江阴市江阴市英桥国际学校九年级数学下册第二单元《相似》检测卷(答案解析)
- 格式:doc
- 大小:2.11 MB
- 文档页数:29
一、选择题1.如图,在四边形ABCD中,//AD BC,如果添加下列条件,不能使得△ABC∽△DCA成立的是()A.∠BAC=∠ADC B.∠B=∠ACD C.AC2=AD•BC D.DC AB AC BC=2.下列四个选项中的三角形,与图中的三角形相似的是()A.B.C.D.3.下列各组线段能成比例的是()A.1.5cm,2.5cm, 3.5cm,4.5cm B.1cm,2cm,3cm,4cmC.3cm, 6cm, 4cm, 8cm D210cm5154.如图,一次函数y=﹣2x+10的图象与反比例函数y=kx(k>0)的图象相交于A、B两点(A在B的右侧),直线OA与此反比例函数图象的另一支交于另一点C,连接BC交y轴于点D,若52BCBD=,则△ABC的面积为()A .12B .10C .9D .85.如图,ABC 和CDE △都是等边三角形,点G 在CA 的延长线上,GB GE =,若10BE CG +=,32AG BE =,则AF 的长为( )A .1B .43C .95D .26.如图,在ABC 中,中线BE ,CD 相交于点O ,连接DE ,下列结论:①12DE BC =;②12S S =△DOE △COB ;③AD OE AB OB=;④16ODE ADC S S =△△.其中结论正确的是( ).A .①②B .①③C .①②③D .①③④ 7.如图,在菱形ABCD 中,660AB DAB =∠=︒,,A ,E 分别交BC 、BD 于点E 、F ,2CE =,连接CF ,以下结论:①ABF CBF ≌;②点E 到AB 的距离是23③ADF 与EBF △的面积比为3∶2:④ABF 183,其中正确的是( )A .①④B .①③④C .①②④D .①②③④ 8.已知两个相似三角形一组对应高分别是15和5,面积之差为80,则较大三角形的面积为( )A .90B .180C .270D .36009.如图,在ABC ,AB AC a ==,点D 是边BC 上的一点,且BD a =,1AD DC ==,则a 等于( )A .51+B .51-C .1D .2 10.如图在ABC 中,其中D 、E 两点分别在AB 、AC 上,且31AD =,29DB =,30AE =,32EC =.若50A ∠=︒,则图中1∠、2∠、3∠、4∠的大小关系正确的是( ).A .13∠=∠B .24∠∠=C .23∠∠=D .14∠<∠ 11.如图,已知在ABC ∆中,点D 、E 分别是AB 和AC 的中点,BE 、CD 相交于点O ,若2DOE S ∆=,则BOC S ∆=( )A .4B .6C .8D .1012.已知P 是线段AB 的黄金分割点,且51AB =+,则AP 的长为( ). A .2 B .51- C .2或51-D .35- 二、填空题13.如图,BD 、CE 是锐角ABC 的两条高线,则图中与BOE △相似三角形有______个.14.如图,直线////AF BE CD ,直线AC 交BE 于B ,直线FD 交BE 于E ,2AB cm =,1BC cm =, 1.8EF cm =,求DE 的长为______cm .15.如图,ABC 中,1BC =.若113AD AB =,且11//D E BC ,照这样继续下去,12113D D D B =,且22//D E BC ;23213D D D B =,且33//DE BC ;…;1113n n n D D D B --=,且//n n D E BC 则101101=D E _________.16.如图,D 是ABC 的边BC 上一点,4AB =,2AD =,DAC B ∠=∠.如果ABD △的面积为6,那么ACD △的面积为_______.17.如图,ABC 是等边三角形,被一平行于BC 的矩形所截,AB 被截成三等分,则图中阴影部分的面积是ABC 的面积的______.18.在ABC 中,点D 、E 分别在边AB 、AC 上,AB=12,AC=16,AE=4,若ABC 与ADE 相似,则AD=__________.19.如图,在直角三角形ABC 中,90,C AD ︒∠=是BAC ∠的平分线,且35,22CD DB ==,则AB =____.20.如图,BC 为半圆O 的直径,EF ⊥BC 于点F ,且BF:FC=5:1,若AB=8,AE=2,则AD 的长为__________.三、解答题21.在如图所示的12个小正方形组成的网格中,ABC 的三个顶点都在小正方形的顶点上.仅用无刻度的直尺按要求完成下列作图.(1)在图1网格中找格点D ,作直线BD ,使直线BD 与AC 的交点P 是AC 的中点. (2)在图2网格中找格点E ,作直线BE 交AC 于点Q ,使得CQ CB =.22.如图1,四边形ABCD 是正方形,G 是CD 边上的一个动点(点G 与C ,D 不重合),以CG 为一边在正方形ABCD 外作正方形CEFG ,连接BG ,DE .我们探究下列图中线段BG 、线段DE 的长度关系及所在直线的位置关系:(1)①猜想如图1中线段BG .线段DE 的长度关系及所在直线的位置关系; ②将图1中的正方形CEFG 绕着点C 按顺时针(或逆时针)方向旋转任意角度α,得到如图2,如图3情形.请你通过观察、测量等方法判断①中得到的结论是否仍然成立,并选取图2证明你的判断;(2)将原题中正方形改为矩形(如图4-6)且AB a ,BC b =,CE ka =,(),0CG kb a b k =≠>,第(1)题①中得到C 的结论哪些成立,哪些不成立?若成立,以图5为例简要说明理由;(3)在第(2)题图5中,连接DG 、BE ,且3a =,2b =,12k =,求22BE DG +的值.23.如图,已知O 的半径长为1,AB 、AC 是O 的两条弦,且=AB AC ,BO 的延长线交AC 于点D ,联结OA 、OC .(1)求证:OAD ABD ∽△△.(2)当OCD 是直角三角形时,求B 、C 两点的距离.(3)记AOB 、AOD △、COD △的面积分别为1S 、2S 、3S ,如果2S 是1S 和3S 的比例中项,求OD 的长.24.如图,在等边三角形ABC 中,点D ,E 分别在BC ,AB 上,且60ADE ∠=︒. 求证:ADC ∽DEB .25.如图所示的一张矩形纸片ABCD (AD >AB ),将纸片折叠一次,使点A 与C 重合,再展开,折痕EF 交AD 边于点E ,交BC 边于点F ,交AC 于点O ,分别连接AF 和CE .(1)求证:四边形AFCE 是菱形;(2)过E 点作AD 的垂线EP 交AC 于点P ,求证:2AE 2=AC •AP ;(3)若AE =10cm ,△ABF 的面积为24cm 2,求△ABF 的周长.26.如图,在△ABC 中,AB =AC =10,BC =12,正方形DEFG 的顶点D 、G 分别在AB 、AC 上,EF 在BC 上,AH ⊥BC 于H ,交DG 于点M ,求正方形DEFG 的面积.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】利用相似三角形的判定定理,在AD∥BC,得∠DAC=∠BCA的前提下,需添加一角或夹这角的两边对应成比例进行排查即可.【详解】解:A.∵AD∥BC,∴∠DAC=∠BCA,当∠BAC=∠ADC时,则△ABC∽△DCA;B.∵AD∥BC,∴∠DAC=∠BCA,当∠B=∠ACD时,则△ABC∽△DCA;C.∵AD∥BC,∴∠DAC=∠BCA,由AC2=AD•BC变形为AC ADBC AC=,则△ABC∽△DCA;D.∵AD∥BC,∴∠DAC=∠BCA,当DC ABAC BC=时,不能判断△ABC∽△DCA.故选择:D.【第讲】本题考查三角形相似问题,掌握相似三角形的判定定理,会根据判定定理进行添加条件使三角形相似解题关键.2.B解析:B【分析】由于已知三角形和选择项的三角形都放在小正方形的网格中,设正方形的边长为1,所以每一个三角形的边长都是可以表示出,然后根据三角形的对应边成比例即可判定选择项.【详解】解:设小正方形的边长为1,那么已知三角形的三边长分别为,,所以三边之比为1:2A、三角形的三边分别为2,,三边之比为3,故本选项错误;B、三角形的三边分别为2,4,1:2C、三角形的三边分别为2,32:3D44,故本选项错误.故选:B.【点睛】此题主要考查了相似三角形的判定,属于基础题,掌握三边对应成比例的两个三角形相似是解答本题的关键,难度一般.3.C解析:C【分析】根据比例线段的概念:如果其中两条线段的乘积等于另外两条线段的乘积,则四条线段叫成比例线段.【详解】解:A 、1.5×4.5≠2.5×3.5,故本选项错误;B 、1×4≠2×3,故本选项错误;C 、3×8=4×6,故本选项正确;D 、215105⨯≠⨯,故本选项错误. 故选:C .【点睛】此题考查了比例线段的概念.注意在相乘的时候,最小的和最大的相乘,另外两个相乘,看它们的积是否相等.4.B解析:B 【分析】过点B 作BM y ⊥轴于M ,过点C 作CN y ⊥轴于N ,连接AD ,则//BM CN ,可证得23BM BC CN CD ==,设点2,2k B x x ⎛⎫ ⎪⎝⎭,点3,3k C x x ⎛⎫-- ⎪⎝⎭.根据对称性可得点3,3k A x x ⎛⎫ ⎪⎝⎭,由已知可求得A 、B 、C 的坐标,则可求得直线BC 的解析式,进而求得点D 、F 的坐标,由ABD ADF BDF S S S -=△△△及:2:5ABD ABC S S =△△可求得ABC S.【详解】 过点B 作BM y ⊥轴于M ,过点C 作CN y ⊥轴于N ,连接AD ,如图,则有//BM CN ,∴BMD CND ∽,又52BC BD = ∴23BM BD CN CD ==, 设点2,2k B x x ⎛⎫ ⎪⎝⎭,点3,3k C x x ⎛⎫-- ⎪⎝⎭.根据对称性可得点3,3k A x x ⎛⎫ ⎪⎝⎭. ∵点A ,B 在直线AB 上,∴2210223103k x x k x x⎧=-⨯+⎪⎪⎨⎪=-⨯+⎪⎩ ∴解得:112x k =⎧⎨=⎩, ∴点()3,4A ,点()2,6B 、点()3,4C --.设直线BC 的解析式为y=mx+n ,则有:2634m n m n +=⎧⎨-+=-⎩, 解得:22m n =⎧⎨=⎩, ∴直线BC 解析式为22y x =+,∴点()0,2D ,∵点F 是直线AB 与y 轴的交点,∴点()0,10F∴()()10232102224ABD ADF BDF S S S -==-⨯÷--⨯÷=△△△又∵:2:5ABD ABC S S =△△, ∴55S 41022ABC ABD S ==⨯=, 故选:B .【点睛】 本题考查了一次函数与反比例函数的图象交点问题、待定系数法求一次函数解析式、相似三角形的判定与性质、直线上点的坐标特征、等高三角形的面积比等于底的比等知识,求出点A 、B 的坐标和作辅助线借助相似三角形解决问题是解答的关键.5.C解析:C【分析】过点G 作GH ⊥BE ,垂足为点H ,设BE =2x ,进而可表示出相关线段长,再根据CH =12CG 列出方程求得x =1,最后再根据GAF GDE △∽△可得AF AG DE DG=,进而可求得AF 的长.【详解】解:过点G 作GH ⊥BE ,垂足为点H ,设BE =2x ,∵10BE CG +=,32AG BE =, ∴CG =10-2x ,AG =3x ,∴AC =CG -AG =10-5x , ∵ABC 和CDE △都是等边三角形,∴BC =AC =10-5x ,CD =DE =CE =BC -BE =10-7x ,∠ABC =∠DEC =∠C =60°, ∵GB =GE ,GH ⊥BE ,∴BH =HE =x ,∴CH =CE +HE =10-6x ,∵∠GHC =90°,∠C =60°,∴∠HGC =30°,∴CH =12CG , ∴10-6x =12(10-2x ), 解得:x =1,∴AG =3x =3,CG =10-2x =8,CD =DE =10-7x =3,∴GD =CG -CD =5,∵∠ABC =∠DEC ,∴AB//DE ,∴GAF GDE ∽, ∴AF AG DE DG=, 即335AF =, 解得95AF =, 故选:C .【点睛】 本题考查了等边三角形的性质,含30°的直角三角形的性质,相似三角形的判定及性质,设BE =2x ,利用含30°的直角三角形的性质列出方程是解决本题的关键.6.D解析:D【分析】先判断DE 为ABC 的中位线,则根据三角形中位线性质得到//DE BC ,12DE BC =,于是可对①进行判断;证明DOE △∽COB △,利用相似比得到12OE DE OD OB BC OC ===,14DOE COBS S =△△,则可对②进行判断;加上12AD AB =,则可对③进行判断;利用三角形面积公式得到13ODE DCE S S =△△,12DCE ADC S S =△△,则可对④进行判断.【详解】解:∵BE 、CD 为ABC 的中线,∴DE 为ABC 的中位线,∴//DE BC ,12DE BC =,所以①正确; ∵//DE BC ,∴DOE △∽COB △, ∴12OE DE OD OB BC OC ===,214DOE COB S DE S CB ⎛⎫== ⎪⎝⎭△△,所以②错误; ∵12AD AB =, ∴AD OE AB OB=,所以③正确; ∵:1:2OD OC =, ∴13ODE DCE S S =△△, ∵AE CE =, ∴12DCE ADC S S =△△, ∴16ODE ADC S S =△△,所以④正确. 故选D .【点睛】本题考查相似三角形的性质和判定,解题的关键是熟练运用相似三角形的性质和判定定理. 7.C解析:C【分析】根据菱形的性质得出△ABF 和△CBF 全等的条件,从而可判断①成立;过点E 作EG ⊥AB ,过点F 作MH ⊥AB ,求得EG 的长度,则可判断②是否成立;由AD ∥BE ,可判定△ADF ∽△EBF ,由相似三角形的性质可得△ADF 与△EBF 的面积比,从而可判断③是否成立;利用相似三角形的性质和等边三角形的性质,可求得△ABF 在AB 边上的高,进而求得△ABF 的面积,则可判断④是否成立.【详解】解:∵四边形ABCD 是菱形,AB=6,∴BC=AB=6,∵∠DAB=60°,∴AB=AD=DB=6,∠ABD=∠DBC=60°,在△ABF 与△CBF 中,AB BC ABF FBC BF BF =⎧⎪∠=∠⎨⎪=⎩,∴△ABF ≌△CBF (SAS ),故①成立;如图,过点E 作EG ⊥AB 延长线于点G ;过点F 作MH ⊥AB 交AB ,CD 于点H ,M , 则由菱形的对边平行可得MH ⊥CD ,∵CE=2,BC=6,∠ABC=120°,∴BE=6-2=4,∠EBG=60°∵EG ⊥AB ,∴EG=4×332= 故②成立;∵AD ∥BE ,∴△ADF ∽△EBF , ∴2269()(),44ADF EBF S AD S BE ∆∆=== 故③不成立;∵△ADF ∽△EBF ,32DF AD FB EB ∴== ∵DB=6,∴BF=125∴FH= 125×2=5,∴S △ABF =12AB•FH=16255⨯⨯=, 故④成立.综上所述,一定成立的有①②④.故选:C .【点睛】本题考查了菱形的性质、全等三角形的判定、相似三角形的判定与性质及三角形的面积计算,熟练掌握相关性质及定理是解题的关键.8.A解析:A【分析】由两个三角形的高之比可得出两个三角形的相似比,进而得出两个三角形的面积之比,根据两个三角形的面积之比设未知数,列方程,求出较大三角形的面积即可.【详解】由题意得,两个三角形的相似比为:15∶5=3∶1,故面积比为:9∶1,设两个三角形的面积分别为9x ,x ,则9x -x =80,解得:x =10,故较大三角形的面积为:9x =90.故选:A .【点睛】本题主要考查相似三角形的性质,熟记相似三角形的高之比等于相似比,面积之比等于相似比的平方是解题关键.9.A解析:A【分析】证明△ABC ∽△DAC 得AB BC DA AC=,然后列方程求解即可. 【详解】解:∵AB AC a ==,∴∠B=∠C又∵1AD DC ==,∴∠C=∠DAC∴△ABC ∽△DAC∴AB BC DA AC= ∴11a a a +=解得,12a +=或152a (舍去) 故选:A【点睛】本题考查了相似三角形的判定与性质,解题的关键是理解题意,灵活运用所学知识解决问题. 10.C解析:C【分析】根据31AD =,30AE =,可得21∠<∠;根据题意,通过计算AB 和CD ,可得12AD AE AC AB ,即证明ADE ACB ∽,即可得到各个角度的大小关系. 【详解】∵31AD =,30AE =∴21∠<∠∵31AD =,29DB =,30AE =,32EC =∴60AB AD BD =+=,62AC AE EC =+= ∴12AD AE AC AB ∵50A ∠=︒∴ADE ACB ∽∴14∠=∠,23∠∠= ∴13∠>∠,24∠<∠故选:C .【点睛】本题考查了相似三角形的知识;解题的关键是熟练掌握相似三角形的性质,从而完成求解. 11.C 解析:C【分析】根据三角形中位线定理得到DE=12BC ,DE ∥BC ,得到△DOE ∽△COB ,根据相似三角形的面积比等于相似比的平方计算,得到答案.【详解】 ∵D 、E 分别是AB 和AC 的中点,∴12DE BC =,//DE BC , ∴DOE COB ∆∆∽, ∴2DOE COB S DE S BC ∆∆⎛⎫= ⎪⎝⎭,即BOC214S ∆=, 解得,8BOC S ∆=,故选:C .【点睛】本题考查了相似三角形的判定和性质、三角形中位线定理,掌握相似三角形的判定定理和性质定理是解题的关键.12.C解析:C【分析】若点P 是靠近点B的黄金分割点,则AP AB =,然后代入数据计算即可;若点P 是靠近点A 的黄金分割点,先求出BP ,再利用线段的和差即可求出AP .【详解】解:若P 是靠近点B的黄金分割点,则)12AP AB ===; 若P 是靠近点A的黄金分割点,则)111222BP AB ==⨯=,∴121AP AB BP =-=-=;故选:C .【点睛】是解题的关键. 二、填空题13.3【分析】根据∠BEO=∠CDO=90°可证同理可证从而得出答案;【详解】是的高又∵综上与相似的三角形有3个故答案为:3【点睛】本题考查了相似三角形的判定解题的关键是找出两个对应角相等即可;解析:3【分析】根据∠BEO=∠CDO=90°,BOE COD ∠=∠可证BOE COD ∽△△,同理可证BOE CAE ∽△△,BOE BAD ∽△△,从而得出答案;【详解】 BD ,CE 是ABC 的高,90BEO CEA BDC BDA ∴∠=∠=∠=∠=︒,BEO CDO ∠=∠,BOE COD ∠=∠,BOE COD ∴∽△△,90EBO A ∠+∠=︒,90ACE A ∠+∠=︒,EBO ECA ∴∠=∠,又∵BEO CEA ∠=∠,BOE CAE ∴∽△△,BEO BDA ∠=∠,∠=∠OBE ABD ,BOE BAD ∴∽△△,综上与BOE △相似的三角形有3个.故答案为:3.【点睛】本题考查了相似三角形的判定,解题的关键是找出两个对应角相等即可;14.09【分析】直接根据平行线分线段成比例定理求解即可【详解】解:∵∴即:∴DE=09cm 故答案为:09【点睛】此题主要考查了平行线分线段成比例定理熟练运用定理是解答此题的关键解析:0.9【分析】直接根据平行线分线段成比例定理求解即可.【详解】解:∵////AF BE CD , ∴AB EF BC DE= 即:2 1.8=1DE∴DE=0.9cm故答案为:0.9【点睛】 此题主要考查了平行线分线段成比例定理,熟练运用定理是解答此题的关键15.