手把手教你将面板数据导入eviews
- 格式:doc
- 大小:156.00 KB
- 文档页数:3
EViews的基本使用一、相关性分析1.导入数据File → Open → Foreign Data as Workfile …、然后会出现下图,选择我们需要的文件打开。
在Predefined range区域可以选择Excel文件中选择表,然后点击“下一步”。
点击“完成”并可成功导入数据。
2.做相关性检验View →Covariance Analysis会出现下图:选择Correlation检验相关性,同时选择Probability确定相关性有意义。
点击“OK”3.分析结果上图是结果的一部分.上面的数值表示两者的相关系数,下面的数值是两者相关性是否有意义的指标。
一般而言,相关系数在0.8以上我们称两者有高度相关关系,0。
8到0。
5之间为中度相关,小于0。
5视为不相关。
另外,一般Probability的数值小于0.05,表示两者间的相关系数有意义。
二、回归分析1、用以上相同的方法导入数据;2、用以上相同的方法做各X变量间的相关性检验,确定各X变量之间不存在高度相关关系;3、回归分析在主菜单中选择Quick →Estimate Equation…输入回归方程,如方程式为Y= C+α1*X1+α2*X2+……则输入的格式为:Y(空格)C(空格)X1(空格)X2……4、分析结果以上是“沪铜和伦铜,美元指数和道琼斯指数”的回归结果。
一般先看R平方和调整R平方,表示整个模型的拟合程度,越高越好。
然后看F检验,通过F检验表示该模型在统计上有意义。
再看t检验,判断每个系数是否有意义。
一般而言,Prob。
大于0.05表示有意义。
然后就可以写出回归方程。
动态面板数据与Eviews操作面板数据与Eviews 操作指南新浪微博:数说工作室一、面板数据简介二、静态面板数据及Eviews 实现(1) 静态面板数据简介(2) EVIEWS操作三、动态面板数据及Eviews 实现(1)动态面板数据简介(2)Eviews 操作一、面板数据简介信息技术的发展使得数据越来越膨胀,传统的截面数据和时间序列已经不能全面刻画经济的演变,在大数据背景下,同时分析比较横截面观察值和时间序列观察值的需求越来越大。
面板数据就是指既含有截面又含有时间序列的数据,分析比较这种数据的模型就是面板数据模型。
相对于一般的回归模型,面板数据模型不仅能够更好的识别和度量单纯时间序列模型和单纯横截面数据模型所不能发现的影响因素, 而且可以克服多重共线性的困扰,能够提供更多的信息、更多的变化、更高的自由度和更高的估计效率,减少共线性。
因此,面板数据可以更准确地刻画更为复杂的经济行为,具有更好的理论价值和应用价值。
按照模型中是否含有滞后项,又分为静态面板数据和动态面板数据,本指南将分别简介原理和Eviews 操作方法。
二、静态面板数据及Eviews 实现(1) 静态面板数据简介一般的静态面板数据模型的一般形式如下:yyiiii=CC+bbxxiiii+vviiii, ii=11, …NN, ii=11, …, TT (1)标,T 表示时间序列的长度。
面板数据由于同时含有了多个横截面数据,有时需要考虑不同横截面个体存在的特殊效应,其误差项被设定为:vviiii=ααii+eeiiii (2)其中αi 代表个体效应,反映了不同个体之间的差别。
当个体效应为固定常数时,式(1)为固定效应模型,此时每个个体截面都有不同的截距项α1、α2... αn ,即其分布式与X it 是有关的,反映了该个体的固定其中C 为截距,v it 为误差项,i 为截面下标,N 表示截面的个数,t 为时间下效应,因此固定效应模型又称为相关效应模型,严格说来,这个名字更加准确。
