加电压直至UAB=UBC=UCA=220V,测取副方短路电流和原方电流IA、IB、IC。
(2) Y/Y联接两相短路
<1> 三相心式变压器
按图3-15接线。
将交流电源电压调至零位置。
接通电源,逐渐增加外施
电压,直至I2K≈I2N为止,测取变压器副方电流I2K和原方电流IA、IB、IC。
图3-15 Y/Y连接两相短路接线图
<2> 三相组式变压器
被测变压器改为三相组式变压器,重复上述实验。
4、测定变压器的零序阻抗
(1) 三相心式变压器
按图3-16接线。
三相心式变压器的高压绕组开路,三相低压绕组首末端串联后接到电源。
将电压调至零,接通交流电源,逐渐增加外施电压,在输入电流I0=0.25IN和I0=0.5IN的两种情况下,测取变压器的I0、U0和P0。
图3-16 测零序阻抗接线图
(2) 三相组式变压器
由于三相组式变压器的磁路彼此独立,因此可用三相组式变压器中任何一台单相变压器做空载实验,求取的激磁阻抗即为三相组式变压器的零序阻抗。
若前面单相变压器空载实验已做过,该实验可略。
5、分别观察三相心式和组式变压器不同连接方法时空载电流和电势的波形。
(1)三相组式变压器
图3-17 观察Y/Y和Y0/Y连接三相变压器空载电流和电势波形的接线图
〈1〉Y/Y连接
按图3-17接线。
三相组式变压器作Y/Y连接,把开关S打开(不接中线)。
接通电源后,调节输入电压使变压器在0.5UN和UN两种情况下通过示波器观察空载电流i0,副方相电势eφ和线电势el的波形(注:Y接法UN=380V)。
在变压器输入电压为额定值时,用电压表测取原方线电压UAB和相电压UAX。
〈2〉Y0/Y连接
接线与Y/Y连接相同,合上开关S,即为Y0/Y接法。
重复前面实验步骤,观察i0,eφ,el波形,并在U1=UN时测取UAB和UAX。
〈3〉Y/Δ连接
按图3-18接线。
开关S合向左边,使副方绕组不构成封闭三角形。
接通电源,调节变压器输入电压至额定值,通过示波器观察原方空载电流i0。
相电压Uφ,副方开路电势Uaz的波形,并用电压表测取原方线电压UAB、相电压UAX以及副方开路电压Uaz将数据记录于表3-22中。
合上开关S,使副方为三角形接法,重复前面实验步骤,观察i0、Uφ以及副方三角形回路中谐波电流的波形,并在U1=U1N时,测取UAB、UAX以及副方三角形回路中谐波电流,将数据记录于表3-23中。
(2)、选用三相心式变压器,重复前面(1) (2) (3)波形实验,将不同铁心结构所得的结果作分析比较。
图3-18 观察Y/Δ连接三相变压器空载电流三次谐波电流和电势波形的接线图。