【分析】由D1E1∥BC 可得△AD1E1∽△ABC 然后由相似三角形的对应边成比例证得继而求得D1E1的长又由D1D2=可得AD2=继而求得D2E2的长同理可求得D3E3的长于是可得出规律则可求得答案 解析:10121()3- 【分析】由D 1E 1∥BC ,可得△AD 1E 1∽△ABC ,然后由相似三角形的对应边成比例,证得111D E AD BC AB =,继而求得D 1E 1的长,又由D 1D 2= 113D B ,可得AD 2= 59AB ,继而求得D 2E 2的长,同理可求得D 3E 3的长,于是可得出规律,则可求得答案.【详解】解:∵D 1E 1∥BC ,∴△AD 1E 1∽△ABC , ∴111D E AD BC AB=, ∵BC=1,AD 113AB =, ∴D 1E 113=, ∵D 1D 2=113D B , ∴AD 2= 59AB , 同理可得:22254211()993D E ==-=-, 3331921()273D E ==-, ∴21().3n n n D E =-∴101101D E =10121()3-. 故答案为:10121()3-.【点睛】 此题考查了相似三角形的判定与性质.得到规律21().3nn n D E =-是关键. 16.【分析】先证明△ACD ∽△BCA 再根据相似三角形的性质得到:△ACD 的面积:△ABC 的面积为1:4再结合△ABD 的面积为6然后求出△ACD 的面积即可【详解】解:∵∠C=∠C ∴△ACD ∽△BCA ∴∴即解析:2【分析】先证明△ACD ∽△BCA ,再根据相似三角形的性质得到:△ACD 的面积:△ABC 的面积为1:4,再结合△ABD 的面积为6,然后求出△ACD 的面积即可.【详解】解:∵DAC B ∠=∠,∠C=∠C∴△ACD ∽△BCA ∴12AD AB =∴21124ACD ABC S S ⎛⎫== ⎪⎝⎭,即164ACD ACD ABD ACD ACD S S S S S ∆∆∆∆∆==++,解得:ACD S ∆=2. 故答案为2.【点睛】本题主要考查了相似三角形的判定和性质、掌握相似三角形的面积比等于相似比的平方解答本题的关键.17.【分析】根据题意易证△AEH ∽△AFG ∽△ABC 利用相似三角形的性质解决问题即可【详解】解:∵AB 被截成三等分∴△AEH ∽△AFG ∽△ABC ∴∴S △AFG :S △ABC=4:9S △AEH :S △ABC=解析:13【分析】根据题意,易证△AEH ∽△AFG ∽△ABC ,利用相似三角形的性质解决问题即可.【详解】解:∵AB 被截成三等分, ∴△AEH ∽△AFG ∽△ABC ,∴11,,23AE AE AF AB ==, ∴S △AFG :S △ABC =4:9,S △AEH :S △ABC =1:9, ∴S 阴影部分的面积=49S △ABC -19S △ABC =13S △ABC , ∴图中阴影部分的面积是ABC 的面积的13. 故答案为:13. 【点睛】 本题主要考查了利用三等分点求得各相似三角形的相似比,从而求出面积比计算阴影部分的面积,难度适中.18.或【分析】分类讨论:当△ADE ∽△ABC 和当△AED ∽△ABC 根据相似的性质得出两种比例式进而解答即可【详解】如图∵∠DAE=∠BAC ∴当△ADE ∽△ABC ∴即解得:AD=3∴当△AED ∽△ABC ∴解析:163或3 【分析】 分类讨论:当△ADE ∽△ABC 和当△AED ∽△ABC ,根据相似的性质得出两种比例式进而解答即可.【详解】如图∵∠DAE=∠BAC,∴当△ADE∽△ABC,∴AB ADAC AE=,即12164AD=,解得:AD=3,∴当△AED∽△ABC,∴AB AE AC AD=,即12416AD=,解得:AD=163,故答案为:163或3【点睛】本题考查了相似三角形的性质:相似三角形的对应角相等,对应边的比相等.19.5【分析】过D作DE⊥AB于E根据角平分线的性质得到根据勾股定理得到根据相似三角形的性质即可得到结论【详解】过作于是的平分线故答案为:【点睛】本题考查了角平分线的性质相似三角形的判定和性质勾股定理正解析:5【分析】过D作DE⊥AB于E,根据角平分线的性质得到32CD DE==,根据勾股定理得到22BE BD DE =-2253222⎛⎫⎛⎫=-= ⎪ ⎪⎝⎭⎝⎭,根据相似三角形的性质即可得到结论. 【详解】过D 作DE AE ⊥于E ,90,C AD ︒∠=是BAC ∠的平分线32CD DE ∴==52DB = 4BC BD CD ∴=+=22BE BD DE ∴=-2253222⎛⎫⎛⎫=-= ⎪ ⎪⎝⎭⎝⎭90,C DEB B B ︒∠=∠=∠=∠BDE BAC ∴∆∆ BC BE BD AB∴= 5224AB∴= 故答案为:5【点睛】本题考查了角平分线的性质,相似三角形的判定和性质,勾股定理,正确的作出辅助线是解题的关键.20.【分析】连接BEDE 则BE ⊥AC 由勾股定理可求得BE 再证明△EBF ∽△CBE 列比例式可求得CF 的长即BC 的长由勾股定理求得CE 的长进而可求得AC 的长再根据圆内接四边形的外角等于内对角证明△ADE ∽△13+【分析】连接BE ,DE ,则BE ⊥AC ,由勾股定理可求得BE ,再证明△EBF ∽△CBE ,列比例式可求得CF的长,即BC的长,由勾股定理求得CE的长,进而可求得AC的长,再根据圆内接四边形的外角等于内对角证明△ADE∽△ACB,则有AD AEAC AB=,即可求得AD的长.【详解】解:连接BE,∵BC为半圆O的直径,∴BE⊥AC,即∠AEB=∠BEC=90°,在Rt△ABE中,AB=8,AE=2,由勾股定理得:BE= 222282215AB AE-=-=,∵EF⊥BC,∴∠EFB=∠BEC=90°,又∠EBF=∠EBC,∴△EBF∽△CBE,∴BE BFBC BE=,∵BF:FC=5:1,∴BF=5FC,BC=6CF,∴2156215CF=,解得:CF=2,则BC=62,∴在Rt△BEC中,CE=2222(62)(215)23BC BE-=-=,∴AC=2+23,∵∠DAE=∠CAB,∠ADE=∠ACB,∴△ADE∽△ACB,∴AD AEAC AB=,即28 223=+,解得:AD=2(223)13⨯++=,故答案为:132+.【点睛】本题考查了圆的基本性质、勾股定理、相似三角形的判定与性质、圆内接四边形外角性质,熟练掌握相似三角形的判定与性质是解答的关键.三、解答题21.(1)画图见解析;(2)画图见解析.【分析】(1)根据题意画图即可;(2)由平行线性质得到MAQ NCQ ∠=∠,继而可证明AMQ CNQ ∽△△,再根据相似三角形的性质解得35CQ AC =,最后根据勾股定理解题即可. 【详解】(1)如图1所示,取格点D ,连接AD ,CD ,则四边形ABCD 为矩形,连接BD 交AC 于点P ,由于矩形对垂线互相平分,则点P 为AC 中点,故图1中直线BD ,格点D 即为所求.(2)如图2所示,找格点M ,N ,使得2AM =,3CN =,连接MN 与AC 交于点Q ,连接BQ 并延长交格点于点E ,则格点E 即为所求.∵//AM CN ,MAQ NCQ ∴∠=∠,又AQM CQN ∠=∠(对顶角相等)AMQ CNQ ∴∽△△, 23AM AQ CN CQ ∴==, 即35CQ AC =, 由勾股定理得:222AC AB BC =+,又4AB =,3BC =,22435AC ∴=+=335355CQ AC CB ∴==⨯==, 故CQ CB =,∴格点E 即为所求.【点睛】本题考查网格作图,涉及相似三角形的判定与性质等知识,是重要考点,难度较易,掌握相关知识是解题关键.22.(1)①BG DE =,BG DE ⊥.②BG DE =,BG DE ⊥仍然成立.详见解析;(2)BG DE ⊥成立,BG DE =不成立,详见解析;(3)654. 【分析】(1)①利用正方形的性质,证明BCG DCE ≌△△,利用全等三角形的性质可得:BG=DE ,∠CBG=∠CDE ,再证明:∠EDC+∠DGO=90°,从而可得结论;②同①,先证明:BCG DCE ≌△△,利用全等三角形的性质可得:BG DE =,CBG CDE ∠=∠,再证明:90CDE DHO ∠+∠=︒,从而可得结论;(2)利用矩形的性质,证明BCG DCE △∽△,可得:CBG CDE ∠=∠,再证明90CDE DHO ∠+∠=︒,从而可得结论;(3)连接,,BD GE 利用BG DE ⊥,结合勾股定理证明:2222BE DG BD GE +=+,再把3a =,2b =,12k =代入,即可得到答案. 【详解】解:(1)①BG DE =,BG DE ⊥.理由如下:如图1,延长BG 交DE 于O ,∵四边形ABCD 、CGFE 是正方形,∴BC=CD=AB ,CG=CE ,∠BCD=∠ECD=90°,∵在BCG 和DCE 中BC CD BCG DCE CG CE =⎧⎪∠=∠⎨⎪=⎩,∴BCG DCE ≌△△,∴BG=DE ,∠CBG=∠CDE ,∵∠CBG+∠BGC=90°,又∵∠DGO=∠BGC ,∴∠EDC+∠DGO=90°,∴∠DOG=1809090︒-︒=︒,∴BG ⊥DE ,即BG=DE ,BG ⊥DE ;②BG DE =,BG DE ⊥仍然成立.如图2,∵四边形ABCD 、四边形CEFG 都是正方形,∴BC CD =,CG CE =,90BCD ECG ∠=∠=︒,∴BCG DCE ∠=∠,∵在BCG 与DCE 中,,BC CD BCG DCE CG CE =⎧⎪∠=∠⎨⎪=⎩∴BCG DCE ≌△△,∴BG DE =,CBG CDE ∠=∠,又∵BHC DHO ∠=∠,90CBG BHC ∠+∠=︒,∴90CDE DHO ∠+∠=︒,∴90DOH ∠=︒,∴BG DE ⊥.(2)BG DE ⊥成立,BG DE =不成立.如图5,∵四边形ABCD 、四边形CEFG 都是矩形,且AB CD a ==,BC b =,CG kb =,(),0CE ka a b k =≠>, ∴BC CG b DC CE a==,90BCD ECG ∠=∠=︒, ∴BCG DCE ∠=∠, ∴BCG DCE △∽△,∴CBG CDE ∠=∠,又∵BHC DHO ∠=∠,90CBG BHC ∠+∠=︒,∴90CDE DHO ∠+∠=︒,∴90DOH ∠=︒,∴BG DE ⊥.显然:.BG DE ≠(3)如图5,连接,,BD GE∵BG DE ⊥,∴222OB OD BD +=,222OE OG GE +=,222OB OE BE +=,222OG OD DG += ∴22222222BE DG OB OE OG OD BD GE +=+++=+,又∵3a =,2b =,12k =,CE ka =,CG kb =, 2222222211323321222BD GE ⎛⎫⎛⎫⎛⎫∴=+=⨯+⨯=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,, ∴22222236523124BD GE ⎛⎫+=+++= ⎪⎝⎭, ∴22654BE DG +=. 【点睛】本题考查的是勾股定理的应用,正方形,矩形的性质,三角形全等的判定与性质,三角形相似的判定与性质,掌握以上知识是解题的关键.23.(1)见解析;(2)3BC =或2;(3)51OD -=. 【分析】(1)由△AOB ≌△AOC ,推出∠C=∠B ,由OA=OC ,推出∠OAC=∠C=∠B ,由∠ADO=∠ADB ,即可证明△OAD ∽△ABD ;(2)如图2中,当△OCD 是直角三角形时,需要分类讨论解决问题;(3)如图3中,作OH ⊥AC 于H ,设OD=x .想办法用x 表示AD 、AB 、CD ,再证明AD 2=AC•CD ,列出方程即可解决问题;【详解】解:(1)在AOB 和AOC △中, OA OA AB AC OB OC =⎧⎪=⎨⎪=⎩,∴AOB AOC △≌△,C B ∴∠=∠,又∵OA OC =,OAC C B ∴∠=∠=∠,而ADO ADB ∠=∠,OAD ABD ∴∽△△.(2)如图:①当90ODC ∠=︒时,BD AC ⊥,OA OC =,AD DC ∴=,BA BC AC ∴==,ABC ∴是等边三角形,在Rt OAD 中,1OA =,30OAD ∠=︒,1122OD OA ∴==, 223AD OA OD ∴=-=, 23BC AC AD ∴===②90COD ∠=︒,90BOC ∠=°,22112BC =+=.③OCD ∠显然90≠︒,不需要讨论. 综上所述,3BC =或2.(3)如图:作OH AC ⊥于H ,设OD x =,DAO DBA ∽△△,AD OD OA DB AD AB∴==. 11AD x x AD AB∴==+. (1)AD x x ∴=+,(1)x x AB +=. 又2S 是1S 和3S 的比例中项,2213S S S ∴=⋅,而212S AD OH =⋅,112OAC S S AC OH ==⋅△,312S CD OH =⋅⨯, 2111222AD OH AC OH CD OH ⎛⎫⎛⎫∴⋅=⋅⋅⋅ ⎪ ⎪⎝⎭⎝⎭, 即2AD AC CD =⋅,又AC AB =,(1)(1)x x CD AC AD x x +=-=+, 代入上式可得:210x x +-=, 求得512x =,或512-,经检验,12x =是分式方程的根且符合题意,OD ∴=. 【点睛】 本题属于圆的综合题、全等三角形的判定和性质、相似三角形的判定和性质、比例中项等知识,解题的关键是灵活运用所学知识解决问题,学会利用参数解决问题.24.见解析【分析】根据ABC 是等边三角形,即可得到60B C ∠=∠=︒,再根据 CAD BDE ∠=∠,即可判定~ADC DEB △△.【详解】证明:∵ABC 是等边三角形,∴60B C ∠=∠=︒, ∴60ADB CAD C CAD ∠=∠+∠=∠+︒,∵60ADE ∠=︒,∴60ADB BDE ∠=∠+︒,∴CAD BDE ∠=∠,∴ADC DEB △△. 【点睛】本题考察了相似三角形的判定与性质,解题的关键是掌握三角形相似的判定条件. 25.(1)见解析;(2)见解析;(3)24cm【分析】(1)求出∠AOE=∠COF=90°,OA=OC ,∠EAO=∠FCO ,证△AOE ≌△COF ,推出OE=OF 即可;(2)证△AOE ∽△AEP ,得出比例式,即可得出答案;(3)设AB=xcm ,BF=ycm ,根据菱形的性质得出AF=AE=10cm ,根据勾股定理求出x 2+y 2=100,推出(x+y )2-2xy=100①,根据三角形的面积公式求出12xy=24.即xy=48 ②.即可求出x+y=14的值,代入x+y+AF 求出即可.【详解】解:(1)证明:当顶点A 与C 重合时,折痕EF 垂直平分AC ,∴OA=OC ,∠AOE=∠COF=90°,∵在矩形ABCD 中,AD ∥BC ,∴∠EAO=∠FCO ,在△AOE 和△COF 中,AOE COF OA OCEAO FCO ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△AOE ≌△COF (ASA ),∴OE=OF ,∵OA=OC ,∴四边形AFCE 是平行四边形,∵EF ⊥AC ,∴平行四边形AFCE 是菱形.(2)证明:∵∠AEP=∠AOE=90°,∠EAO=∠EAP ,∴△AOE ∽△AEP , ∴AE AO AP AE=, 即AE 2=AO•AP , ∵AO=12AC , ∴AE 2=12AC•AP , ∴2AE 2=AC•AP .(3)设AB=xcm ,BF=ycm .∵由(1)四边形AFCE 是菱形,∴AF=AE=10cm .∵∠B=90°,∴x 2+y 2=100.∴(x+y )2-2xy=100①∵△ABF 的面积为24cm 2, ∴12xy=24,即xy=48 ②, 由①、②得(x+y )2=196.∴x+y=14或x+y=-14(不合题意,舍去).∴△ABF 的周长为:x+y+AF=14+10=24(cm ).【点睛】本题综合考查了相似三角形的性质和判定,勾股定理,三角形的面积,全等三角形的性质和判定,平行四边形的性质和判定,菱形的性质和判定等知识点的应用,题目综合性比较强,有一定的难度.26.23.04【分析】根据正方形的性质得到DG ∥BC ,推出△ADG ∽△ABC ,利用相似三角形对应边上高的比等于相似比,列方程求解即可.【详解】解:设正方形DEFG 的边长为x ,DE =DG =x .∵四边形DEFG 为正方形∴DG ∥BC ,∠DEC =90︒∴△ADG ∽△ABC ∴12AM AH DG x BC == 又∵ AB =AC =10,BC =12,AH ⊥BC ∴ BH =12BC =6,∠DEC =∠AHC =90︒ 在Rt △ABH 中,根据勾股定理得AH 8==∴AM =AH -MH =AH -DE =8-x ∴88AM x AH -= ∴8128x x -=,解得x =4.8 ∴S 正方形DEFG =x 2=23.04【点睛】 本题考查了相似三角形的判定与性质.关键是由平行线得到相似三角形,利用相似三角形的性质列方程.。
一、选择题1.如图,在△ABC 中,点D 在BC 边上,连接AD ,点E 在AC 边上,过点E 作//EF BC ,交AD 于点F ,过点E 作//EG AB ,交BC 于G ,则下列式子一定正确的是( )A .AE EF EC CD =B .BF EG CD AB =C .AF BC FD GC = D .CG AF BC AD = 2.如图,在ABC 中,中线BE ,CD 相交于点O ,连接DE ,下列结论:①12DE BC =;②12S S =△DOE △COB ;③AD OE AB OB=;④16ODE ADC S S =△△.其中结论正确的是( ).A .①②B .①③C .①②③D .①③④ 3.如图,在Rt ABC 中,90C ∠=︒,7AC =,24BC =,将它绕着BC 中点D 顺时针旋转一定角度后到A B C ''',恰好使//B C AB '',A C ''与边AB 交于点E ,则A E '的长为( )A .72B .4924C .8425D .91254.下列图形中一定是相似形的是( )A .两个等腰三角形B .两个菱形C .两个矩形D .两个正方形 5.如图,在ABC 中,//DE BC ,6AD =,3DB =,4AE =,则AC 的长为( )A .1B .2C .4D .6 6.如图△BCD 中,BE ⊥CD ,AE =CE=3,BE =DE=4.BC=5,DA 的延长线交BC 于F ,则AF=( )A .1B .0.6C .1.2D .0.87.如图,已知////AB CD EF ,它们依次交直线1l 、2l 于点A 、D 、F 和点B 、C 、E ,如果:3:1AD DF =,10BE =,那么CE 等于( )A .103B .203C .52D .1528.如果两个相似三角形的对应高之比是1:2,那么它们的周长比是( )A .1:2B .1:4C .1:2D .2:19.如图,D 、E 分别是△ABC 的边AB 、BC 上的点,且DE ∥AC ,AE 、CD 相交于点O ,若S △DOE :S △COA =1:9,则S △BDE :S △CDE 的值是( ).A .1:2B .1:3C .1:4D .2:510.如图,已知直线////a b c ,直线m 交直线a ,b ,c 于点A ,B ,C ,直线n 交直线a ,b ,c 于点D ,E ,F ,若12AB BC =,则DE EF=( )A .13B .12C .23D .111.如图,在ABC 中,点D 、E 分别在边AB 、AC 上,则在下列五个条件中:①AED B ∠=∠;②//DE BC ;③AD AE AC AB=;④AD BC DE AC ⋅=⋅,能满足ADE ACB 的条件有( )A .1个B .2个C .3个D .4个 12.已知两个三角形相似,其中一个三角形的两个内角分别为72,63︒︒,则另一个三角形的最小内角为( ) A .72︒ B .63︒ C .45︒ D .不能确定 二、填空题13.如图,△ABC 中,∠C =90°,BC =8cm ,AC =6cm ,点P 沿BC 边以2cm/s 的速度从点B 向点C 移动,同时点Q 沿CA 边以1cm/s 的速度从点C 向点A 移动.若以点C 、P 、Q 构成的三角形与△ABC 相似,则运动时间为____________秒.14.如图,BD 、CE 是锐角ABC 的两条高线,则图中与BOE △相似三角形有______个.15.贺哲同学的身高1.86米,影子长3米,同一时刻金老师的影子长2.7米,则金老师的身高为________米(结果保留两位小数)。