第一步:首先说明一下我的论文研究情景:1.时间:2006-20112.主题:资本监管对银行业的风险承担行为的影响(以工行,建行,中行,交行作为例子,4个cross sections)3.模型如下:dcap=c(1)+c(2)*drisk+c(3)*size+c(4)*roa+c(5)*riskt(-1)drisk=c(6)+c(7)*dcap+c(8)*size+c(9)*non+c(10)*capt(-1)有上面联立方程可以看出:dcap 和drisk 相互影响为内生变量size roa non riskt capt 为外生变量第二步:eviews6.0 实现过程:打开file-new-workfile按图操作:点击ok得到:点击object-new objectType选pool,ok:跳出的横框:Cross Section Identifiers 填入数据变量名称:(这是纵轴的)GSYHJSYHZGYHJTYH(前面提及的四大银行)然后点view-spreadsheet(stacked data)series list小框输入(这是横轴的变量名称)dcap drisk size roa non riskt capt点击edit+/- 手动输入数据或用import导入数据或粘贴复制进去也行:此时点object-new object,这次type选择system 用以联立方程分析:在system框内输入联立方程和工具变量:dcap=c(1)+c(2)*drisk+c(3)*size+c(4)*roa+c(5)*riskt(-1)drisk=c(6)+c(7)*dcap+c(8)*size+c(9)*non+c(10)*capt(-1)inst dcap drisk size roa non riskt(-1) capt(-1)点右上方的estimate,method选择TSLS(两阶段最小二乘估计):整个过程就是先建立workfile再建立panel data最后建立联立方程systemTSLS估计即可。
面板数据与Eviews操作指南新浪微博:数说工作室一、面板数据简介二、静态面板数据及Eviews实现(1) 静态面板数据简介(2) EVIEWS操作三、动态面板数据及Eviews实现(1)动态面板数据简介(2)Eviews操作一、面板数据简介信息技术的发展使得数据越来越膨胀,传统的截面数据和时间序列已经不能全面刻画经济的演变,在大数据背景下,同时分析比较横截面观察值和时间序列观察值的需求越来越大。
面板数据就是指既含有截面又含有时间序列的数据,分析比较这种数据的模型就是面板数据模型。
相对于一般的回归模型,面板数据模型不仅能够更好的识别和度量单纯时间序列模型和单纯横截面数据模型所不能发现的影响因素,而且可以克服多重共线性的困扰,能够提供更多的信息、更多的变化、更高的自由度和更高的估计效率,减少共线性。
因此,面板数据可以更准确地刻画更为复杂的经济行为,具有更好的理论价值和应用价值。
按照模型中是否含有滞后项,又分为静态面板数据和动态面板数据,本指南将分别简介原理和Eviews操作方法。
二、静态面板数据及Eviews实现(1) 静态面板数据简介一般的静态面板数据模型的一般形式如下:yy ii ii=CC+bbxx ii ii+vv ii ii,ii=11,…NN,ii=11,…,TT (1)其中C为截距,v it为误差项,i为截面下标,N表示截面的个数,t为时间下标,T表示时间序列的长度。
面板数据由于同时含有了多个横截面数据,有时需要考虑不同横截面个体存在的特殊效应,其误差项被设定为:vv ii ii=ααii+ee ii ii(2)其中αi代表个体效应,反映了不同个体之间的差别。
当个体效应为固定常数时,式(1)为固定效应模型,此时每个个体截面都有不同的截距项α1、α2...αn,即其分布式与X it是有关的,反映了该个体的固定效应,因此固定效应模型又称为相关效应模型,严格说来,这个名字更加准确。
固定效应模型的形式为:yy ii ii=CC+bbxx ii ii+ααii+vv ii ii,ii=11,…NN,ii=11,…,TT (3) 用矩阵表示为:1111222210...001...0............00...000...1n N n n y x e y x e y x e ααβα =++(4) 即, Y=D α+x β+e (5)当个体效应αi 为随机变量时,式(5)为随机效应模型,此时其分布与X it 是无关的,因此随机效应相应又称为非相关效应模型,随机效应模型的形式为: yy ii ii =CC +bbxx ii ii +ααii +vv ii ii ,ii =11,…NN ,ii =11,…,TT (6)对于这两种模型,最长采用的估计方法为虚拟变量最小二乘法和广义最小二乘法。