一、选择题1.如图,在△ABC中,DE∥BC,∠ADE=∠EFC,AD:BD=5:3,CF=6,则DE的长为()A.6 B.8 C.10 D.122.如图所示,在矩形ABCD中,AB=2,BC=2,对角线AC、BD相交于点O,过点O 作OE垂直AC交AD于点E,则AE的长是()A.2B.3C.1 D.1.53.如图,练习本中的横格线都平行且相邻两条横格线间的距离都相等,同一条直线上的三个点A,B,C都在横格线上.若线段AB=6,则线段AC的长为()A.12 B.18 C.24 D.304.如图,在△ABC中,DE∥BC,EF∥AB,AD:BD=5:3,CF=6,则DE的长为()A.6 B.8 C.10 D.125.如图,在边长为2的正方形ABCD中,对角线AC与BD相交于点O,点P是BD上的一个动点,过点P作EF∥AC,分别交正方形的两条边于点E,F,连接OE,OF,设BP=x,△OEF的面积为y,则能大致反映y与x之间的函数关系的图像为()A.B.C.D.6.下列条件中,不能判断△ABC与△DEF相似的是()A.∠A=∠D,∠B=∠F B.BC ACEF DF=且∠B=∠DC.AB BC ACDE EF DF==D.AB ACDE DF=且∠A=∠D7.如图,在□ABCD中,AC与BD相交于点O,E为OD的中点,连接AE并延长交DC于点F,则△DEF与四边形EFCO的面积比为()A.1: 4 B.1:5 C.1:6 D.1: 78.△ABC与△DBC如图放置,已知,∠ABC=∠BDC=90°,∠A=60°,BD=CD=22,将△ABC沿BC方向平移至△A'B'C'位置,使得A'C边恰好经过点D,则平移的距离是()A.1 B.2﹣2 C.3 2 D.6﹣49.如图所示,一般书本的纸张是原纸张多次对开得到,矩形ABCD沿EF对开后,再把矩形EFCD 沿MN 对开,依次类推,若各种开本的矩形都相似,那么AD AB 等于( )A .2B .22C .512-D .2 10.如图,D 、E 分别是△ABC 的边AB 、BC 上的点,且DE ∥AC ,AE 、CD 相交于点O ,若S △DOE :S △COA =1:9,则S △BDE :S △CDE 的值是( ).A .1:2B .1:3C .1:4D .2:511.已知四个数2,3,m ,3成比例的线段,那么m 的值是( )A .3B .233C .2D .23 12.已知线段a 、b 有52a b a b +=-,则:a b 为( ) A .5:1 B .7:2 C .7:3 D .3:7二、填空题13.如图,点D 是ABC 的边AB 上的一点,//DE BC 交AC 于点E ,作//DF AC 交BC 于点F ,分别记ADE ,BDF ,平行四边形DFCE ,ABC 的面积为1S ,2S ,3S ,S 有以下结论:①若12S S ,则DE 为ABC 的中位线;②若13S S =,则23BC DE =;③212S S S =; ④3122S S S =.其中正确的是______.(把所有正确结论的序号都填上)14.已知b c c a a b k a b c+++===,0a ≠,0b ≠,0c ≠;则k =________.15.如图,矩形ABCD 中,2AB =,E 为CD 的中点,连接AE 、BD 交于点P ,过点P 作PQ BC ⊥于点Q ,则PQ =________.16.如图所示,在△ABC 中DE ∥BC ,若2EFB EFD S S ∆∆=,则 DE:BC=______.17.贺哲同学的身高1.86米,影子长3米,同一时刻金老师的影子长2.7米,则金老师的身高为________米(结果保留两位小数)。
一、选择题1.下列四个选项中的三角形,与图中的三角形相似的是( )A .B .C .D .2.如图,在△ABC 中,点D 在BC 边上,连接AD ,点E 在AC 边上,过点E 作//EF BC ,交AD 于点F ,过点E 作//EG AB ,交BC 于G ,则下列式子一定正确的是( )A .AE EF EC CD =B .BF EG CD AB =C .AF BC FD GC = D .CG AF BC AD = 3.如图,在Rt ABC 中,90C ∠=︒,7AC =,24BC =,将它绕着BC 中点D 顺时针旋转一定角度后到A B C ''',恰好使//B C AB '',A C ''与边AB 交于点E ,则A E '的长为( )A .72B .4924C .8425D .91254.如图,在ABC 中,//DE BC ,6AD =,3DB =,4AE =,则AC 的长为( )A .1B .2C .4D .65.如图,正方形ABCD 中,ABC ∆绕点A 逆时针旋转到AB C ''∆,AB '、AC '分别交对角线BD 于点E 、F ,若4AE =则EF ED ⋅的值为( )A .4B .6C .8D .16 6.已知两个相似三角形一组对应高分别是15和5,面积之差为80,则较大三角形的面积为( )A .90B .180C .270D .36007.如图,放映幻灯片时,通过光源,把幻灯片上的图形放大到屏幕上.若光源到幻灯片的距离为30cm ,光源到屏幕的距离为90cm ,且幻灯片中的图形的高度为7cm ,则屏幕上图形的高度为( )A .21cmB .14cmC .6cmD .24cm 8.如图,地面上点A 处有一只兔子,距它10米的B 处有一根高1.6米的木桩,大树、木桩和兔子刚好在一条直线上.一只老鹰在9.6米高的树顶上刚好看见兔子,则大树C 离木桩B( )米.A .60B .50C .40D .459.如图,正方形ABCD 中,ABC 绕点A 逆时针旋转到AB C ''△,AB '、AC '分别交对角线BD 于点E 、F ,若4AE =,则EF ED ⋅的值为( )A .4B .6C .8D .1610.如图,在ABC 中,点D 、E 分别在边AB 、AC 上,则在下列五个条件中:①AED B ∠=∠;②//DE BC ;③AD AE AC AB=;④AD BC DE AC ⋅=⋅,能满足ADE ACB 的条件有( )A .1个B .2个C .3个D .4个11.如图,在ABCD 中,7AB =,3BC =,ABC ∠的平分线交CD 于点F ,交的延长线于点E ,若2BF =,则线段EF 的长为( )A .4B .3C .83D .7412.如图,四边形ABCD 是正方形,E 是BC 的中点,连接AE 与对角线BD 相交于点G ,连接CG 并延长,交AB 于点F ,连接DE 交CF 于点H .以下结论:①CDE BAE ∠=∠;②CF DE ⊥;③AF BF =;④22CE CH CF =⋅.其中正确结论的个数有( )A .1B .2C .3D .4二、填空题13.如图,在矩形ABCD 中,6,AD AE BD =⊥,垂足为,3E ED BE =,动点,P Q 分别在,BD AD 上,则AE 的值为__________,AP PQ +的最小值为_____________.14.如图,一次函数y =﹣34x +6的图象与x 轴交于点B ,与y 轴交于点A ,过线段AB 的中点P (4,3)作一条直线与△AOB 交于点Q ,使得所截新三角形与△AOB 相似,则点Q 坐标是_____.15.如图圆内接正六边形ABCDEF 中,AC 、BF 交于点M .则:ABM AFM S S =△△___________.16.若 14b a b =-,则a b的值为__________. 17.如图,D 是ABC 的边BC 上一点,4AB =,2AD =,DAC B ∠=∠.如果ABD △的面积为6,那么ACD △的面积为_______.18.如图4,我国现代数学著作《九章算术》中有“井深几何”问题如下:今有井径五尺,不知其深,立五尺木于井上,从木末望水岸,入径四寸,问井深几何?它的题意可以由如图所示获得,井深BC为_________尺.19.在同一时刻两根木竿在太阳光下的影子如图所示,其中木竿AB=2m,它的影子BC=1.5m,木竿PQ的影子有一部分落在了墙上,PM=1.2m,MN=0.8m,则木竿PQ的长度为_______m.20.已知b c c a a ba b c+++===k,则k=______.参考答案三、解答题21.如图,在平面直角坐标系中,△OAB的顶点坐标分别为O(0,0)、A(﹣1,2)、B (﹣2,﹣1),P(m,n)是△OAB的边AB上一点.(1)画出将△OAB 向右平移2个单位,再向下平移1个单位后的△O 1A 1B 1 ,并写出点P 的对应点P 1的坐标;(2)以原点O 为位似中心,在y 轴的左侧画出△OAB 的一个位似△OA 2B 2 ,使它与△OAB 的相似比为2:1,并写出点P 的对应点P 2的坐标;(3)判断△O 1A 1B 1与△O 2A 2B 2,能否是关于某一点Q 为位似中心的位似图形,若是,请在图中标出位似中心Q ,并写出点Q 的坐标.22.如图,在平面直角坐标系xoy 中,直线2y x b =+经过点()2,0A -,与y 轴交于点B ,与反比例函数()0k y x x =>的图象交于点C(m ,6),过B 作BD y ⊥轴,交反比例函数()0k y x x =>的图象于点D ,连接AD ,CD . (1)求b ,k 的值;(2)求△ACD 的面积;(3)在坐标轴上是否存在点E(除点O 外),使得△ABE 与△AOB 相似,若存在,请求出点E 的坐标;若不存在,请说明理由.23.如图,已知ABC 和点A '.(1)以点A '为顶点求作A B C ''',使A B C ABC '''∽,4A B C ABC SS '''=;(尺规作图,保留作图痕迹,不写作法) (2)设D 、E 、F 分别是ABC 三边AB 、BC 、AC 的中点,D '、E '、F '分别是你所作的A B C '''三边A B ''、B C ''、A C ''的中点,求证:DEF D E F '''∽.24.如图1,点()8,1A 、(),8B n 都在反比例函数()0m y x x=>的图象上,过点A 作AC x ⊥轴于C ,过点B 作BD y ⊥轴于D .(1)求m 的值和直线AB 的函数关系式;(2)动点P 从O 点出发,以每秒2个单位长度的速度沿线段OD 向点D 运动,同时动点Q 从O 点出发,以每秒1个单位长度的速度沿线段OC 向C 点运动,当动点P 运动到点D 时,点Q 也停止运动,设运动的时间为t 秒.如图2,当点P 运动时,如果作OPQ △关于直线PQ 的对称图形'O PQ △,是否存在某时刻t ,使得点'O 恰好落在反比例函数的图象上?若存在,求'O 的坐标和t 的值﹔若不存在,请说明理由.25.如图,直线2y x =--交x 轴于点A ,交y 轴于点B ,抛物线2y x bx c α=++的顶点为A ,且经过点B .(1)求该抛物线所对应的函数表达式;(2)点C 是抛物线上的点,ABC ∆是以AB 为直角边的直角三角形,请直接写出点C 的坐标.26.黄金分割为“最美丽”的几何比率,广泛应用于图案设计,下图是一个包装盒的俯视图,线段AB 是这个俯视图的中轴线.某公司想在中轴线AB 上找到黄金分割点,安装视频播放器.(1)请你用尺规作图的方式找出这个点(作出一点即可,保留作图痕迹); (2)请证明你找到的点是黄金分割点.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】由于已知三角形和选择项的三角形都放在小正方形的网格中,设正方形的边长为1,所以每一个三角形的边长都是可以表示出,然后根据三角形的对应边成比例即可判定选择项.【详解】解:设小正方形的边长为1,那么已知三角形的三边长分别为,,所以三边之比为1:2A、三角形的三边分别为2,,三边之比为3,故本选项错误;B、三角形的三边分别为2,4,1:2C、三角形的三边分别为2,32:3D44,故本选项错误.故选:B.【点睛】此题主要考查了相似三角形的判定,属于基础题,掌握三边对应成比例的两个三角形相似是解答本题的关键,难度一般.2.C解析:C【分析】根据平行线分线段成比例性质进行解答便可.【详解】解:∵EF∥BC,∴AF AE=,FD EC∵EG∥AB,∴AE BG=,EC GC∴AF BC=,FD GC故选:C.【点睛】本题考查了平行线分线段成比例性质,关键是熟记定理,找准对应线段.3.D解析:D【分析】过点D 作DF ⊥AB 于F ,易证四边形EFDC´是矩形,可得C´E=DF ,由勾股定理求得AB 的长,根据已知和相似三角形的判定可证明△ACB ∽△DFB ,可得AC AB DF BD=,J 进而求得DF 值,由A´E=A´C´﹣C´即可求解.【详解】解:过点D 作DF ⊥AB 于F ,则∠DFB=90°,∵△ABC 绕着BC 中点D 顺时针旋转一定角度后到A B C ''',恰好使//B C AB '',∴∠C=∠C´=∠A´EB=90°,AC=A´C´=7,CD=BD=12,∴四边形EFDC´为矩形,∴C´E=DF ,∵在Rt △ACB 中,∠C=90°,AC=7,BC=24, ∴222272425AC BC +=+=,∵∠C=∠DFE ,∠B=∠B ,∴△ACB ∽△DFB ,∴AC AB DF BD =即72512DF =, ∴DF=8425=C´E , ∴A´E=A´C´﹣C´E=7﹣8425=9125, 故选:D .【点睛】本题考查了旋转的性质、矩形的判定与性质、相似三角形的判定与性质、勾股定理等知识,熟练掌握这些知识的灵活运用,添加恰当的辅助线是解答的关键.4.D解析:D【分析】根据平行线分线段成比例求出EC ,即可解答.【详解】解:∵DE ∥BC ,∴AD AE DB EC =,即643EC=, 解得:EC=2,∴AC=AE+EC=4+2=6;故选:D .【点睛】 本题考查了平行线分线段成比例定理,解决本题的关键是熟记平行线分线段成比例定理. 5.D解析:D【分析】根据正方形的性质得到∠BAC=∠ADB=45°,根据旋转的性质得到∠EAF=∠BAC=45°,根据相似三角形的性质即可得到结论.【详解】解:∵四边形ABCD 是正方形,∴∠BAC=∠ADB=45°,∵把△ABC 绕点A 逆时针旋转到△AB'C',∴∠EAF=∠BAC=45°,∵∠AEF=∠DEA ,∴△AEF ∽△DEA , ∴AE EF DE AE=, ∴EF•ED=AE 2,∵AE=4, ∴EF•ED 的值为16,故选:D .【点睛】本题考查了旋转的性质,正方形的性质,相似三角形的判定和性质,找出相关的相似三角形是解题的关键.6.A解析:A【分析】由两个三角形的高之比可得出两个三角形的相似比,进而得出两个三角形的面积之比,根据两个三角形的面积之比设未知数,列方程,求出较大三角形的面积即可.【详解】由题意得,两个三角形的相似比为:15∶5=3∶1,故面积比为:9∶1,设两个三角形的面积分别为9x ,x ,则9x -x =80,解得:x =10,故较大三角形的面积为:9x=90.故选:A.【点睛】本题主要考查相似三角形的性质,熟记相似三角形的高之比等于相似比,面积之比等于相似比的平方是解题关键.7.A解析:A【分析】根据题意可画出图形,再根据相似三角形的性质对应边成比例解答即可.【详解】解:如图所示,∵DE∥BC,∴△AED∽△ABC,∴AE DEAC BC=,设屏幕上的图形高是x cm,则307 90x=,解得:x=21.答:屏幕上图形的高度为21cm,故选:A.【点睛】本题考查相似三角形性质的应用.解题时关键是找出相似的三角形,然后根据对应边成比例列出方程,建立适当的数学模型来解决问题.8.B解析:B【分析】如图,证明△ABE∽△ACD,根据相似三角形的性质列式求解即可.【详解】解:如图,根据题意得,△ABE∽△ACD,∴AB BE AC CD= ∵AB=10m ,BE=1.6m ,CD=9.6m ∴10 1.6=9.6AC ∴AC=60m ∴BC=AC-AB=60-10=50m故选:B .【点睛】此题主要考查了相似三角形的应用,善于观察题目的信息是解题以及学好数学的关键. 9.D解析:D【分析】先根据正方形的性质、旋转的性质可得45EAF EDA ∠=∠=︒,再根据相似三角形的判定与性质即可得.【详解】四边形ABCD 是正方形,45BAC EDA ∴∠=∠=︒,由旋转的性质得:B AC BAC ''∠=∠,B AC EDA ''∴∠=∠,即EAF EDA ∠=∠,在AEF 和DEA △中,EAF EDA AEF DEA ∠=∠⎧⎨∠=∠⎩, AEF DEA ∴~,EF AE AE DE ∴=,即44EF DE=, 16EF DE ∴⋅=,故选:D .【点睛】本题考查了正方形的性质、旋转的性质、相似三角形的判定与性质,熟练掌握相似三角形的判定与性质是解题关键.10.B解析:B【分析】根据相似三角形的判定逐个判断即可得.【详解】①在ADE 和ACB △中,AED B A A∠=∠⎧⎨∠=∠⎩, ADE ACB ∴,则条件①能满足;②//DE BC ,ADE ABC ∴,则条件②不能满足; ③在ADE 和ACB △中,AD AE AC AB A A⎧=⎪⎨⎪∠=∠⎩,ADE ACB ∴,则条件③能满足;④由AD BC DE AC ⋅=⋅得:AD DE AC BC=, 对应的夹角ADE ∠与C ∠不一定相等,∴此时ADE 和ACB △不一定相似,则条件④不能满足;综上,能满足的条件有2个,故选:B .【点睛】 本题考查了相似三角形的判定,熟练掌握判定方法是解题关键.11.C解析:C【分析】平行四边形的对边相等且平行,利用平行四边形的性质以及平行线的基本性质求解.【详解】解:∵平行四边形ABCD∴AD ∥CB ,AD=BC=4.∴∠CBE=∠AEB∵∠ABC 的平分线交AD 于点E∴∠ABE=∠CBE∴∠ABE=∠AEB∴AE=AB=7∴DE=AE-AD=7-3=4.∵AD ∥CB ,∴△DEF ∽△CBF ∴EF DE BF BC = ∴423EF = 即83EF = 故选:C .【点睛】本题主要考查了平行四边形的性质和相似三角形的性质和判定,掌握相关知识是解题的关键.12.D解析:D【分析】证明△ABE ≌△DCE ,可得结论①正确;由正方形的性质可得AB=AD=BC=CD ,BE=CE ,∠DCE=∠ABE=90°,∠ABD=∠CBD=45°,可证△ABE ≌△DCE ,△ABG ≌△CBG ,可得∠BCF=∠CDE ,由余角的性质可得结论②;证明△DCE ≌△CBF 可得结论③,证明△CHF ∽△CBF 即可得结论④正确.