详细的EVIEWS面板数据分析操作引言EVIEWS是一款专业的经济统计软件,广泛应用于经济学和金融领域的数据分析和建模。
EVIEWS提供了丰富的面板数据分析功能,可以帮助用户进行面板数据的处理、描述统计、回归分析等操作。
本文将详细介绍EVIEWS中面板数据分析的操作流程和常用功能。
EVIEWS面板数据的导入首先,我们需要将面板数据导入到EVIEWS中进行分析。
EVIEWS支持多种数据格式的导入,包括Excel、CSV、数据库等。
在导入面板数据时,需要保证数据具有正确的格式,例如面板数据应包含个体(cross-sectional)和时间(time-series)的维度,且面板数据的变量应按照一定的顺序排列。
在导入面板数据后,我们可以利用EVIEWS提供的数据操作命令对数据进行处理和调整。
例如,可以通过group命令将数据按照个体或时间进行分组,通过sort命令对数据进行排序,以便后续的面板数据分析。
面板数据的描述统计分析在面板数据导入并处理完毕后,我们可以进行面板数据的描述统计分析。
EVIEWS提供了丰富的统计功能,可以计算面板数据的平均值、标准差、相关系数等指标。
下面介绍几个常用的描述统计功能:1.summary命令:该命令可以计算面板数据每个变量的平均值、标准差、最大值、最小值等统计指标,并输出到EVIEWS的结果窗口中。
2.correlation命令:该命令可以计算面板数据各变量之间的相关系数矩阵,并输出到结果窗口中。
3.tabulate命令:该命令可以对面板数据进行交叉分组统计,例如计算变量A在变量B的每个取值下的频数和比例。
通过对面板数据进行描述统计分析,可以初步了解数据的分布特征和变量间的关系,为后续的面板数据分析提供基础。
面板数据的回归分析除了描述统计分析,EVIEWS还提供了面板数据的回归分析功能。
通过面板数据回归分析,可以探究变量间的因果关系和影响程度。
下面介绍两个常用的回归分析命令:1.panel least squares(PLS)命令:该命令可以进行面板数据的最小二乘回归分析。
Eviews6.0面板数据操作一、数据输入1、创建工作文档。
如下图操作,在” workfile create”文本框的“workfile structure type”选择“balanced panel”,”panel specification”的”start date”和”end date”输入数据的起止期间,”wf”输入工作文档的名称,点击” OK”即跳出新建的工作文档a界面。
2、创建新对象。
操作如下图。
在”new object”文本框的”type of object”选择”pool”,”name for object ”输入新对象的名称。
创建成功后的界面如下面第3张图所示。
3、输入数据。
双击”workfile”界面的,跳出”pool”界面,输入个体。
一般输入方式为如下:若上海输入_sh,北京输入_bj,…。
个体输入完成后,点击该界面的键,在跳出的”series list”输入变量名称,注意变量后要加问号。
格式如下:y? x?。
点击”OK”后,跳出数据输入界面,如下面第4张图所示。
在这个界面上点击键,即可以输入或者从EXCEL处复制数据。
在输入数据后,记得保存数据。
保存操作如下:在跳出的“workfile save”文本框选择“ok”即可,则自动保存到我的文档。
然后在“workfile”界面如下会显示保存路径:d:\my documents\a.wf1。
若要保存到自己选择的路径下面,则在保存时选择“save as”,在跳出的文本框里选择自己要保存的路径以及命名文件名称。
4、单位根检验。
一般回归前要检验面板数据是否存在单位根,以检验数据的平稳性,避免伪回归,或虚假回归,确保估计的有效性。
单位根检验时要分变量检验。
(补充:网上对面板数据的单位根检验和协整检验存在不同意见,一般认为时间区间较小的面板数据无需进行这两个检验。
)(1)生成数据组。
如下图操作。
点击”make group”后在跳出的”series list”里输入要单位根检验的变量,完成后就会跳出如下图3所示的组数据。
E 【2 】views6.0面板数据操作一、数据输入1.创建工作文档.如下图操作,在”workfile create”文本框的“workfile structure type”选择“balanced panel”,”panel specification”的”start date”和”end date”输入数据的起止时代,”wf”输入工作文档的名称,点击”OK”即跳出新建的工作文档a界面.2.创建新对象.操作如下图.在”new object”文本框的”type of object”选择”pool”,”name for object ”输入新对象的名称.创建成功后的界面如下面第3张图所示.-3.输入数据.双击”workfile”界面的,跳出”pool”界面,输入个别.一般输入方法为如下:若上海输入_sh,北京输入_bj,….个别输入完成后,点击该界面的键,在跳出的”series list”输入变量名称,留意变量后要加问号.格局如下:y?x?.点击”OK”后,跳出数据输入界面,如下面第4张图所示.在这个界面上点击键,即可以输入或者从EXCEL处复制数据.在输入数据后,记得保存数据.保存操作如下:在跳出的“workfile save”文本框选择“ok”即可,则主动保存到我的文档.然后在“workfile”界面如下会显示保存路径:d:\my documents\a.wf1.若要保存到本身选择的路径下面,则在保存时选择“save as”,在跳出的文本框里选择本身要保存的路径以及定名文件名称.4.单位根磨练.一般回归前要磨练面板数据是否消失单位根,以磨练数据的安稳性,避免伪回归,或虚伪回归,确保估量的有用性.单位根磨练时要分变量磨练.(补充:网上对面板数据的单位根磨练和协整磨练消失不赞成见,一般以为时光区间较小的面板数据无需进行这两个磨练.)(1)生成数据组.如下图操作.点击”make group”后在跳出的”series list”里输入要单位根磨练的变量,完成后就会跳出如下图3所示的组数据.(2)生成时序图.如下图操作.在”graghoptions”界面的”specifi”下选择生成的时序图的外形,一般都默认设置,生成的时序图如下图3所示.不雅察时序图的趋向,以肯定单位根磨练的磨练模式.(3)单位根磨练.单位根磨练时,在”group unit root test”里的”test for root in”按磨练成果一步步磨练,假如原值”level”的磨练成果相符请求,即不消失单位根,则单位根磨练就不须要磨练下去了,假如不相符请求,则需持续磨练一阶差分”1stdifference”.二阶差分”2nd difference”.”include in test equation”是磨练模式的选择,依据上面时序图的外形来选择.从上面的时序图可以看出,原值的磨练模式应当选择含有截距项和趋向的磨练模式,即”include in test equation”选择”individual intercept and trend”.磨练成果如下图3所示.从磨练成果可以看出,磨练成果除了levin磨练办法外其他办法的成果都不相符请求(Prob.xx小于置信度(如0.05),则以为谢绝单位根的原假设,经由过程磨练).所以持续磨练一阶差分和二阶差分,直到磨练成果达到请求.假如变量原值序列经由过程单位根磨练,则称变量为0阶单整;假如变量一阶差分后的序列经由过程单位根磨练,则称变量为一阶单整,以此推之.留意:单位根磨练的办法(test type)较多,可以运用LLC.IPS.Breintung.ADF-Fisher 和PP-Fisher这5种办法进行面板单位根磨练.一般,为了便利起见,只采用雷同根单位根磨练LLC和不同根单位根磨练Fisher-ADF这两种磨练办法,假如它们都谢绝消失单位根的原假设,则可以以为此序列是安稳的,反之就长短安稳的.5.协整磨练.协整磨练磨练的是模子的变量之间是否消失长期稳固的关系,其前提是解释变量和被解释变量在单位根磨练时为同阶单整.操作如下图所示.6.