【详解】解:∵四边形ABCD 是正方形,点E 是BC 的中点,∴AB=AD=BC=CD ,BE=CE ,∠DCE=∠ABE=90°,∠ABD=∠CBD=45°,∴△ABE ≌△DCE (SAS )∴∠DEC=∠AEB ,∠BAE=∠CDE ,DE=AE ,故①正确,∵AB=BC ,∠ABG=∠CBG ,BG=BG ,∴△ABG ≌△CBG (SAS )∴∠BAE=∠BCF ,∴∠BCF=∠CDE ,且∠CDE+∠CED=90°,∴∠BCF+∠CED=90°,∴∠CHE=90°,∴CF ⊥DE ,故②正确,∵∠CDE=∠BCF ,DC=BC ,∠DCE=∠CBF=90°,∴△DCE ≌△CBF (ASA ),∴CE=BF ,∵CE=12BC=12AB , ∴BF=12AB , ∴AF=BF ,故③正确,∵∠BCF+∠BFC=90°,∠DEC=∠BFC∴∠BCF+∠DECC=90°,∴∠CHE=90°∴∠CHE=∠FBC又∠DEC=∠BFC∴△CHF ∽△CBF ∴CH CE BC CF= ∵BC=2CE , ∴2BC CE CE CE CH CF CF == ∴22CE CH CF =⋅故选:D .【点睛】本题考查了正方形的性质,全等三角形的判定和性质,相似三角形的判定和性质,直角三角形的性质,勾股定理等知识,熟练运用这些性质进行推理是本题的关键.二、填空题13.3【分析】在Rt △ABE 中利用三角形相似可求得AEDE 的长设A 点关于BD 的对称点A′连接A′D 可证明△ADA′为等边三角形当PQ ⊥AD 时则PQ 最小所以当A′Q ⊥AD 时AP +PQ 最小从而可求得AP +P解析:3【分析】在Rt △ABE 中,利用三角形相似可求得AE 、DE 的长,设A 点关于BD 的对称点A′,连接A′D ,可证明△ADA′为等边三角形,当PQ ⊥AD 时,则PQ 最小,所以当A′Q ⊥AD 时AP +PQ 最小,从而可求得AP +PQ 的最小值等于DE 的长.【详解】设BE x =,则3DE x =,∵四边形ABCD 为矩形,且AE BD ⊥, 90BAE ABE ︒∴∠+∠=,90BAE DAE ︒∠+∠=,ABE DAE ∴∠=∠,又AEB DEA ∠=∠,ABE DAE ∴∽,2AE BE DE ∴=⋅,即223AE x =,AE ∴=,在Rt ADE △中,由勾股定理可得222AD AE DE =+,即2226)(3)x =+,解得:x =3,AE DE ∴==,如图,设A 点关于BD 的对称点为A ',连接,A D PA '', 则26,6A A AE AD AD A D ''=====,AA D '∴是等边三角形,PA PA '=,∴当A '、P Q 、三点在一条线上时,A P PQ '+最小,由垂线段最短可知当PQ AD ⊥时,A P PQ '+最小,AP PQ A P PQ A Q DE ''∴+=+===故答案是:3;【点睛】本题主要考查轴对称的应用,利用最小值的常规解法确定出A的对称点,从而确定出AP+PQ的最小值的位置是解题的关键,利用条件证明△A′DA是等边三角形,借助几何图形的性质可以减少复杂的计算.14.(03)或(0)或(40)【分析】首先确定AB两点坐标分两种情形:①当PQ∥OB时②当PQ′⊥AB时分别求解即可【详解】∵一次函数y=﹣x+6的图象与x轴交于点B与y轴交于点A∴A(06)B(80)解析:(0,3)或(74,0)或(4,0)【分析】首先确定A,B两点坐标,分两种情形:①当PQ∥OB时,②当PQ′⊥AB时,分别求解即可.【详解】∵一次函数y=﹣34x+6的图象与x轴交于点B,与y轴交于点A,∴A(0,6),B(8,0),∴OA=6,OB=8,AB=22OA OB+=2268+=10,如图有两种情形:①当PQ∥OB时,满足条件.∵AP=PB,∴AQ=OQ,∴Q(0,3).②当PQ′⊥AB时,满足条件.连接AQ′.∵PA=PB,PQ′⊥AB,∴Q′A=Q′B,设Q′A=Q′B=m,在Rt △AOQ′中,则有m 2=62+(8﹣m )2,解得m =254, ∴OQ′=8﹣254=74, ∴Q′(74,0). ③当PQ ∥y 轴时,同法可得P (4,0). 综上所述,满足条件的点Q 的坐标为(0,3)或(74,0)或(4,0). 【点睛】本题考查一次函数的应用,相似三角形的判定和性质等知识,解题的关键是理解题意,灵活运用所学知识解决问题.15.【分析】根据正六边形的性质判断出△AMB ∽△BAF 再根据相似三角形的性质求解即可【详解】由题意可知∠AFB=∠ABF=∠CAB=30°则△AMB ∽△BAF 且在△BAF 中∠BAF=120°∴△BAF 是 解析:12【分析】根据正六边形的性质,判断出△AMB ∽△BAF ,再根据相似三角形的性质求解即可.【详解】由题意,可知∠AFB=∠ABF=∠CAB=30°,则△AMB ∽△BAF ,且在△BAF 中,∠BAF=120°,∴△BAF 是顶角为120°的等腰三角形,作AP ⊥BF ,∵∠ABF=30°,∴AB=2AP,,AP , ∴AB BF =, ∴△AMB ∽△BAF∴:1:3ABM AFB S S =△△ ∴1:1:22ABM AFM S S ==, 故答案为:12.【点睛】本题考查正多边形的性质及相似三角形的判定与性质,准确推断出相似三角形,且注意相似三角形的面积比等于相似比的平方是解题关键.16.5【分析】根据比例的性质可用b 表示a 代入可得答案【详解】解:由得4b=a-b 得a=5b ∴=5故答案是:5【点睛】本题考查了比例的性质利用比例的性质得出b 表示a 是解题关键解析:5【分析】根据比例的性质,可用b 表示a ,代入可得答案.【详解】 解:由14b a b =-,得4b=a-b . 得a=5b , ∴5a b b b==5, 故答案是:5.【点睛】 本题考查了比例的性质,利用比例的性质得出b 表示a 是解题关键.17.【分析】先证明△ACD ∽△BCA 再根据相似三角形的性质得到:△ACD 的面积:△ABC 的面积为1:4再结合△ABD 的面积为6然后求出△ACD 的面积即可【详解】解:∵∠C=∠C ∴△ACD ∽△BCA ∴∴即解析:2【分析】先证明△ACD ∽△BCA ,再根据相似三角形的性质得到:△ACD 的面积:△ABC 的面积为1:4,再结合△ABD 的面积为6,然后求出△ACD 的面积即可.【详解】解:∵DAC B ∠=∠,∠C=∠C∴△ACD ∽△BCA ∴12AD AB = ∴21124ACD ABC S S⎛⎫== ⎪⎝⎭ ,即164ACD ACD ABD ACD ACD S S S S S ∆∆∆∆∆==++,解得:ACD S ∆=2. 故答案为2.【点睛】本题主要考查了相似三角形的判定和性质、掌握相似三角形的面积比等于相似比的平方解答本题的关键.18.575【分析】由题意可得△AFB∽△ADC根据相似三角形的性质和已知条件即可得到井深尺寸【详解】解:由题意可知:△AFB∽△ADC∴可设BC=x则有解之可得:BC=575(尺)故答案为575【点睛】解析:57.5【分析】由题意可得△AFB∽△ADC,根据相似三角形的性质和已知条件即可得到井深尺寸.【详解】解:由题意可知:△AFB∽△ADC,∴AB FB AC DC=,可设BC=x,则有50.455x=+,解之可得:BC=57.5(尺),故答案为57.5.【点睛】本题考查相似三角形的应用,熟练掌握三角形相似的判定和性质是解题关键.19.24【分析】过N点作ND⊥PQ于D先根据同一时刻物高与影长成正比求出QD的影长再求出PQ即可【详解】解:如图过N点作ND⊥PQ于D∴又∵AB=2BC=15DN=PM=12NM=08∴∴QD=16∴P解析:2.4【分析】过N点作ND⊥PQ于D,先根据同一时刻物高与影长成正比求出QD的影长,再求出PQ即可.【详解】解:如图,过N点作ND⊥PQ于D,∴BC DN AB QD=,又∵AB=2,BC=1.5,DN=PM=1.2, NM=0.8,∴1.5 1.22QD=,∴QD=1.6,∴PQ=QD+DP=QD+NM=1.6+0.8=2.4(m).故答案为:2.4.【点睛】在运用相似三角形的知识解决实际问题时,要能够从实际问题中抽象出简单的数学模型,然后列出相关数据的比例关系式,从而求出结论.20.2或-1【分析】此题分情况考虑:①当a+b+c≠0时根据比例的等比性质求得k 的值;②当a+b+c=0时即a+b=-c 求得k 的值【详解】解析:2或-1.【分析】此题分情况考虑:①当a+b+c≠0时,根据比例的等比性质,求得k 的值;②当a+b+c=0时,即a+b=-c ,求得k 的值.【详解】①当a+b+c≠0时,由等比性质得k=2()a b c a b c ++++=2;②当a+b+c=0时,即a+b=-c(或a+c=-b 或b+c=-a),得k=cc -=-1.故答案为2或-1.【点睛】此题考查比例的等比性质,解题时要注意等比性质的条件.三、解答题21.(1)()121P m n +-,,作图见解析;(2) ()222P m n ,,作图见解析;(3)能关于某一点Q 为位似中心的位似图形,Q (4,-2).【分析】(1)根据平移规律,画出111,,A B O 即可;(2)根据位似图形的性质,画出△22OA B 即可;(3)对应点连线的交点即为位似中心;【详解】解:(1)△111O A B 如图所示,1P (m+2,n-1);(2)△22OA B 如图所示,2P (2m ,2n ).(3)能关于某一点Q 为位似中心的位似图形,Q (4,-2);【点睛】本题考查作图-位似变换,作图-平移变换等知识,解题的关键是熟练掌握位似变换、平移变换的性质,属于中考常考题型.22.(1)4,6;(2)4.5;(3)存在,理由见解析.【分析】(1)把A(-2,0),代入y =2x +b 得到b 的值,再把C(m ,6)代入y =2x +b ,求出m 的值,进而即可得到答案;(2)先求出B 的坐标,再求出点 D 的纵坐标,根据S △ACD =S △ABD +S △BCD ,进而即可求解;(3)分两种情况①△AOB ∽△EAB ,②△AOB ∽△ABE ,分别列出比例式,进而即可求解【详解】(1)∵直线y =2x +b 经过点A(-2,0),∴-4+b =0,∴b =4,∴直线y =2x +4.把C(m ,6)代入y =2x +4中,得6=2m +4,解得m =1,∴C(1,6).把C(1,6)代入反比例函数()0k y x x=>中,得k =6. (2)令x =0,得y =2x +4=4,∴B(0,4).∵BD ⊥y 轴于B ,∴D 点的纵坐标为4,把y =4代入反比例函数y =6x 中,得x =32, ∴D (32,4), ∴BD =32,∴S △ACD =S △ABD +S △BCD =4.5;(3)存在.当∠BAE =90°时,如图①,∵∠BAE =∠BOA =90°,∠ABE =∠OBA ,∴△AOB ∽△EAB , ∴AB BO EB BA =, ∵AB=222425+=,∴BE =5,∴OE =1,∴E(0,-1);当∠ABE =90°时,如图②,∵∠ABE =∠AOB =90°,∠OAB =∠BAE ,∴△AOB ∽△ABE ,∴AB AO AE BA= ∴AE =2AB AO=10, ∴OE =AE -AO =10-2=8,∴E(8,0).∴存在点E(除点O 外),使得△ABE 与△AOB 相似,其坐标为(8,0)或(0,-1).① ②【点睛】本题主要考查一次函数与反比例函数的综合以及相似三角形的判定和性质,掌握待定系数法以及相似三角形的性质,是解题的关键.23.(1)见解析;(2)见解析.【分析】(1)分别作A'B'=2AB 、A'C'=2AC 、B'C'=2BC 得△A'B'C'即为所求.(2)根据中位线定理易得DE=12AC ,DF =12BC ,EF =12AB ,D'E'=12 A'C'=AC 、D'F'=12 B'C'=BC 、E'F'=12 A'B'=AB ,于是''2''''D D E D F E F DE F EF===,故可证△DEF ∽△D'E'F'. 【详解】解:(1)如图1,①作线段A'B'=2AB ;②分别以A'、B'为圆心,以2AC 、2BC 为半径作弧,两弧交于点C';③连接A'C'、 B'C'得△A'B'C'.△A'B'C'即为所求.证明:∵A'B'=2AB 、A'C'=2AC 、B'C'=2BC , ∴''2''''AB A A B A C B C C BC===, ∴△ABC ∽△A′B′C′, ∴2()4A B C ABC S A B S AB'''''∆∆==. (2)证明:如图2,∵D 、E 、F 分别是△ABC 三边AB 、BC 、AC 的中点, ∴DE= 12AC ,DF =12BC ,EF =12AB , ∵D '、E '、F '分别是A B C '''三边A B ''、B C ''、A C ''的中点, ∴D'E'=12 A'C'=AC 、D'F'=12 B'C'=BC 、E'F'=12 A'B'=AB , ∴''2''''D D E D F E F DE F EF ===, ∴△DEF ∽△D'E'F'.【点睛】本题考查了相似三角形的判定和性质及三角形的中位线定理,解答本题的关键是掌握相似三角形的判定方法.24.(1)直线AB 的解析式为9y x =-+;(2)存在,()'4,2O ,52t =,见解析; 【分析】 (1)由于点A (8,1)、B (n ,8)都在反比例函数m y x=的图象上,根据反比例函数的意义求出m ,n ,再由待定系数法求出直线AB 的解析式;(2)①由题意知:OP=2t ,OQ=t ,由三角形的面积公式可求出解析式;②通过三角形相似,用t 的代数式表示出O′的坐标,根据反比例函数的意义可求出t 值.【详解】解:(1)∵点()8,1A 、(),8B n 都在反比例函数m y x =的图象上, ∴818=⨯=m ,∴8y x =, ∴88n=,即1n =. 设AB 的解析式为y kx b =+,把()8,1、()1,8B 代入上式得:818k b k b +=⎧⎨+=⎩,解得:19k b =-⎧⎨=⎩. ∴直线AB 的解析式为9y x =-+.(2)存在.当'O 在反比例函数的图象上时,作PE y ⊥轴,'O F x ⊥轴于F ,交PE 于E ,则90E ∠=︒,'2PO PO t ==,'QO QO t ==.由题意知:'PO Q POQ ∠=∠,'90'QO F PO E ∠=︒-∠,'90'EPO PO E ∠=︒-∠,∴''PEO O FQ △△, ∴''''PE EO PO O F QF QO ==, 设QF b =,'O F a =,则PE OF t b ==+,'2O E t a =-,∴22t b t a a b+-==,解得:45a t =,35b t =, ∴84',55O t t ⎛⎫ ⎪⎝⎭, 当'O 在反比例函数的图象上时,84855t t ⋅=, 解得:52t =±, ∵反比例函数的图形在第一象限,∴0t >, ∴52t =, ∴()'4,2O , 当52t =秒时,'O 恰好落在反比例函数的图象上. 【点睛】 本题主要考查了反比例函数的意义,利用图象和待定系数法求函数解析式,相似三角形的判定和性质,熟练掌握反比例函数的意义和能数形结合是解决问题的关键.25.(1)22212y x x =---;(2)(-4,0)或(-6,-8). 【分析】(1)先利用一次函数解析式确定A 、B 点的坐标,然后设顶点式,利用待定系数法求抛物线解析式;(2)分情况讨论:点A 是直角顶点或B 是直角顶点,根据题意设出点C 的坐标,再将点C 代入到函数解析式,最后,解一元二次方程即可求解.【详解】解:(1)当y=0时,-x-2=0,解得x=-2,则A (-2,0),当x=0时,y=-x-2=-2,则B (0,-2),设抛物线解析式为()22y a x =+,把B (0,-2)代入得()2022a +=-,解得12a =-, 所以抛物线解析式为()2122y x =-+ 即22212y x x =---; (2)如图,当∠BAC=90︒时∵OA=OB ,∴∠OAB=∠OBA=45︒,过点C 作CD ⊥x 轴于点D ,则∠ADC=90︒,∴∠DAC=∠DCA=45︒,令点C 的坐标为(-2-a ,-a )将点C 代入到()2122y x =-+, ()21222a a -=---+ , 解得,10a =(不合题意,舍去),22a =∴点C 的坐标为(-4,-2)若∠ABC=90︒,如图,过点C 作CF ⊥y 轴于点F ,易证△CBF ∽△ABO ,∵OA=OB ,∴BF=CF ,设点F (0,-2-a ),则点C (-a ,-2-a ),将点C 的坐标代入得,()21222a a --=--+ 解得, 10a =(不合题意,舍去),26a =,∴点C 的坐标为(-6,-8);综上,点C 的坐标为(-4,0)或(-6,-8);【点睛】本题是二次函数的综合题,考察了点的坐标,一次函数 ,二次函数,解一元二次方程,直角三角形的性质,等腰三角形的性质,相似三角形的判定和性质,利用待定系数法求二次函数的解析式及分类讨论思想.26.(1)图见解析;(2)见解析【分析】(1)过点B 作AB 的垂线,并用圆规在垂线上截取BC ,使BC=12AB ,连接AC ,以C 为圆心,BC 为半径画弧,交AC 于点D ,以A 为圆心,AD 为半径画弧,交AB 于E ,则点E 即为线段AB 的黄金分割点;(2)设BC=a ,则AB=2a ,AC=225AB BC a +=,通过计算证明2AE BE AB =⋅即可解决问题.【详解】(1)如图:点E 即为所求;(2)设BC=a ,则AB=2a ,∴225AB BC a +=,∵CD=BC=a ,∴5a -a ,∵2222(5625)AE a a a a =-=-,222(25)625AB BE a a a a a a ⋅=⋅+=-, ∴2AE BE AB =⋅,∴点E 是线段AB 的黄金分割点.【点睛】此题考查黄金分割,黄金分割的作图,勾股定理,正确掌握黄金分割的知识并熟练应用解决问题是解题的关键.。