回归估量面板数据模子依据常数项和系数向量是否为常数,分为3种类型:混杂回归模子(都为常数).变截距模子(系数项为常数)和变系数模子(皆异常数).混杂模子: itit it y x αβμ=++1,2,,;1,2,,i N t T == 变截距模子:iti it it y x αβμ=++1,2,,;1,2,,i N t T == 变系数模子:iti it i it y x αβμ=++1,2,,;1,2,,i N t T ==断定一个面板数据毕竟属于哪种模子,用F 统计统计量:()[]()2111()/11,(1)/(1)S S N K F F N K N T K S NT N K --⎡⎤⎣⎦=---⎡⎤⎣⎦-+()[]()3121()/1(1)1(1),(1)/(1)S S N K F F N K N T K S NT N K --+⎡⎤⎣⎦=-+--⎡⎤⎣⎦-+来磨练以下两个假设:121:N H βββ===,12122:,N N H αααβββ======.个中,1S .2S .3S 分离为变系数模子.变截距模子和混杂模子的残差平方和,K 为解释变量的个数,N 为截面个别数目,α为常数项,β为系数向量.若盘算得到的统计量2F 的值小于给定明显性程度下的响应临界值,则接收假设2H ,用混杂模子拟合样本.反之,则需用1F 磨练假设1H ,假如盘算得到的1F 值小于给定明显性程度下的响应临界值,则以为接收假设1H ,用变截距模子拟合,不然用变系数模子拟合.具体操作:1).分离对面板数据进行3种类型模子的回归,得到1S .2S .3S .此外,一般来说,用样本数据揣摸总体效应,运用随机效应回归模子;直接对样本数据进行剖析,采用固定效应回归模子. 起首回到面板数据表,假如是在如下这个界面时,点击按钮,在跳出的“series list”文本框里输入模子变量,如下图.也可以经由过程从新打开工作文件,如下图操作.选择本身当初保存的路径和文件名,点击打开.打开后,跳出工作文件双击,然后分离进行变系数.变截距和混杂模子的回归估量:点击,进行变系数回归(变系数)变截距回归混杂模子估量前面同2)操作,在“pool estimation”输入如下2).肯定模子情势把模子估量取得的s1.s2.s3数值代入前述公式(第13页),如下()[]()2111()/11,(1)/(1)S S N K F F N K N T K S NT N K --⎡⎤⎣⎦=---⎡⎤⎣⎦-+()[]()3121()/1(1)1(1),(1)/(1)S S N K F F N K N T K S NT N K --+⎡⎤⎣⎦=-+--⎡⎤⎣⎦-+盘算得到F1.F2值,磨练假设H1.H2,从而肯定采用何种模子情势(变系数.变截距.混杂效应).3).回归剖析若磨练成果表明应采用变系数模子,回到以下界面进行估量点击,进行变系数回归上图列示了回归成果,个中:①Coefficient为系数,比如AH的系数为0.760053,截距项为477.4820-315.8649②t-Statistic为t值,磨练每一个自变量的合理性.|t|大于临界值表示可谢绝系数为0的假设,即系数合理.Prob为系数的概率,若其小于置信度(如0.05)则表明|t|大于临界值,即以为系数合理.从成果可以看出,本例中系数合理.③R-squared为样本决议系数,表示总离差平方和中由回归方程可以解释部分的比例,比例越大解释回归方程可以解释的部分越多.值为0-1,越接近1表示拟合越好,>0.8以为可以接收,但是R2随因变量的增多而增大,所以可以经由过程增长自变量的个数来进步模子的R-squared.本例中R-squared0.995382,接近1,拟合度相当好.Adjust R-seqaured为修改的R-squared,与R-squared有类似意义.④F-statistic表示模子拟合样本的后果,即选择的所有自变量对因变量的解释力度.F大于临界值则解释谢绝0假设.若Prob(F-statistic)小于置信度(如0.05)则解释F大于临界值,方程明显性明显.本例中Prob(F-statistic)为0.000000, 模子方程明显.⑤Durbin-Watson stat:磨练残差序列的自相干性.其值在0-4之间._01_02_03_04_05_06_08 _09 _10 _11 _12 _13 _14 _15 _16 _17 _18 _19 _20 _21 _22 _23 _24 _25 _26 _27 _28 _29 _30 _31_33_34w? trade? ex? im? pr? mo? rc? tech? dex? dim? log(ex?) log(im?) log(pr?) log(mo?) rc? log(tech?)。