一、选择题1.在ABC 中,D ,E 分别为,BC AC 上的点,且2AC EC =,连结,AD BE ,交于点F ,设:,:x CD BD y AF FD ==,则( )A .1y x =+B .1x y x +=C .413y x =+ D .21x y x -=- 2.如图,在菱形ABCD 中,660AB DAB =∠=︒,,A ,E 分别交BC 、BD 于点E 、F ,2CE =,连接CF ,以下结论:①ABF CBF ≌;②点E 到AB 的距离是23;③ADF 与EBF △的面积比为3∶2:④ABF 的面积为为1835,其中正确的是( )A .①④B .①③④C .①②④D .①②③④ 3.如图,已知D 、E 分别为AB 、AC 上的两点,且DE ∥BC ,AE=2CE ,AB=12,则AD 的长为( )A .4B .6C .5D .84.若点C 为线段AB 的黄金分割点,且AC BC >,则下列各式中不正确的是( ). A .::AB AC AC BC =B .35BC AB -= C .51AC AB +=D .0.618AC AB ≈5.如图,已知////AB CD EF ,它们依次交直线1l 、2l 于点A 、D 、F 和点B 、C 、E ,如果:3:1AD DF =,10BE =,那么CE 等于( )A .103B .203C .52D .1526.如图,放映幻灯片时,通过光源,把幻灯片上的图形放大到屏幕上.若光源到幻灯片的距离为30cm ,光源到屏幕的距离为90cm ,且幻灯片中的图形的高度为7cm ,则屏幕上图形的高度为( )A .21cmB .14cmC .6cmD .24cm7.下列相似图形不是位似图形的是( )A .B .C .D . 8.已知四个数2,3,m 3m 的值是( )A .3B 23C 2D .239.如图,正方形ABCD 中,ABC 绕点A 逆时针旋转到AB C ''△,AB '、AC '分别交对角线BD 于点E 、F ,若4AE =,则EF ED ⋅的值为( )A .4B .6C .8D .1610.如图,在ABCD 中,7AB =,3BC =,ABC ∠的平分线交CD 于点F ,交的延长线于点E ,若2BF =,则线段EF 的长为( )A .4B .3C .83D .7411.已知P 是线段AB 的黄金分割点,且51AB =+,则AP 的长为( ). A .2 B .51- C .2或51-D .35- 12.如图,平行四边形ABCD 的对角线AC ,BD 相交于点O ,E 为BC 的中点,连接AE 交BD 于点F ,若1OF =,则BD 的长为( )A .5B .6C .7D .8二、填空题13.如图,△ABC 中,∠C =90°,BC =8cm ,AC =6cm ,点P 沿BC 边以2cm/s 的速度从点B 向点C 移动,同时点Q 沿CA 边以1cm/s 的速度从点C 向点A 移动.若以点C 、P 、Q 构成的三角形与△ABC 相似,则运动时间为____________秒.14.如图所示,在△ABC 中DE ∥BC ,若2EFB EFD S S ∆∆=,则 DE:BC=______.15.已知⊙O的半径为2,A为圆上一定点,P为圆上一动点,以AP为边作等腰Rt△APG,P点在圆上运动一周的过程中,OG的最大值为____.16.如图,ABC是等边三角形,被一平行于BC的矩形所截,AB被截成三等分,则图中阴影部分的面积是ABC的面积的______.17.如图是用卡钳测量容器内径的示意图,现量得卡钳上A,D两个端点之间的距离为10cm,23AO DOBO CO==,则容器的内径是______.18.如图,AB是⊙O的直径,AB=20cm,弦BC=12cm,F是弦BC的中点.若动点E以2cm/s的速度从A点出发沿着AB方向运动,设运动时间为t(s)(0≤t≤10),连接EF,当△BEF是直角三角形时,t(s)的值为_______.19.在ABC中,点D、E分别在边AB、AC上,AB=12,AC=16,AE=4,若ABC与ADE 相似,则AD=__________.20.若25x y =,则x y y+=____________. 三、解答题21.如图,在平面直角坐标系中,一次函数122y x =-的图象分别交x 、y 轴于点A 、B ,抛物线2y x bx c =++经过点A 、B ,点P 为第四象限内抛物线上的一个动点.(1)求此抛物线的函数解析式.(2)过点P 作//PM y 轴,分别交直线AB 、x 轴于点C 、D ,若以点P 、B 、C 为顶点的三角形与以点A 、C 、D 为顶点的三角形相似,求点P 的坐标.(3)当2PBA OAB ∠=∠时,求点P 的坐标.22.如图,在平面直角坐标系xoy 中,直线2y x b =+经过点()2,0A -,与y 轴交于点B ,与反比例函数()0k y x x =>的图象交于点C(m ,6),过B 作BD y ⊥轴,交反比例函数()0k y x x=>的图象于点D ,连接AD ,CD . (1)求b ,k 的值;(2)求△ACD 的面积;(3)在坐标轴上是否存在点E(除点O 外),使得△ABE 与△AOB 相似,若存在,请求出点E 的坐标;若不存在,请说明理由.23.如图,在等边三角形ABC 中,点D ,E 分别在BC ,AB 上,且60ADE ∠=︒. 求证:ADC ∽DEB .24.如图,在正方形网格中建立平面直角坐标系,已知点()0,0O ,()1,3A -,()4,0B ,连接OA ,OB ,AB .(1)若将OAB 向上平移4个单位长度,再向右平移5个单位长度,得到111O A B △,点O ,A ,B 的对应点分别为1O ,1A ,1B ,画出111O A B △并写出顶点1A 的坐标; (2)画出22OA B △,使22OA B △与OAB 关于原点对称,点A ,B 的对应点分别为2A ,2B ;(3)以点O 为位似中心,在给定的网格中将OAB 放大2倍得到33OA B ,点A ,B 的对应点分别为3A ,3B ,画出33OA B 并直接写出33A B 的长度.25.如图,ABC ∆中,∠C =90°,AC =3cm ,BC =4cm ,动点P 从点B 出发以2cm/s 速度向点C 移动,同时动点Q 从C 出发以1cm/s 的速度向点A 移动,设它们的运动时间为t 秒.(1)根据题意知:CQ = cm ,CP = cm ;(用含t 的代数式表示)(2)t 为何值时,CPQ ∆与ABC ∆相似.26.()1如图1,四边形ABCD 和BEFG 都是正方形,将正方形BEFG 绕点B 按顺时针方向旋转,记旋转角为,a 则图中AG 与CE 的数量关系是__ ,AG 与CE 的位置关系是_ _ ;()2如图2,四边形ABCD和BEFG都是矩形,且2,2BC AB BE BG==,将矩形BEFG 绕点B按顺时针方向旋转,记旋转角为,a图中AG与CE的数量和位置关系分别是什么?请仅就图2的情况给出证明;参考答案【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】过D作DG∥AC交BE于G,可得△BDG∽△BCE,△DGF∽△AEF,根据相似三角形的性质可得x与y 的数量关系.【详解】解:如图,过D作DG∥AC交BE于G,∴△BDG∽△BCE,△DGF∽△AEF,∴BD DGBC CE=,DG DFAE AF=,∵AC=2EC,∴AE =CE , 则BD DF BC AF = ∴BD DF BD CD AF =+, ∴BD CD AF BD DF+=, ∵x =CD :BD ,y =AF :FD ,∴1+x =y ,∴y =x +1,故选:A ..【点睛】本题考查相似三角形的性质和应用,恰当作辅助线构建相似三角形是解题的关键. 2.C解析:C【分析】根据菱形的性质得出△ABF 和△CBF 全等的条件,从而可判断①成立;过点E 作EG ⊥AB ,过点F 作MH ⊥AB ,求得EG 的长度,则可判断②是否成立;由AD ∥BE ,可判定△ADF ∽△EBF ,由相似三角形的性质可得△ADF 与△EBF 的面积比,从而可判断③是否成立;利用相似三角形的性质和等边三角形的性质,可求得△ABF 在AB 边上的高,进而求得△ABF 的面积,则可判断④是否成立.【详解】解:∵四边形ABCD 是菱形,AB=6,∴BC=AB=6,∵∠DAB=60°,∴AB=AD=DB=6,∠ABD=∠DBC=60°,在△ABF 与△CBF 中,AB BC ABF FBC BF BF =⎧⎪∠=∠⎨⎪=⎩,∴△ABF ≌△CBF (SAS ),故①成立;如图,过点E 作EG ⊥AB 延长线于点G ;过点F 作MH ⊥AB 交AB ,CD 于点H ,M , 则由菱形的对边平行可得MH ⊥CD ,∵CE=2,BC=6,∠ABC=120°,∴BE=6-2=4,∠EBG=60°∵EG ⊥AB ,∴33= 故②成立; ∵AD ∥BE ,∴△ADF ∽△EBF , ∴2269()(),44ADF EBF S AD S BE ∆∆=== 故③不成立;∵△ADF ∽△EBF ,32DF AD FB EB ∴== ∵DB=6, ∴BF= 125∴FH= 125×32=635, ∴S △ABF =12AB•FH=16318362⨯=, 故④成立.综上所述,一定成立的有①②④.故选:C .【点睛】本题考查了菱形的性质、全等三角形的判定、相似三角形的判定与性质及三角形的面积计算,熟练掌握相关性质及定理是解题的关键.3.D解析:D【分析】先根据平行线分线段成比例定理得出比例式,代入后得出AD=23AB ,代入求出即可. 【详解】解:∵DE ∥BC , ∴AD AE AB AC=, ∵AE=2CE , ∴2223AE CE AC EC EC ==+ 又AB=12, ∴AD=23AB=8, 故选:D .【点睛】 本题考查了平行线分线段成比例定理,能根据定理得出正确的比例式是解此题的关键. 4.C解析:C【分析】根据黄金分割点的定义逐项排除即可.【详解】解:∵点C 为线段AB 的黄金分割点,且AC BC >,∴2AC BC AB =⋅,∴::AB AC AC BC =,则选项A 正确;∵点C 为线段AB 的黄金分割点,且AC BC >,∴0.618AC AB =≈,则选项C 错误;选项D 正确;1322BC AB AC AB AB AB =-=-=,则选项B 正确. 故选:C .【点睛】 本题考查了成比例线段,熟练掌握黄金分割的定义成为解答本题关键.5.C解析:C【分析】 根据平行线分线段成比例得到BC AD CE DF =,代入已知解答即可. 【详解】解:∵////AB CD EF ,∴BC AD CE DF =, ∵:3:1AD DF =,10BE =,∴1031CE CE -=, 解得:CE=52, 故选:C .【点睛】 本题考查平行线分线段成比例、比例的性质,掌握平行线分线段成比例是解答的关键,注意对应线段的顺序.6.A解析:A【分析】根据题意可画出图形,再根据相似三角形的性质对应边成比例解答即可.【详解】解:如图所示,∵DE ∥BC ,∴△AED ∽△ABC ,∴AE DE AC BC=, 设屏幕上的图形高是x cm ,则30790x=, 解得:x=21. 答:屏幕上图形的高度为21cm ,故选:A .【点睛】本题考查相似三角形性质的应用.解题时关键是找出相似的三角形,然后根据对应边成比例列出方程,建立适当的数学模型来解决问题.7.D解析:D【分析】根据位似变换的概念判断即可.【详解】解:D 中两个图形,对应边不互相平行,不是位似图形,A 、B 、C 中的图形符合位似变换的定义,是位似图形,故选:D .【点睛】本题考查的是位似变换,如果两个图形不仅是相似图形,而且对应顶点的连线相交于一点,对应边互相平行,那么这样的两个图形叫做位似图形.8.B解析:B【分析】利用比例线段的定义得到23m =:m 即可.【详解】根据题意得23m =:所以3m =,所以3m =. 故选:B .【点睛】本题考查了比例线段:对于四条线段a 、b 、c 、d ,如果其中两条线段的比(即它们的长度比)与另两条线段的比相等,如 a :b=c :d (即ad=bc ),我们就说这四条线段是成比例线段,简称比例线段.9.D解析:D【分析】先根据正方形的性质、旋转的性质可得45EAF EDA ∠=∠=︒,再根据相似三角形的判定与性质即可得.【详解】四边形ABCD 是正方形,45BAC EDA ∴∠=∠=︒,由旋转的性质得:B AC BAC ''∠=∠,B AC EDA ''∴∠=∠,即EAF EDA ∠=∠,在AEF 和DEA △中,EAF EDA AEF DEA ∠=∠⎧⎨∠=∠⎩, AEF DEA ∴~,EF AE AE DE ∴=,即44EF DE=, 16EF DE ∴⋅=,故选:D .【点睛】本题考查了正方形的性质、旋转的性质、相似三角形的判定与性质,熟练掌握相似三角形的判定与性质是解题关键.10.C解析:C【分析】平行四边形的对边相等且平行,利用平行四边形的性质以及平行线的基本性质求解.【详解】解:∵平行四边形ABCD∴AD ∥CB ,AD=BC=4.∴∠CBE=∠AEB∵∠ABC 的平分线交AD 于点E∴∠ABE=∠CBE∴∠ABE=∠AEB∴AE=AB=7∴DE=AE-AD=7-3=4.∵AD ∥CB ,∴△DEF ∽△CBF ∴EF DE BF BC= ∴423EF = 即83EF = 故选:C .【点睛】 本题主要考查了平行四边形的性质和相似三角形的性质和判定,掌握相关知识是解题的关键.11.C解析:C【分析】若点P 是靠近点B 的黄金分割点,则AP AB =,然后代入数据计算即可;若点P 是靠近点A 的黄金分割点,先求出BP ,再利用线段的和差即可求出AP .【详解】解:若P 是靠近点B 的黄金分割点,则)12AP AB ===;若P 是靠近点A 的黄金分割点,则)12BP AB ===,∴121AP AB BP =-=-=;故选:C .【点睛】是解题的关键. 12.B解析:B【分析】根据平行四边形的性质知AD=2BE ,BC ∥AD ,BO=OD ,设BF=a ,得DF=a+2,由BC ∥AD 知△BEF ∽△DAF ,据此得=BF DF 12=BE DA ,得出BF 的长,从而得出BD 的长. 【详解】解:∵点E 是BC 中点,∴BC=2BE ,∵四边形ABCD 是平行四边形,∴BC=AD ,BC ∥AD ,BO=OD ,∴AD=2BE ,设BF=a ,∵OF=1,∴BO=DO=a+1,则DF=a+2,∵BC ∥AD∴△BEF ∽△DAF , 12∴==BF BE DF DA ∴1,22=+a a 解得a=2,经检验a=2是原方程的解∴BF=2,∴BO=DO=3,∴BD=6故选:B .【点睛】本题主要考查相似三角形的判定与性质,解题的关键是掌握平行四边形的性质和相似三角形的判定与性质.二、填空题13.或【分析】首先设点P 移动t 秒时△CPQ 与△ABC 相似然后分别从当即时△CPQ ∽△CBA 与当即时△CPQ ∽△CAB 去分析求解即可求得答案【详解】设点P 移动t 秒时△CPQ 与△ABC 相似∵点P 从点B 以2c 解析:125或3211【分析】 首先设点P 移动t 秒时△CPQ 与△ABC 相似,然后分别从当CP CQ CB CA =,即8286t t -=时,△CPQ ∽△CBA ,与当CQ CP CB CA =,即8286t t -=时,△CPQ ∽△CAB ,去分析求解即可求得答案.【详解】设点P 移动t 秒时△CPQ 与△ABC 相似,∵点P 从点B 以2cm/s 的速度向点C 移动,点Q 以1cm/s 的速度从点C 向点A 移动, ∴BP =2tcm ,CQ =tcm ,则CP =CB−BP =8−2t (cm ),∵∠C 是公共角,∴当CP CQ CB CA=,即8286t t -=时,△CPQ ∽△CBA , 解得:t =125; 当CQ CP CB CA=,即8286t t -=时,△CPQ ∽△CAB , 解得:t =3211, ∴点P 移动125s 或3211s 时△CPQ 与△ABC 相似. 故答案为:125或3211【点睛】此题考查了相似三角形的判定.此题难度适中,注意掌握数形结合思想、分类讨论思想以及方程思想的应用.14.1:2【分析】由可得DF :FB=1:2又由DE ∥BC 可得△DFE 和△BFC 相似确定DE:BC 【详解】解:设为1则为2∵∴DF :FB=1:2又∵DE ∥BC ∴△DFE ∽△BFC ∴DE:BC=DF:FB=解析:1:2【分析】由2EFB EFD S S ∆∆=,可得DF :FB=1:2,又由DE ∥BC ,可得△DFE 和△BFC 相似,确定DE:BC.【详解】解:设EFD S ∆为1,则EFB S ∆为2,∵2EFB EFD S S ∆∆=,∴DF :FB=1:2,又∵DE ∥BC ,∴△DFE ∽△BFC ,∴DE:BC=DF:FB=1:2故答案为1:2【点睛】本题考查了相似三角形的性质和判定,解题的关键在于根据面积比确定边长的比. 15.【分析】连接OA 作OH ⊥OA 交⊙O 于点H 连接AHHCOP 首先证明∠OAP ∽△HAG 推出由OP=2可得HG=2由OG≤OH+HG 推出OG≤2+2由此即可解决问题;【详解】解:连接OA 作OH ⊥OA 交⊙O 解析:222+ 【分析】 连接OA ,作OH ⊥OA 交⊙O 于点H ,连接AH ,HC ,OP .首先证明∠OAP ∽△HAG ,推出22OP OA HG AH ==,由OP=2,可得HG=22,由OG≤OH+HG ,推出OG≤2+22,由此即可解决问题;【详解】解:连接OA ,作OH ⊥OA 交⊙O 于点H ,连接AH ,HG ,OP .∵OA =OH ,∠AOH =90°,∴AH 2OA ,∴AP =PG ,∠APG =90°,∴AG 2AP ,∴2OA AP AH AG == ∵∠OAH =∠PAG =45°,∴∠OAP ∽△HAG ,∴2OP OA HG AH ==. ∵OP =2,∴HG 2.∵OG ≤OH +HG ,∴OG,∴OG 的最大值为.故答案为:.【点睛】本题考查旋转变换,等腰直角三角形的性质,相似三角形的判定和性质,三角形的三边关系等知识,解题的关键是学会添加常用辅助线,构造相似三角形解决问题,学会用转化的思想思考问题.16.【分析】根据题意易证△AEH ∽△AFG ∽△ABC 利用相似三角形的性质解决问题即可【详解】解:∵AB 被截成三等分∴△AEH ∽△AFG ∽△ABC ∴∴S △AFG :S △ABC=4:9S △AEH :S △ABC= 解析:13【分析】根据题意,易证△AEH ∽△AFG ∽△ABC ,利用相似三角形的性质解决问题即可.【详解】解:∵AB 被截成三等分,∴△AEH ∽△AFG ∽△ABC , ∴11,,23AE AE AF AB ==, ∴S △AFG :S △ABC =4:9,S △AEH :S △ABC =1:9, ∴S 阴影部分的面积=49S △ABC -19S △ABC =13S △ABC , ∴图中阴影部分的面积是ABC 的面积的13. 故答案为:13. 【点睛】 本题主要考查了利用三等分点求得各相似三角形的相似比,从而求出面积比计算阴影部分的面积,难度适中.17.【分析】连接ADBC 后可知△AOD ∽△BOC 再由相似三角形的性质和已知条件可以得到问题解答【详解】解:如图连接ADBC 则在△AOD 和△BOC 中∴△AOD ∽△BOC (cm )故答案为15cm 【点睛】本题解析:15cm【分析】连接AD 、BC 后可知△AOD ∽△BOC ,再由相似三角形的性质和已知条件可以得到问题解答.【详解】解:如图,连接AD 、BC ,则在△AOD 和△BOC 中,AO DO BO CO DOA BOC⎧=⎪⎨⎪∠=∠⎩,∴△AOD ∽△BOC ,233,1015322AD AO BC AD BC BO ====⨯=(cm ), 故答案为15cm .【点睛】本题考查相似三角形的应用,熟练掌握相似三角形的判定及性质并灵活运用是解题关键. 18.5或82【分析】求出BF 和AO 的长分为两种情况①∠EFB=90°②∠FEB=90°分别利用三角形中位线的性质以及相似三角形的判定和性质求出AE 的长再求出t 即可【详解】∵AB 是⊙O 的直径∴∠C=90° 解析:5或8.2【分析】求出BF 和AO 的长,分为两种情况,①∠EFB=90°,②∠FEB=90°,分别利用三角形中位线的性质以及相似三角形的判定和性质求出AE 的长,再求出t 即可.【详解】∵AB 是⊙O 的直径,∴∠C=90°,∵AB=20cm ,弦BC=12cm ,F 是弦BC 的中点,∴BF=12BC=6cm , 有两种情况:①当∠EFB=90°时,如图:∵AB 是⊙O 的直径,∴∠C=90°,∵∠EFB=90°,∴AC ∥EF ,∵F 为BC 的中点,∴E 为AB 的中点,即E 和O 重合,∵AB=20cm ,∴AE=AO=12AB=10cm , ∴1052t ==; ②当∠FEB=90°时,如图:∵∠B=∠B ,∠FEB=∠C=90°,∴△FEB ∽△ACB ,∴BE BF BC AB =, ∴61220BE =, 解得:BE=3.6(cm ),∵AB=20cm ,∴AE=AB-BE=16.4cm ,∴16.48.22t ==; 故答案为:5或8.2.【点睛】本题考查了圆周角定理,三角形中位线定理,相似三角形的性质和判定等知识点,分类讨论是解此题的关键.19.或【分析】分类讨论:当△ADE∽△ABC和当△AED∽△ABC根据相似的性质得出两种比例式进而解答即可【详解】如图∵∠DAE=∠BAC∴当△ADE∽△ABC∴即解得:AD=3∴当△AED∽△ABC∴解析:163或3【分析】分类讨论:当△ADE∽△ABC和当△AED∽△ABC,根据相似的性质得出两种比例式进而解答即可.【详解】如图∵∠DAE=∠BAC,∴当△ADE∽△ABC,∴AB ADAC AE=,即12164AD=,解得:AD=3,∴当△AED∽△ABC,∴AB AE AC AD=,即12416AD=,解得:AD=163,故答案为:163或3【点睛】本题考查了相似三角形的性质:相似三角形的对应角相等,对应边的比相等.20.【分析】由根据比例的性质即可求得的值【详解】解:∵∴=故答案为:【点睛】此题考查了比例的性质此题比较简单注意熟记比例变形 解析:75【分析】 由25x y =,根据比例的性质,即可求得x y y+的值. 【详解】解:∵25x y = ∴x y y +=2+57=55. 故答案为:75. 【点睛】此题考查了比例的性质,此题比较简单,注意熟记比例变形.三、解答题21.(1)2722y x x =--;(2)3,52⎛⎫- ⎪⎝⎭或7,22⎛⎫- ⎪⎝⎭;(3)73,2⎛⎫- ⎪⎝⎭. 【分析】(1)本题所求二次函数的解析式含有两个待定字母,一般需要两个点的坐标建立方程组,现在可求A 、B 点坐标,代入列方程组可解答;(2)根据∠ADC=90°,∠ACD=∠BCP ,可知相似存在两种情况:①当∠CBP=90°时,如图1,过P 作PN ⊥y 轴于N ,证明△AOB ∽△BNP ,列比例式可得结论;②当∠CPB=90°时,如图2,则B 和P 是对称点,可得P 的纵坐标为-2,代入抛物线的解析式可得结论;(3)设点A 关于y 轴的对称点为A′,求出直线A′B 的解析式,再联立抛物线的解析式解答即可.【详解】解:(1)令0x =,得1222y x =-=-,则()0,2B -, 令0y =,得1022x =-,解得4x =, 则()4,0A ,把()4,0A ,()0,2B -代入()20y ax bx c a =++≠中,得16402b cc++=⎧⎨=-⎩,解得722bc⎧=-⎪⎨⎪=-⎩,∴抛物线的解析式为:2722y x x=--.(2)∵//PM y轴,∴90ADC∠=︒,∵ACD BCP∠=∠,∴以点P、B、C为顶点的三角形与以点A、C、D为顶点的三角形相似,存在两种情况:①当90CBP∠=︒时,如图,过P作PN y⊥轴于N,∵90ABO PBN ABO OAB∠+∠=∠+∠=︒,∴PBN OAB∠=∠,∵90AOB BNP∠=∠=︒,∴Rt PBN Rt BAO△△,∴PN BNBO AO=.设27,22P x x x⎛⎫--⎪⎝⎭.∴2722224x xx⎛⎫----⎪⎝⎭=,化简得232x x-=.解得0x=(舍去)或32x=.当32x=时,2273732252222y x x⎛⎫=--=-⨯-=-⎪⎝⎭.∴3,52P⎛⎫-⎪⎝⎭;②当90CPB ∠=︒时,如下图,则//PB x 轴,所以B 和P 是对称点,所以当2y =-时,27222x x --=-,解得0x =(舍去)或72x =. ∴7,22P ⎛⎫- ⎪⎝⎭. 综上,点P 的坐标是3,52⎛⎫- ⎪⎝⎭或7,22⎛⎫- ⎪⎝⎭.(3)设点A 关于y 轴的对称点为'A ,则'A B AB =.∴'BAO B AO ∠=∠.直线'A B 交抛物线于P .∴'2PBA BAO BA O BAO ∠=∠+∠=∠.∵()4,0A ,∴()'4,0A -.设直线'A B 的解析式为()0y kx b k =+≠.∵()0,2B -.∴4002k b k b -+=⎧⎨⋅+=-⎩. 解得122k b ⎧=-⎪⎨⎪=-⎩.∴直线'A B 的解析式为122y x =--, 由方程组2122722y x y x x ⎧=--⎪⎪⎨⎪=--⎪⎩,得230x x -=. 解得0x =(舍去)或3x =.当3x =时,117232222y x =--=-⨯-=-. 所以点P 的坐标是73,2⎛⎫-⎪⎝⎭. 【点睛】 此题是二次函数的综合题,是中考的压轴题,难度较大,计算量也大,主要考查了待定系数法求解析式,还考查了三角形的面积,相似三角形的性质与判定,并学会构造相似三角形解决问题.22.(1)4,6;(2)4.5;(3)存在,理由见解析.【分析】(1)把A(-2,0),代入y =2x +b 得到b 的值,再把C(m ,6)代入y =2x +b ,求出m 的值,进而即可得到答案;(2)先求出B 的坐标,再求出点 D 的纵坐标,根据S △ACD =S △ABD +S △BCD ,进而即可求解;(3)分两种情况①△AOB ∽△EAB ,②△AOB ∽△ABE ,分别列出比例式,进而即可求解【详解】(1)∵直线y =2x +b 经过点A(-2,0),∴-4+b =0,∴b =4,∴直线y =2x +4.把C(m ,6)代入y =2x +4中,得6=2m +4,解得m =1,∴C(1,6).把C(1,6)代入反比例函数()0k y x x=>中,得k =6. (2)令x =0,得y =2x +4=4,∴B(0,4).∵BD ⊥y 轴于B ,∴D 点的纵坐标为4,把y =4代入反比例函数y =6x 中,得x =32, ∴D (32,4), ∴BD =32, ∴S △ACD =S △ABD +S △BCD =4.5;(3)存在.当∠BAE =90°时,如图①,∵∠BAE =∠BOA =90°,∠ABE =∠OBA ,∴△AOB ∽△EAB ,∴AB BO EB BA =, ∵AB=222425+=,∴BE =5,∴OE =1,∴E(0,-1);当∠ABE =90°时,如图②,∵∠ABE =∠AOB =90°,∠OAB =∠BAE ,∴△AOB ∽△ABE ,∴AB AO AE BA= ∴AE =2AB AO=10, ∴OE =AE -AO =10-2=8,∴E(8,0).∴存在点E(除点O 外),使得△ABE 与△AOB 相似,其坐标为(8,0)或(0,-1).① ②【点睛】本题主要考查一次函数与反比例函数的综合以及相似三角形的判定和性质,掌握待定系数法以及相似三角形的性质,是解题的关键.23.见解析【分析】根据ABC 是等边三角形,即可得到60B C ∠=∠=︒,再根据 CAD BDE ∠=∠,即可判定~ADC DEB △△.【详解】证明:∵ABC 是等边三角形, ∴60B C ∠=∠=︒, ∴60ADB CAD C CAD ∠=∠+∠=∠+︒, ∵60ADE ∠=︒, ∴60ADB BDE ∠=∠+︒,∴CAD BDE ∠=∠,∴ADCDEB △△.【点睛】本题考察了相似三角形的判定与性质,解题的关键是掌握三角形相似的判定条件.24.(1)作图见解析,()16,1A ;(2)作图见解析;(3)作图见解析,33A B 的长度为62.【分析】(1)先根据平移作图画出点111,,O A B ,再顺次连接即可得111O A B △,然后根据点坐标的平移变换规律即可得点1A 的坐标;(2)先根据关于原点对称的点坐标变换规律得出点22,A B 的坐标,再画出点22,A B ,然后顺次连接点22,,O A B 即可得;(3)先根据位似的性质得出33,A B 的坐标,再画出点33,A B ,然后顺次连接点33,,O A B 即可得33OA B ,最后利用两点之间的距离公式即可得33A B 的长度.【详解】(1)先画出点111,,O A B ,再顺次连接即可得111O A B △,如图所示:由点坐标的平移变换规律得:()115,34A +-+,即()16,1A ;(2)关于原点对称的点坐标变换规律:横、纵坐标均互为相反数,()()1,3,4,0A B -,()()221,3,4,0A B ∴--,先画出点22,A B ,再顺次连接点22,,O A B 即可得22OA B △,如图所示:(3)()()1,3,4,0A B -,()()3312,32,42,02A B ⨯-⨯⨯⨯∴,即()()332,6,8,0A B -,2332(82)(06)62A B ∴=-++=,先画出点33,A B ,再顺次连接点33,,O A B 即可得33OA B ,如图所示:【点睛】本题考查了平移作图、关于原点对称的点坐标变换规律、位似画图等知识点,熟练掌握各画图方法和点坐标的变换规律是解题关键.25.(1)t ;(4﹣2t );(2)要使CPQ ∆与CBA ∆相似,运动的时间为1.2或1611秒. 【分析】(1)结合题意,直接得出答案即可;(2)若两三角形相似,则由相似三角形性质可知,其对应边成比例.设经过t 秒后两三角形相似,则可分下列两种情况进行求解:①若Rt ABC Rt QPC ∆∆∽,②若Rt ABC Rt PQC ∆∆∽,然后列方程求解.【详解】解:(1)经过t 秒后,CQ =t ,CP =4﹣2t ,故答案为:t ;(4﹣2t ).(2)设经过t 秒后两三角形相似,则可分下列两种情况进行求解,①若Rt ABC Rt QPC ∆∆∽,则AC QC BC PC =,即3442t t =-,解得t =1.2; ②若Rt ABC Rt PQC ∆∆∽,则PC AC QC BC =,即4234t t -=,解得t =1611; 由P 点在BC 边上的运动速度为2cm/s ,Q 点在AC 边上的速度为1cm/s ,可求出t 的取值范围应该为0<t <2,验证可知①②两种情况下所求的t 均满足条件.答:要使CPQ ∆与CBA ∆相似,运动的时间为1.2或1611秒. 【点睛】本题综合考查了相似三角形的性质以及一元一次方程的应用问题,并且需要用到分类讨论的思想,解题时应注意解答后的验证.26.(1)AG=CE ,AG ⊥CE ;(2)CE=2AG ,理由见详解.【分析】(1)根据题意易得AB=CB ,BG=BE ,∠ABC=∠GBE=90°,则有∠ABG=∠CBE ,进而可证△ABG ≌△CBE ,然后问题可证,延长AG 交BC 、CE 与点H 、M ,然后根据三角形全等的性质及直角三角形的性质可求解;(2)由题意易得∠ABG=∠CBE ,则可证△ABG ∽△CBE ,进而问题可得证.【详解】解:(1)∵四边形ABCD 和BEFG 都是正方形,∴AB=CB ,BG=BE ,∠ABC=∠GBE=90°,∴∠ABG+∠GBC=90°,∠CBE+∠GBC=90°,∴∠ABG=∠CBE ,∴△ABG ≌△CBE (SAS ),∴AG=CE ,延长AG 交BC 、CE 与点H 、M ,如图所示:∴∠GAB=∠ECB ,∵∠GAB+∠AHB=90°,∠AHB=∠CHM ,∴∠ECB+∠CHM=90°,∴AM ⊥CE ,即AG ⊥CE ,故答案为AG=CE ,AG ⊥CE ;(2)CE=2AG ,理由如下:∵四边形ABCD 和BEFG 都是矩形,∴∠ABC=∠GBE=90°,∴∠ABG+∠GBC=90°,∠GBC+∠CBE=90°,∴∠ABG=∠CBE ,∵2,2BC AB BE BG ==,∴△ABG ∽△CBE , ∴2BC CE AB AG==, ∴CE=2AG .【点睛】 本题主要考查矩形与正方形的性质及相似三角形的性质与判定,熟练掌握矩形与正方形的性质及相似三角形的性质与判定是解题的关键.。
一、选择题1.如图,在△ABC 中,DE ∥BC ,∠ADE =∠EFC ,AD:BD=5:3,CF =6,则DE 的长为( )A .6B .8C .10D .122.下列四个选项中的三角形,与图中的三角形相似的是( )A .B .C .D .3.如图,在正方形ABCD 中,点E 是边BC 的中点,连接AE ,EF AE ⊥交CD 边于点F ,已知4AB =,则CF 的长为( )A .1B 5C .3D .24.如图,在Rt ABC 中,90C ∠=︒,7AC =,24BC =,将它绕着BC 中点D 顺时针旋转一定角度后到A B C ''',恰好使//B C AB '',A C ''与边AB 交于点E ,则A E '的长为( )A .72B .4924C .8425D .91255.如图,比例规是伽利略发明的一种画图工具,使用它可以把线段按一定比例伸长或缩短,它是由长度相等的两脚AD 和BC 交叉构成的.如果把比例规的两脚合上,使螺丝钉固定在刻度3的地方(即同时使3OA OD =,3OB OC =),然后张开两脚,使A 、B 两个尖端分别在线段I 的两个端点上.若12AB cm =,则CD 的长是( )A .3cmB .4cmC .6cmD .8cm6.已知两个相似三角形一组对应高分别是15和5,面积之差为80,则较大三角形的面积为( ) A .90B .180C .270D .36007.如图,AB 为⊙O 的直径,AC 交⊙O 于E 点,BC 交⊙O 于D 点,CD =BD ,∠C =70°,现给出以下四个结论:①∠A =45°;②AC =AB ;③AE =BE ;④2CE •AB =BC 2,其中正.确.结论有( )A .1个B .2个C .3个D .4个8.如图,D 、E 分别是△ABC 的边AB 、BC 上的点,且DE ∥AC ,AE 、CD 相交于点O ,若S △DOE :S △COA =1:9,则S △BDE :S △CDE 的值是( ).A .1:2B .1:3C .1:4D .2:59.已知如图,DE 是△ABC 的中位线,AF 是BC 边上的中线,DE 、AF 交于点O .现有以下结论:①DE ∥BC ;②OD =14BC ;③AO =FO ;④AOD S =14ABCS.其中正确结论的个数为( )A .1B .2C .3D .4 10.已知P ,Q 是线段AB 的两个黄金分割点,且AB=10,则PQ 长为( )A .5(5-1)B .5(5+1)C .10(5-2) -D .5(3-5)11.如图,已知直线////a b c ,直线m 交直线a ,b ,c 于点A ,B ,C ,直线n 交直线a ,b ,c 于点D ,E ,F ,若12AB BC =,则DEEF=( )A .13B .12C .23D .112.如图,在△ABC 中,AB =AC=5,BC =25,若点O 为△ABC 三条高的交点,则OA 的长度为( )A .35B .253C .5D .35二、填空题13.如图所示,在ABC ∆中,4BC =,E ,F 分别是AB ,AC 的中点.(1)线段EF 的长为_____;(2)若动点P 在直线EF 上,CBP ∠的平分线交CE 于点Q ,当点Q 把线段EC 分成的两线段之比是1∶2时,线段EP 、BP 之间的数量关系满足EP BP +=_____.14.如图,一次函数y =﹣34x +6的图象与x 轴交于点B ,与y 轴交于点A ,过线段AB 的中点P (4,3)作一条直线与△AOB 交于点Q ,使得所截新三角形与△AOB 相似,则点Q 坐标是_____.15.如图,在正方形ABCD 中,4AB =,P 是BC 边上一动点(不与B ,C 重合),DE AP ⊥于E .若PA x =,DE y =,则y 关于x 的函数解析式为_____.16.如图,为了估算河的宽度,小明采用的办法是:在河的对岸选取一点A ,在近岸取点D ,B ,使得A ,D ,B 在一条直线上,且与河的边沿垂直,测得10m BD =,然后又在垂直AB 的直线上取点C ,并量得30m BC =.如果20m DE =,则河宽AD 为_________m .17.如图,把正ABC ∆沿AB 边平移到''A B C '的位置,它们的重叠部分(即图中阴影部分)的面积是ABC ∆的面积的一半,若23AB ='CC 的长度是_________.18.如图,在ABC 纸片中,13AB AC ==,24BC =,D 是BC 边上任意一点,将ABD △沿AD 折叠得到AED ,AE 交BC 于点F ,当DEF 是直角三角形时,则BD 的长为________.19.若()0a b a c b ck k c b a+++===≠, 则k 的值为______. 20.若233a b c==,且233a b c ++=,则a b c -+=__________. 三、解答题21.如图,△ABC 在网格中(每个小方格的边长均为1).(1)请在网格上建立平面直角坐标系,使A 点坐标为(2,3),C 点坐标为(6,2),并求出B 点坐标;(2)在(1)的基础上,以原点O 为位似中心,相似比为2,在第一象限内将△ABC 放大,画出放大后的图形△A B C '''; (3)△A B C '''的面积S = .22.如图,在1010⨯的正方形网格中,每个小正方形的边长为1,建立如图所示的坐标系,ABC 的三个顶点均在格点上.(1)若将ABC 沿x 轴对折得到111A B C △,则1C 的坐标为________.(2)以点B 为位似中心,将ABC 各边放大为原来的2倍,得到22A BC ,请在这个网格中画出22A BC .(3)在(2)的条件下,求22A BC 的面积是多少? 23.如图,在ABC 中,BA BC =,以AB 为直径的O 分别交AC 、BC 于点D 、E ,BC的延长线与O 的切线AF 交于点F .(1)求证:2ABC CAF ∠=∠;(2)若210AC =,:1:4CE EB =,求AF 的长.24.如图,建筑物BC 上有一个旗杆AB ,小明和数学兴趣小组的同学计划用学过的知识测量该建筑物的高度,他们制订了测量方案,并利用课余时间完成了实地测量,测量方法如下:在该建筑物底部所在的平地上有一棵小树ED ,小明沿CD 后退,发现地面上的点F 、树顶E 、旗杆顶端A 恰好在一条直线上,继续后退,发现地面上的点G 、树顶E 、建筑物顶端B 恰好在一条直线上,已知旗杆3AB =米,4DE =米,5DF =米,1.5FG =米,点、、A B C 在一条直线上,点C D F G 、、、在一条直线上,AC ED 、均垂直于CG ,根据以上信息,请求出这座建筑物的高BC .25.如图1,点()8,1A 、(),8B n 都在反比例函数()0my x x=>的图象上,过点A 作AC x ⊥轴于C ,过点B 作BD y ⊥轴于D .(1)求m 的值和直线AB 的函数关系式;(2)动点P 从O 点出发,以每秒2个单位长度的速度沿线段OD 向点D 运动,同时动点Q 从O 点出发,以每秒1个单位长度的速度沿线段OC 向C 点运动,当动点P 运动到点D 时,点Q 也停止运动,设运动的时间为t 秒.如图2,当点P 运动时,如果作OPQ△关于直线PQ 的对称图形'O PQ △,是否存在某时刻t ,使得点'O 恰好落在反比例函数的图象上?若存在,求'O 的坐标和t 的值﹔若不存在,请说明理由.26.如图,正方形网格中,每个小正方形的边长都是一个单位长度,在平面直角坐标系内,ABC 的三个顶点坐标分别为()3,1A -,()1,1B -,()0,3C .(1)画出ABC 关于y 轴对称的111A B C △;(2)画出ABC 以点O 为位似中心的位似图形222A B C △,ABC 与222A B C △的位似比为1:2(画一个即可) .【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C【分析】 由DE //BC 可得出53AD AE BD EC ==,∠AED =∠C ,结合∠ADE =∠EFC 可得出△ADE ∽△EFC ,根据相似三角形的性质可得出53AE DE EC FC ==,再根据CF =6,即可求出DE 的长度. 【详解】 解:∵DE //BC ,∴53AD AE BD EC ==,∠AED =∠C . 又∵∠ADE =∠EFC , ∴△ADE ∽△EFC ,∴53AE DE EC FC ==, ∵CF =6,∴563DE =, ∴DE =10. 故选C 【点睛】本题考查了相似三角形的判定与性质、平行线分线段成比例定理,根据平行线分线段成比例定理和相似三角形的性质列出比例式是解题的关键.2.B解析:B 【分析】由于已知三角形和选择项的三角形都放在小正方形的网格中,设正方形的边长为1,所以每一个三角形的边长都是可以表示出,然后根据三角形的对应边成比例即可判定选择项. 【详解】解:设小正方形的边长为1,那么已知三角形的三边长分别为,,所以三边之比为1:2A 、三角形的三边分别为2,,三边之比为3,故本选项错误;B 、三角形的三边分别为2,4,1:2C 、三角形的三边分别为2,32:3D 44,故本选项错误. 