1)下图是面板数据。
BJ表示北京的意思,CONS表示变量“消费”,INC表示变量“收入”。
研究的是5个城市,1994年至1999年的消费与收入。
2)打开软件eviews6.0,依次打开:File-new-workfile,最后应该如图所示那样。
图中“Number of cross sections:”填写样本数量,这里指BJ、TJ等5个样本,
3)点击“OK”后应该如下图所示
4)依次打开:Proc-import-read text-lotus-excel,打开EXCEL面板数据的文件名,弹出一个菜单,填写如下图所示:c2是数据开始的地方,中间方框里填写变量名:CONS和INC;
5)点击“OK”后如下图所示。
此时,已经成功将面板数据导入eviews,
6)检验是否正确,可双击上图中cons,结果如下图,和EXCEL面板数据一样。
7)如果对你有帮助,给点鼓励啊。
-----精心整理,希望对您有所帮助!。
Eviews统计分析软件的基本使用方法一、介绍Eviews是一款专为经济学家和金融学家设计的统计分析软件,它提供了丰富的数据分析和计量经济模型建立功能。
本文将介绍Eviews的基本使用方法,包括数据导入、数据处理、计量经济模型建立和结果分析等方面。
二、数据导入使用Eviews进行统计分析的第一步是将数据导入软件中。
Eviews支持多种数据格式,包括Excel、CSV和SPSS等。
用户可以选择“File”菜单下的“New”选项来创建新的数据文件,然后选择“Import”选项将数据文件导入。
在导入数据时,用户需要指定数据的类型、路径和文件名等信息。
三、数据处理导入数据后,用户可以对数据进行处理和清洗,以准备后续的分析工作。
Eviews提供了多种数据处理功能,包括数据排序、变量选择、缺失值处理和数据转换等。
用户可以通过简单的拖放操作或者使用命令来完成这些处理任务。
四、计量经济模型建立Eviews的核心功能之一是计量经济模型的建立和估计。
用户可以通过Eviews提供的拖放界面来构建模型,也可以使用Eviews的命令语言进行模型编写。
Eviews支持多种计量经济模型,包括线性回归模型、时间序列模型和面板数据模型等。
用户可以根据自己的需求选择适合的模型进行建立。
五、模型估计建立模型后,用户需要对模型进行估计和检验。
Eviews提供了多种估计方法,包括最小二乘法、广义最小二乘法和面板数据估计等。
用户可以选择合适的估计方法,并根据需要进行参数估计和假设检验。
Eviews会根据用户的选择自动进行结果计算,并提供相应的输出。
六、结果分析完成模型估计后,用户需要对结果进行分析和解释。
Eviews提供了丰富的结果分析工具,包括参数估计的显著性检验、残差分析、模型拟合度检验和模型比较等。
用户可以通过简单的图表和统计量来展示和解释模型的结果。
七、时间序列分析除了建立和估计计量经济模型,Eviews还提供了强大的时间序列分析功能。
可编辑修改精选全文完整版Eviews操作入门:输入数据,对数据进行描述统计和画图首先是打开Eviews软件,可以双击桌面上的图标,或者从windows开始菜单中寻找Eviews,打开Eviews后,可以看到下面的窗口如图F1-1。
图F1-1 Eviews窗口关于Eviews的操作可以点击F1-1的Help,进行自学。
打开Eviews后,第一项任务就是建立一个新Workfile或者打开一个已有的Workfile,单击File,然后光标放在New上,最后单击Workfile。
如图F1-2图F1-2图F1-2左上角点击向下的三角可以选则数据类型,如同F1-3。
数据类型分三类截面数据,时间序列数据和面板数据。