故选:B . 【点睛】此题主要考查了相似三角形的判定,属于基础题,掌握三边对应成比例的两个三角形相似是解答本题的关键,难度一般.3.A解析:A 【分析】根据相似三角形的性质与判定即可求出答案. 【详解】解:由题意可知:2BE CE ==, ∵90AEF B C ∠=∠=∠=︒, ∴BAE AEB AEB CEF ∠+∠=∠+∠, ∴BAE CEF ∠=∠, ∴AEB EFC ∆∆∽, ∴AB BECE CF=, ∴422CF =, ∴1CF =, 故选:A . 【点睛】本题考查相似三角形,解题的关键是熟练运用相似三角形的性质与判定,本题属于基础题型.4.D解析:D 【分析】过点D 作DF ⊥AB 于F ,易证四边形EFDC´是矩形,可得C´E=DF ,由勾股定理求得AB 的长,根据已知和相似三角形的判定可证明△ACB ∽△DFB ,可得AC ABDF BD=,J 进而求得DF 值,由A´E=A´C´﹣C´即可求解. 【详解】解:过点D 作DF ⊥AB 于F ,则∠DFB=90°,∵△ABC 绕着BC 中点D 顺时针旋转一定角度后到A B C ''',恰好使//B C AB '',∴∠C=∠C´=∠A´EB=90°,AC=A´C´=7,CD=BD=12, ∴四边形EFDC´为矩形, ∴C´E=DF ,∵在Rt △ACB 中,∠C=90°,AC=7,BC=24,∴25==,∵∠C=∠DFE ,∠B=∠B , ∴△ACB ∽△DFB , ∴AC AB DF BD =即72512DF =,∴DF=8425=C´E , ∴A´E=A´C´﹣C´E=7﹣8425=9125, 故选:D . 【点睛】本题考查了旋转的性质、矩形的判定与性质、相似三角形的判定与性质、勾股定理等知识,熟练掌握这些知识的灵活运用,添加恰当的辅助线是解答的关键.5.B解析:B 【分析】首先根据题意利用两组对边的比相等且夹角相等的三角形是相似三角形判定相似,然后利用相似三角形的性质求解. 【详解】∵OA =3OD ,OB =3OC , ∴3OA OBOD OC==, ∵AD 与BC 相交于点O , ∴∠AOB =∠DOC , ∴△AOB ∽△DOC , ∴3AB OADC OD==, ∵12AB cm =∴CD=12433AB ==cm, 故选B. 【点睛】本题考查相似三角形的应用,解题的关键是熟练掌握相似三角形的判定方法,学会利用相似三角形的性质解决问题,属于中考常考题型.6.A解析:A 【分析】由两个三角形的高之比可得出两个三角形的相似比,进而得出两个三角形的面积之比,根据两个三角形的面积之比设未知数,列方程,求出较大三角形的面积即可.【详解】由题意得,两个三角形的相似比为:15∶5=3∶1,故面积比为:9∶1,设两个三角形的面积分别为9x,x,则9x-x=80,解得:x=10,故较大三角形的面积为:9x=90.故选:A.【点睛】本题主要考查相似三角形的性质,熟记相似三角形的高之比等于相似比,面积之比等于相似比的平方是解题关键.7.B解析:B【分析】连结AD、BE,DE,如图,根据圆周角定理得∠ADB=90°,则AD⊥BC,加上CD=BD,根据等腰三角形的判定即可得到AC=AB;再根据等腰三角形的性质和三角形内角和定理可计算出∠BAC=40°;由AB为直径得到∠AEB=90°,则∠ABE=50°,根据圆周角定理可判断AE BE≠;接着证明△CED∽△CBA,利用相似比得到CD CEAC BC=,然后利用等线段代换即可判断④.【详解】解:连接AD,∵AB是⊙O的直径,∴∠ADB=90°.∵CD=BD,∴AD是BC的垂直平分线,∴AC=AB,故②正确;∵AC=AB,∴∠ABC=∠C=70°,∴∠BAC=40°,故①错误;连接BE,DE,∵AB为⊙O的直径,∴∠AEB=90°,∵∠BAC=40°,∴∠ABE=50°,∴∠BAC≠∠ABE ,∴AE≠BE ,∴AE BE ≠,故③错误;∵四边形ABDE 是圆内接四边形,∴∠CDE=∠CAB ,∴△CDE ∽△CAB , ∴CD CE AC BC=, ∴CE•AC=CD·BC , ∴CE•AB=12BC·BC , ∴2CE •AB =BC 2,故④正确.故选B .【点睛】本题考查了相似三角形的判定和性质,圆周角定理,根据题意作出辅助线,构造出圆周角是解题的关键.8.A解析:A【分析】根据DE ∥AC 可得到△DOE ∽△COA 和△DBE ∽△ABC ,再根据相似三角形的性质即可得出12BE EC =,再根据同高三角形的面积比等于底之比即可求出. 【详解】∵DE ∥AC∴△DOE ∽△COA ,△DBE ∽△ABC∵S △DOE :S △COA =1:9 ∴13DE AC = ∴13DE BE AC BC == ∴12BE EC = ∴S △BDE :S △CDE =1:2故答案选A .【点睛】本题主要考察了相似三角形的性质,准确记住面积比等于相似比平方是解题关键. 9.C【分析】①根据三角形中位线定理进行判断;②根据三角形中位线定理进行判断;③根据三角形中位线定理进行判断;④由相似三角形△ADO ∽△ABF 的面积之比等于相似比的平方进行判断.【详解】∵DE 是△ABC 的中位线,∴DE ∥BC ,故①正确;∴DE=12BC , ∴OD=12BF , ∵AF 是BC 边上的中线,∴BF=12BC , ∴OD=12BF=14BC ,故②正确; ∵DE 是△ABC 的中位线,∴AD=DB ,DE ∥BC ,∴AO =FO ,故③正确;④∵DE ∥BC ,即DO ∥BF ,∴△ADO ∽△ABF , ∴22ADO ABF 1124S AD S AB ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭, 又∵AF 是BC 边上的中线,∴ABF ABC 12SS =, ∴ADO ABC18S S =,故④错误. 综上所述,正确的结论是①②③,共3个.故选:C .【点睛】本题考查了三角形中位线定理、相似三角形的判定与性质.本题利用了“相似三角形的面积之比等于相似比的平方”的性质.正确的识别图形是解题的关键.10.C解析:C【分析】画出图像,根据黄金分割的概念写出对应线段的比值,求出AQ 、PB 的长度,再根据PQ =AQ +PB -AB 即可求出PQ 的长度.解:如图,根据黄金分割点的概念,可知51PB AQ AB AB -==, ∴AQ =PB ,AB =10,∴AQ =PB =51105552-⨯=-, ∴PQ =AQ +PB -AB =555555101052010(52)-+--=-=-.故选:C .【点睛】本题主要考查黄金分割的概念,熟记黄金分割的概念并根据黄金分割的比值列式是解题关键.11.B解析:B【分析】直接根据平行线分线段成比例定理求解.【详解】解:∵a ∥b ∥c ,∴12DE AB EF BC ==. 故选:B .【点睛】 本题考查了平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例. 12.A解析:A【分析】设BC 边上的高为AD ,结合三角形高线的性质及等腰三角形的性质证明△OBD ∽△BAD ,可得BD:AD=OD:BD ,利用勾股定理可求解AD 的长,进而可求解OD 的长.【详解】解:如图,设BC 边上的高为AD ,∵点O 为△ABC 三条高的交点,∴AD ⊥BC ,BO ⊥AC ,∴∠ADB=90°,∠OBC+∠C=90°,∴∠CAD+∠C=90°,∴∠OBD=∠CAD ,∵AB=AC ,∴D 为BC 的中点,∠BAD=∠CAD ,∴∠OBD=∠BAD ,∴△OBD ∽△BAD ,∴BD:AD=OD:BD ,∵BC=∴在Rt △ABD 中,AB=5,∴==∴OD =,解得∴OA=AD−OD=2=, 故选A .【点睛】 本题主要考查等腰三角形的性质,三角形的高线,相似三角形的性质与判定,勾股定理等知识的综合运用 .二、填空题13.22或8【分析】(1)运用中位线性质求解即可;(2)延长BQ 交射线EF 于M 根据三角形的中位线平行于第三边可得EF ∥BC 根据两直线平行内错角相等可得∠M=∠CBM 再根据角平分线的定义可得∠PBM=∠C解析:2 2或8【分析】(1)运用中位线性质求解即可;(2)延长BQ 交射线EF 于M ,根据三角形的中位线平行于第三边可得EF ∥BC ,根据两直线平行,内错角相等可得∠M=∠CBM ,再根据角平分线的定义可得∠PBM=∠CBM ,从而得到∠M=∠PBM ,根据等角对等边可得BP=PM ,求出EP+BP=EM ,再根据CQ=13CE 求出EQ=2CQ ,然后根据△MEQ 和△BCQ 相似,利用相似三角形对应边成比例列式求解即可.【详解】解:(1)∵E ,F 分别是AB ,AC 的中点∴1=2EF BC ∵BC=4∴EF=2;(2)如图,延长BQ 交射线EF 于M ,∵E 、F 分别是AB 、AC 的中点,∴EF ∥BC ,∴∠M=∠CBM ,∵BQ 是∠CBP 的平分线,∴∠PBM=∠CBM ,∴∠M=∠PBM ,∴BP=PM ,∴EP+BP=EP+PM=EM ,∵点Q 把线段EC 分成的两线段之比是1:2,∴CQ=13CE , ∴EQ=2CQ , 由EF ∥BC 得,△MEQ ∽△BCQ , ∴2EM EQ BC CQ==, ∴EM=2BC=2×4=8,即EP+BP=8,当CQ=2EQ 时,同法可得,EM=2,EP+PB=EM=2.故答案为:EP+BP=8或EP+PB=2.故答案为:2;8或2.【点睛】本题考查了三角形中位线定理、相似三角形的判定与性质,角平分线的定义,平行线的性质,延长BQ 构造出相似三角形,求出EP+BP=EM 并得到相似三角形是解题的关键,也是本题的难点.14.(03)或(0)或(40)【分析】首先确定AB 两点坐标分两种情形:①当PQ ∥OB 时②当PQ′⊥AB 时分别求解即可【详解】∵一次函数y =﹣x+6的图象与x 轴交于点B 与y 轴交于点A ∴A (06)B (80)解析:(0,3)或(74,0)或(4,0) 【分析】首先确定A ,B 两点坐标,分两种情形:①当PQ ∥OB 时,②当PQ′⊥AB 时,分别求解即可.【详解】∵一次函数y =﹣34x+6的图象与x 轴交于点B ,与y 轴交于点A , ∴A (0,6),B (8,0), ∴OA =6,OB =8,AB =22OA OB +=2268+=10,如图有两种情形:①当PQ ∥OB 时,满足条件.∵AP =PB ,∴AQ =OQ ,∴Q (0,3).②当PQ′⊥AB 时,满足条件.连接AQ′.∵PA =PB ,PQ′⊥AB ,∴Q′A =Q′B ,设Q′A =Q′B =m ,在Rt △AOQ′中,则有m 2=62+(8﹣m )2,解得m =254, ∴OQ′=8﹣254=74, ∴Q′(74,0). ③当PQ ∥y 轴时,同法可得P (4,0). 综上所述,满足条件的点Q 的坐标为(0,3)或(74,0)或(4,0). 【点睛】本题考查一次函数的应用,相似三角形的判定和性质等知识,解题的关键是理解题意,灵活运用所学知识解决问题.15.【分析】根据正方形的性质以及DE ⊥AP 即可判定△ADE ∽△PAB 根据相似三角形的性质即可列出y 与x 之间的关系式需要注意的是x 的范围【详解】解:∵四边形ABCD 为正方形∴∠BAD =∠ABC =90°∴∠解析:(16442y x x =<< 【分析】根据正方形的性质以及DE ⊥AP 即可判定△ADE ∽△PAB ,根据相似三角形的性质即可列出y 与x 之间的关系式,需要注意的是x 的范围.【详解】解:∵四边形ABCD 为正方形,∴∠BAD =∠ABC =90°,∴∠EAD +∠BAP =90°,∠BAP +∠APB =90°,∴∠EAD =∠APB ,又∵DE ⊥AP ,∠AED =∠B =90°,∴△ADE ∽△PAB . ∴=AD DE AP AB ,即4=4y x∴(164y x x =<<.故答案为:(164y x x =<< 【点睛】 本题考查相似三角形,解题关键是熟练运用相似三角形的判定与性质,本题属于中等题型.16.20【分析】证出ADE 和ABC 相似然后根据相似三角形对应边成比例列式求解即可【详解】解:∵AB ⊥DEBC ⊥AB ∴DE ∥BC ∴ADE ∽ABC ∴即解得:AD =20m 故答案为:20【点睛】本题考查了相似三解析:20【分析】 证出ADE 和ABC 相似,然后根据相似三角形对应边成比例列式求解即可.【详解】解:∵AB ⊥DE ,BC ⊥AB ,∴DE ∥BC , ∴ADE ∽ABC , ∴AD DE AB BC =, 即201030AD AD =+, 解得:AD =20m .故答案为:20.【点睛】本题考查了相似三角形的应用,利用相似三角形对应边成比例列出比例式是解题的关键.17.【分析】根据题意可知△ABC 与阴影部分为相似三角形且面积比为2:1所以AB :A′B=:1推出A′B=从而得到AA′的长【详解】解:∵△ABC 沿AB 边平移到△A′B′C′的位置∴AC ∥A′C′∴△AB解析:【分析】根据题意可知△ABC 与阴影部分为相似三角形,且面积比为2:1,所以AB ::1,推出,从而得到AA′的长.【详解】解:∵△ABC 沿AB 边平移到△A′B′C′的位置,∴AC ∥A′C′,∴△ABC ∽△A′BD , ∴21()2A BDABC S A B S AB ''∆∆==, ∴AB ::1,∵AB=∴,∴AA′=.由平移可得' 'CC AA =∴'6CC =故答案为:.【点睛】本题主要考查相似三角形的判定和性质、平移的性质,关键在于求证△ABC 与阴影部分为相似三角形.18.或7【分析】是直角三角形时有两种情况:∠EDF=90°或∠EFD=90°通过找相似三角形然后利用对应边成比例即可得到结果【详解】解:如图当∠EDF=90°时过A 作AG ⊥BC 于G 则DE ∥AG ∵AG ⊥B 解析:263或7. 【分析】 DEF 是直角三角形时,有两种情况:∠EDF=90°或∠EFD=90°,通过找相似三角形,然后利用对应边成比例即可得到结果.【详解】解:如图,当∠EDF=90°时,过A 作AG ⊥BC 于G ,则DE ∥AG ,∵13AB AC ==,24BC =,AG ⊥BC , ∴1122BG BC ==, 在直角三角形ABG 中,2213125AG =-=, 由折叠可知∠B=∠E ,BD=ED ,AE=AB=13, ∵DE ∥AG ,∴∠FAG=∠E=∠B ,∴Rt △AFG ∽Rt △BAG ,∴AB BG AF AG =,即13125AF =, ∴6512AF = ∴6591131212EF =-=, 由∠B=∠E ,∠EDF=∠ABG=90°,可知△ABG ∽△FED ,∴AB BG EF DE =,即13129112DE =, ∴7DE =,即7BD =;如图,当∠EFD=90°时,由折叠可知∠B=∠E ,BD=ED ,AE=AB=13, 由于∠EFD=90°,因此AF ⊥BC ,在直角三角形ABF 中,2213125AF =-=,∴1358EF =-=,∵∠B=∠E ,∠AFB=∠EFD=90°,∴△ABF ∽△DEF , ∴AB BF DE EF =,即13128DE =, ∴263DE =,即263BD =; 综上,263BD =或7BD =, 故答案为:263或7. 【点睛】 本题考查了相似三角形的性质和判定以及折叠问题,找到相似三角形是解题的关键,要注意分类讨论.19.或2【分析】根据等式的性质可得2(a+b+c )=k (a+b+c )根据因式分解可得a+b+c=0或k=2根据分式的性质可得答案【详解】解:由得b+c=ak①a+c=bk②a+b=ck③①+②+③得2(解析:1-或2【分析】根据等式的性质,可得2(a+b+c )=k (a+b+c ),根据因式分解,可得a+b+c=0或k=2,根据分式的性质,可得答案.【详解】 解:由()0a b a c b c k k c b a+++===≠,得 b+c=ak ①,a+c=bk ②,a+b=ck ③,①+②+③,得2(a+b+c )=k (a+b+c ),移项,得2(a+b+c )-k (a+b+c )=0,因式分解,得(a+b+c )(2-k )=0a+b+c=0或k=2,当0a b c ++=时,a b c +=-, 1a b c k c c+-===-, ∴1k =-或2.故答案为:1-或2.【点睛】本题考查了比例的性质,利用等式的性质得出2(a+b+c )=k (a+b+c )是解题关键,又利用了分式的性质.20.66【分析】设a=2kb=3kc=3k 代入求出k 值进而求得abc 然后代入所求代数式中求解即可【详解】解:由可设a=2kb=3kc=3k 代入得:4k+3k+3k=33解得:k=33∴a=66b=c=9解析:6.6【分析】设a=2k ,b=3k ,c=3k ,代入233a b c ++=,求出k 值,进而求得a 、b 、c ,然后代入所求代数式中求解即可.【详解】 解:由233a b c ==可设a=2k ,b=3k ,c=3k , 代入233a b c ++=得:4k+3k+3k=33,解得:k=3.3,∴a=6.6,b=c=9.9,∴a b c -+=a =6.6,故答案为:6.6.【点睛】本题考查了比例的性质、代数式求值,熟练掌握比例的性质,巧妙设参是解答的关键.三、解答题21.(1)()21B ,;(2)作图见解析;(3)16;【分析】(1)直接利用已知点坐标得出各点位置进而得出答案;(2)直接利用位似图形的性质得出对应点位置进而得出答案;(3)利用三角形面积求法得出答案.【详解】解:(1)如图所示:B 点坐标为(2,1);(2)△A 'B 'C '即为所求;(3)△A 'B 'C '的面积S =12×4×8=16. 故答案为:16.【点睛】 此题主要考查了位似变换,正确得出对应点位置是解题关键. 22.(1)(4,)1-;(2)画图见解析;(3)12.【分析】(1)直接利用关于x 轴对称图形的性质得出得出对应点位置即可;(2)直接利用位似图形的性质得出对应点位置进而得出答案; (3)直接运用三角形面积公式求出△A 2BC 2的面积即可.【详解】解:(1)如图所示:111A B C △,即为所求,则1C 的坐标为:(4,)1-.故答案为:(4,)1-.(2)如图所示:22A BC ,即为所求.(3)22164122A BC S =⨯⨯=. 【点睛】此题主要考查了位似变换以及轴对称变换,正确得出对应点位置是解题关键. 23.(1)见解析;(2)152【分析】(1)根据切线性质可知90CAB CAF ∠+∠=︒,所得等式两边同乘2可得22180CAB CAF ∠+∠=︒,在等腰三角形ABC 中,2180CAB ABC ∠+∠=︒,联立两个等式即可证明.(2)连接AE ,设CE x =,根据等腰三角形性质及勾股定理可得3AE x =,在Rt AEC 中运用勾股定理得出CE 、AE 的值,再根据AEF BEA ∽△△计算得出AF 的值.【详解】(1)证明:∵AB 为O 的直径,AF 是O 的切线,∴AF AB ⊥,90CAB CAF ∠+∠=︒,等式两边同乘2可得:22180CAB CAF ∠+∠=︒①;∵BA=BC ,∴CAB ACB ∠=∠,∴在ABC 中,2180CAB ABC ∠+∠=︒②,联立①和②可得:222CAB CAF CAB ABC ∠+∠=∠+∠,∴2ABC CAF ∠=∠.(2)解:连接AE ,如图:∵:1:4CE EB =,BA=BC ,设CE x =,90AEB =︒∠(直径所对圆周角是直角), ∴在Rt AEB 中,45AB CE EB x x x =+=+=,4BE x =,22=(5)(4)3AE x x x -=,∵在Rt AEC 中,222AE CE AC +=,即()(222321040x x +==,∴解得:2x =,AE=6,AB=10,∵AE ⊥BF ,FAE ABE ∠=∠(弦切角度数等于它所夹弧度所对圆周角度数),∴FAE ABE ∽, ∴FA AB AE BE =,即1068FA =, 解得:152FA =. 