图F1-3图F1-2右上角可以选中时间序列数据的频率,见图F1-4。
图F1-4对话框中选择数据的频率:年、半年、季度、月度、周、天(5天一周或7天1周)或日内数据(用integer data)来表示。
对时间序列数据选择一个频率,填写开始日期和结束日期,日期格式:年:1997季度:1997:1月度:1997:01周和日:8:10:1997表示1997年8月10号,美式表达日期法。
8:10:1997表示1997年10月8号,欧式表达日期法。
如何选择欧式和美式日期格式呢?从Eviews窗口点击Options再点击dates and Frequency conversion,得到窗口F1-5。
F1-5的右上角可以选择日期格式。
图F1-5假设建立一个月度数据的workfile,填写完后点OK,一个新Workfile就建好了。
见图F1-6。
保存该workfile,单击Eviews窗口的save命令,选择保存位置即可。
图F1-6新建立的workfile之后,第二件事就是输入数据。
数据输入有多种方法。
1)直接输入数据,见F1-7在Eviews窗口下,单击Quick,再单击Empty group(edit series),直接输数值即可。
Logit 模型就是y取1或者0安装好Eviews以后1.导入数据File>>>new>>>workfile>>>unstructured/undated(截面数据)Observations:填入观测值个数,如382Ok>>>进入了一个工作界面再file>>>import>>>read text-lotus-excel此时出现open窗口,就可以把事先准备好要导入的excel文件导入了,我的excel文件一般是第一行为标题行,下面是对应的数据列。
如下图:Y X1 X20 11.51293 0.01490 11.67844 0.17820 11.67844 0.17070 11.91839 0.21840 0 0.01490 0 0.02981 0 0.0111 12.27074 0.008451 11.88656 0.00338选二元四个选项:政太,线性逻辑,样本1 10,y c x1x2选好要导入的文件后,数据是从哪一个单元格开始的,在upper-left data cell填入’A2’引入的是excel文件中的哪一个表,在excel5+sheet name中填入’sheet1’Names for series or number if named in file: 说的是数据系列的名称,按照自己的数据系列输入y x1 x2,然后点击ok。
原始数据就成功导入了。
2.logit模型处理数据object>>>new object>>>equation>>>ok在method中选择需要的计算方法:binary-binary choice (logit, probit, extreme value),在binary extimation中选择logit,在equation specification中输入公式如y=c(1)+c(2)*x1+c(2)*x2在eviews中系数用c(1),c(2)来表示,这是我从错误输入后得到的提示中知道的。
1)下图是面板数据。
BJ表示北京的意思,CONS表示变量“消费”,INC表示变量“收入”。
研究的是5个城市,1994年至1999年的消费与收入。
2)打开软件eviews6.0,依次打开:File-new-workfile,最后应该如图所示那样。
图中“Number of cross sections:”填写样本数量,这里指BJ、TJ等5个样本,
3)点击“OK”后应该如下图所示
4)依次打开:Proc-import-read text-lotus-excel,打开EXCEL面板数据的文件名,弹出一个菜单,填写如下图所示:c2是数据开始的地方,中间方框里填写变量名:CONS和INC;
5)点击“OK”后如下图所示。
此时,已经成功将面板数据导入eviews,
6)检验是否正确,可双击上图中cons,结果如下图,和EXCEL面板数据一样。
7)如果对你有帮助,给点鼓励啊。
如有侵权请联系告知删除,感谢你们的配合!。