【点睛】本题考查切线性质的综合运用,用勾股定理解三角形,灵活运用切线性质和勾股定理是解题关键.24.这座建筑物的高BC 为 14米【分析】根据两组相似三角形ACF EDF ∆∆∽和BCG EDG ∆∆∽,利用对应边成比例,列出CD 和BC 的关系式,然后解方程求出BC 的长.【详解】解:由题意可得90ACF EDF AFC EFD ︒∠∠∠∠==,=,ACF EDF ∴∆∆∽,AC CF ED DF∴=, 即3545BC CD ++=, 554BC CD -∴=, 由题意可得,90BCG EDG BGC EGD ︒∠∠∠∠==,=,BCG EDG ∴∆∆∽,BC CG ED DG ∴=, 即5 1.545 1.5BC CD ++=+, 6.54( 6.5)BC CD ∴+=,556.54264BC BC -∴=⨯+, 14BC ∴=,∴这座建筑物的高BC 为 14米.【点睛】本题考查相似三角形的应用,解题的关键是利用相似三角形对应边成比例的性质列式求边长.25.(1)直线AB 的解析式为9y x =-+;(2)存在,()'4,2O ,52t =,见解析; 【分析】 (1)由于点A (8,1)、B (n ,8)都在反比例函数m y x=的图象上,根据反比例函数的意义求出m ,n ,再由待定系数法求出直线AB 的解析式;(2)①由题意知:OP=2t ,OQ=t ,由三角形的面积公式可求出解析式;②通过三角形相似,用t 的代数式表示出O′的坐标,根据反比例函数的意义可求出t 值.【详解】 解:(1)∵点()8,1A 、(),8B n 都在反比例函数m y x =的图象上, ∴818=⨯=m , ∴8y x =, ∴88n=,即1n =. 设AB 的解析式为y kx b =+,把()8,1、()1,8B 代入上式得:818k b k b +=⎧⎨+=⎩,解得:19k b =-⎧⎨=⎩. ∴直线AB 的解析式为9y x =-+.(2)存在.当'O 在反比例函数的图象上时,作PE y ⊥轴,'O F x ⊥轴于F ,交PE 于E ,则90E ∠=︒,'2PO PO t ==,'QO QO t ==.由题意知:'PO Q POQ ∠=∠,'90'QO F PO E ∠=︒-∠,'90'EPO PO E ∠=︒-∠,∴''PEO O FQ △△, ∴''''PE EO PO O F QF QO ==, 设QF b =,'O F a =,则PE OF t b ==+,'2O E t a =-, ∴22t b t a a b+-==, 解得:45a t =,35b t =, ∴84',55O t t ⎛⎫ ⎪⎝⎭, 当'O 在反比例函数的图象上时,84855t t ⋅=, 解得:52t =±, ∵反比例函数的图形在第一象限,∴0t >, ∴52t =,∴()'4,2O , 当52t =秒时,'O 恰好落在反比例函数的图象上. 【点睛】 本题主要考查了反比例函数的意义,利用图象和待定系数法求函数解析式,相似三角形的判定和性质,熟练掌握反比例函数的意义和能数形结合是解决问题的关键.26.(1)图见解析;(2)图见解析.【分析】(1)先画出点,,A B C 关于y 轴的对称点111,,A B C ,再顺次连接即可得;(2)先根据位似中心、位似比得出点222,,A B C 的坐标,再画出点222,,A B C ,然后顺次连接即可得.【详解】(1)先画出点,,A B C 关于y 轴的对称点111,,A B C ,再顺次连接即可得111A B C △,如图所示:(2)()3,1A -,()1,1B -,()0,3C ,且位似比为1:2,()()()22232,12,12,12,20,3A B C ∴⨯-⨯⨯--⨯⨯,即()()()2226,2,2,0,62,C A B ---,先画出点222,,A B C ,再顺次连接即可得222A B C △,如图所示:【点睛】本题考查了画轴对称图形和位似图形,熟练掌握轴对称图形和位似图形的画法是解题关键.。
一、选择题1.如图,在平行四边形ABCD 中,点E ,F 分别为,AB BC 的中点,则三角形BEF 与多边形EFCDA 的面积之比为( )A .1∶4B .1∶5C .1∶7D .1∶8 2.如图,在四边形ABCD 中,//AD BC ,如果添加下列条件,不能使得△ABC ∽△DCA 成立的是( )A .∠BAC =∠ADCB .∠B =∠ACDC .AC 2=AD •BC D .DC AB AC BC = 3.如图,AB 为半圆O 的直径,10AB =,AC 为O 的弦,8AC =,D 为AB 的中点,DM AC ⊥于M ,则DM 的长为( )A .42B .2C .1D .34.如图,ABC 和CDE △都是等边三角形,点G 在CA 的延长线上,GB GE =,若10BE CG +=,32AG BE =,则AF 的长为( )A .1B .43C .95D .25.下列每个选项的两个图形,不是相似图形的是( )A .B .C .D .6.如图,点D 、E 分别在CA 、BA 中的延长线上,若DE ∥BC ,AD =5,AC =10,DE =6,则BC 的值为( )A .10B .11C .12D .137.若点C 为线段AB 的黄金分割点,且AC BC >,则下列各式中不正确的是( ). A .::AB AC AC BC =B .352BC AB -= C .512AC AB +=D .0.618AC AB ≈8.如图,已知在ABC 中,D 为BC 上一点,//EG BC ,分别交AB ,AD ,AC 于点E ,F ,G ,则下列比例式正确的是( )A .AE EF BE BD =B .EF AF DC AD=C .AC FG CG DC =D .AE FG AB DC= 9.如图,正方形ABCD 中,ABC 绕点A 逆时针旋转到AB C ''△,AB '、AC '分别交对角线BD 于点E 、F ,若4AE =,则EF ED ⋅的值为( )A .4B .6C .8D .1610.如图,直线12//l l ,:2:3AF FB =,:2:1BC CD =,则:AE EC 是( )A .1:2B .1:4C .2:1D .3:211.如图,已知在ABC ∆中,点D 、E 分别是AB 和AC 的中点,BE 、CD 相交于点O ,若2DOE S ∆=,则BOC S ∆=( )A .4B .6C .8D .10 12.已知两个三角形相似,其中一个三角形的两个内角分别为72,63︒︒,则另一个三角形的最小内角为( )A .72︒B .63︒C .45︒D .不能确定二、填空题13.已知::3:2:1x y z =,则x y z x y z+--+的值为________. 14.如图,矩形ABCD 中,2AB =,E 为CD 的中点,连接AE 、BD 交于点P ,过点P 作PQ BC ⊥于点Q ,则PQ =________.15.已知a c b d ==12020(b +d ≠0),则a c b d ++的值为_______ . 16.如图,为估算某河的宽度,在河对岸边选定一个目标点A ,在近岸取点B ,C ,D ,使得AB BC ⊥,CD BC ⊥,点E 在BC 上,并且点A ,E ,D 在同一条直线上.若测得20BE m =,10EC m =,20CD m =,则河的宽度AB 等于_______.17.如图,在正方形ABCD 中,15AB =,点,E F 分别为AB ,DC 上的点,将正方形沿EF 折叠,使点A 落在A '处,点D 落在D 处,FD '交BC 于点G ,A D ''交BC 于点H ,若10DF =,203CG =,则BH 的长为___________.18.如图,在平行四边形ABCD 中,点E 在边BC 上,EC =2BE ,连接AE 交BD 于点F ,若△BFE 的面积为2,则△AFD 的面积为_____.19.如图是用卡钳测量容器内径的示意图,现量得卡钳上A ,D 两个端点之间的距离为10cm ,23AO DO BO CO ==,则容器的内径是______.20.如图,P 为△ABC 的重心,连结AB 并延长BC 于点D ,过点P 作EF ∥BC 分别交AB ,AB 于点E ,F .若△ABC 的面积为36,则△AEF 的面积为____.三、解答题21.作图题:如图所示,图中的小方格都是边长为1的正方形,△ABC 与△A 'B 'C '是以点O 为位似中心的位似图形,它们的顶点都在小正方形的顶点上.(1)画出位似中心点O ;(2)△A 'B 'C '与△ABC 的位似比是 ;(3)以位似中心O 为坐标原点,以格线所在直线为坐标轴建立平面直角坐标系,画出△A 'B 'C '关于点O 中心对称的△A "B "C ",并直接写出△A "B "C "各顶点的坐标. 22.如图,建筑物BC 上有一个旗杆AB ,小明和数学兴趣小组的同学计划用学过的知识测量该建筑物的高度,他们制订了测量方案,并利用课余时间完成了实地测量,测量方法如下:在该建筑物底部所在的平地上有一棵小树ED ,小明沿CD 后退,发现地面上的点F 、树顶E 、旗杆顶端A 恰好在一条直线上,继续后退,发现地面上的点G 、树顶E 、建筑物顶端B 恰好在一条直线上,已知旗杆3AB =米,4DE =米,5DF =米,1.5FG =米,点、、A B C 在一条直线上,点C D F G 、、、在一条直线上,AC ED 、均垂直于CG ,根据以上信息,请求出这座建筑物的高BC .23.如图,ABC ∆中,∠C =90°,AC =3cm ,BC =4cm ,动点P 从点B 出发以2cm/s 速度向点C 移动,同时动点Q 从C 出发以1cm/s 的速度向点A 移动,设它们的运动时间为t 秒.(1)根据题意知:CQ = cm ,CP = cm ;(用含t 的代数式表示) (2)t 为何值时,CPQ ∆与ABC ∆相似.24.如图,在等边ABC 中,点D ,E 分别在AB ,AC 上,连接DE ,DC (E ,C 两点不重合),当AED DCB ∠=∠时,我们把AE EC称为AD DB 的“类似比”,(1)若12AD DB =,则“类似比”AE EC =___________; (2)若(1)AD k k DB =<时,求“类似比”AE EC的值(用含k 的代数式表示); (3)直接写出AED ∠和“类似比”AE EC的取值范围. 25.△ABC 在边长为1的正方形网格中如图所示. (1)以点C 为位似中心,作出△ABC 的位似图形△A 1B 1C 1,使其位似比为1:2.且△A 1B 1C 1位于点C 的异侧,并表示出A 1的坐标.(2)作出△ABC 绕点C 顺时针旋转90°后的图形△A 2B 2C 2.26.如图,在ABC 中,D 为BC 上一点,BAD C ∠=∠.(1)求证:C ABD BA ∽△△.(2)若6,3AB BD ==,求CD 的长.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】连接AC ,根据中位线定理得//EF AC ,12EF AC =,即可由BEF BAC ,根据相似比求出面积比,设BEF Sk =,则4BAC S k =,再用k 表示出多边形EFCDA 的面积,即可求出结果.【详解】解:如图,连接AC ,∵E 、F 分别是AB 和BC 的中点,∴//EF AC ,12EF AC =, ∴BEF BAC , ∴221124BEF BAC S EF S AC ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭, 设BEF S k =,则4BAC Sk =, ∴3AEFC BAC BEF S SS k =-=, ∵四边形ABCD 是平行四边形, ∴4ACD BAC S S k ==,∴7EFCDA AEFC ACD S S S k =+=, ∴::71:7BEF EFCDA S S k k ==.故选:C .【点睛】本题考查相似三角形的性质,解题的关键是掌握相似三角形面积比等于相似比的平方的性质.2.D解析:D【分析】利用相似三角形的判定定理,在AD ∥BC ,得∠DAC =∠BCA 的前提下,需添加一角或夹这角的两边对应成比例进行排查即可.【详解】解:A .∵AD ∥BC ,∴∠DAC =∠BCA ,当∠BAC =∠ADC 时,则△ABC ∽△DCA ;B .∵AD ∥BC ,∴∠DAC =∠BCA ,当∠B =∠ACD 时,则△ABC ∽△DCA ; C .∵AD ∥BC ,∴∠DAC =∠BCA ,由AC 2=AD •BC 变形为AC AD BC AC =,则△ABC ∽△DCA ; D .∵AD ∥BC ,∴∠DAC =∠BCA ,当DC AB AC BC=时,不能判断△ABC ∽△DCA . 故选择:D .【第讲】本题考查三角形相似问题,掌握相似三角形的判定定理,会根据判定定理进行添加条件使三角形相似解题关键.3.C解析:C【分析】如图,连接OD 交AC 于H ,连接BC .利用勾股定理求出BC ,再利用相似三角形的性质求出OH ,AH ,DH ,证明△DMH ∽△AOH ,构建关系式即可解决问题.【详解】解:如图,连接OD 交AC 于H ,连接BC .∵AB 是直径,∴∠ACB=90°, ∴226BC AB AC -=,∵AD DB =,∴OD ⊥AB ,∵∠OAH=∠CAB ,∠AOH=∠ACB=90°,∴△AOH ∽△ACB , ∴OH OA AH BC AC AB== ∴56810OH AH == ∴1525,44OH AH ==, ∵DH=OD-OH=155544-=, ∵DM ⊥AC ,∵∠DMH=∠AOH=90°,∠DHM=∠AHO ,∴△DMH ∽△AOH , ∴DM DH AO AH=, ∴542554DM =, ∴DM=1,故选:C .【点睛】本题考查勾股定理,圆周角定理,相似三角形的判定和性质等知识,解题的关键是熟练掌握基本知识.4.C解析:C【分析】过点G 作GH ⊥BE ,垂足为点H ,设BE =2x ,进而可表示出相关线段长,再根据CH =12CG 列出方程求得x =1,最后再根据GAF GDE △∽△可得AF AG DE DG =,进而可求得AF 的长.【详解】解:过点G 作GH ⊥BE ,垂足为点H ,设BE =2x ,∵10BE CG +=,32AG BE =, ∴CG =10-2x ,AG =3x ,∴AC =CG -AG =10-5x , ∵ABC 和CDE △都是等边三角形,∴BC =AC =10-5x ,CD =DE =CE =BC -BE =10-7x ,∠ABC =∠DEC =∠C =60°, ∵GB =GE ,GH ⊥BE ,∴BH =HE =x ,∴CH =CE +HE =10-6x ,∵∠GHC =90°,∠C =60°,∴∠HGC =30°,∴CH =12CG , ∴10-6x =12(10-2x ), 解得:x =1,∴AG =3x =3,CG =10-2x =8,CD =DE =10-7x =3,∴GD =CG -CD =5,∵∠ABC =∠DEC ,∴AB//DE ,∴GAF GDE∽,∴AF AGDE DG=,即3 35 AF=,解得95 AF=,故选:C.【点睛】本题考查了等边三角形的性质,含30°的直角三角形的性质,相似三角形的判定及性质,设BE=2x,利用含30°的直角三角形的性质列出方程是解决本题的关键.5.D解析:D【分析】根据相似图形的定义,对选项进行一一分析,排除错误答案.【详解】解:A、形状相同,但大小不同,符合相似形的定义,故不符合题意;B、形状相同,但大小不同,符合相似形的定义,故不符合题意;C、形状相同,但大小不同,符合相似形的定义,故不符合题意;D、形状不相同,不符合相似形的定义,故符合题意;故选:D.【点睛】本题考查的是相似形的定义,是基础题.6.C解析:C【分析】根据平行线的性质得出∠E=∠B,∠D=∠C,根据相似三角形的判定定理得出△EAD∽△BCA,根据相似三角形的性质求出即可【详解】解:∵DE∥BC,∴∠E=∠B,∠D=∠C,∴△EAD∽△CAB,∴AC:AD=BC:DE,∵AD=5,AC=10,DE=6,∴10:5=BC:6.∴BC=12.故选:C.【点睛】本题考查了平行线的性质,相似三角形的性质和判定的应用,能推出△EAD∽△BAC是解此题的关键.7.C解析:C【分析】根据黄金分割点的定义逐项排除即可.【详解】解:∵点C 为线段AB 的黄金分割点,且AC BC >,∴2AC BC AB =⋅,∴::AB AC AC BC =,则选项A 正确;∵点C 为线段AB 的黄金分割点,且AC BC >,∴0.618AC AB =≈,则选项C 错误;选项D 正确;1322BC AB AC AB AB AB =-=-=,则选项B 正确. 故选:C .【点睛】 本题考查了成比例线段,熟练掌握黄金分割的定义成为解答本题关键.8.D解析:D【分析】根据相似三角形的判定推出△AEF ∽△ABD ,△AFG ∽△ADC ,△AEG ∽△ABC ,再根据相似三角形的性质得出比例式即可.【详解】A 、∵EG ∥BC ,即EF ∥BD ,∴△AEF ∽△ABD , ∴AE EF AB BD=, ∵AB BE ≠,故本选项不符合题意;B 、∵EF ∥BD ,∴△AEF ∽△ABD , ∴EF AF BD AD=, ∵BD ≠DC ,故本选项不符合题意;C 、∵EG ∥BC ,即FG ∥DC ,∴△AFG ∽△ADC , ∴AG FG AC DC =, ∵AG AC AC CG≠,故本选项不符合题意;D 、∵EG ∥BC ,∴△AEG ∽△ABC , ∴AE AG AB AC=, ∵FG ∥DC , ∴△AFG ∽△ADC , ∴AG FG AC DC =, ∴AE FG AB DC=,故本选项符合题意; 故选:D【点睛】本题考查了相似三角形的性质和判定,能正确的识别图形、灵活运用定理进行推理是解此题的关键.9.D解析:D【分析】先根据正方形的性质、旋转的性质可得45EAF EDA ∠=∠=︒,再根据相似三角形的判定与性质即可得.【详解】四边形ABCD 是正方形,45BAC EDA ∴∠=∠=︒,由旋转的性质得:B AC BAC ''∠=∠,B AC EDA ''∴∠=∠,即EAF EDA ∠=∠,在AEF 和DEA △中,EAF EDA AEF DEA ∠=∠⎧⎨∠=∠⎩, AEF DEA ∴~,EF AE AE DE ∴=,即44EF DE=, 16EF DE ∴⋅=,故选:D .【点睛】本题考查了正方形的性质、旋转的性质、相似三角形的判定与性质,熟练掌握相似三角形的判定与性质是解题关键.10.C解析:C【分析】为了便于计算,可设AF =2x ,BF =3x ,BC =2y ,CD =y ,利用AG ∥BD ,可得△AGF ∽△BDF ,从而可求出AG ,那么就可求出AE :EC 的值.【详解】解:如图所示,∵AF :FB =2:3,BC :CD =2:1∴设AF =2x ,BF =3x ,BC =2y ,CD =y∵12//l l ,∴△AGF ∽△BDF , ∴AG BD =AF BF ∴3AG y =23∴AG =2y∴AE :EC =AG :CD =2y :y =2:1故选:C .【点睛】根据三角形相似,找到各对相似三角形的共公边,建立起不同三角形之间的联系,是解答此题的关键.11.C解析:C【分析】根据三角形中位线定理得到DE=12BC ,DE ∥BC ,得到△DOE ∽△COB ,根据相似三角形的面积比等于相似比的平方计算,得到答案.【详解】 ∵D 、E 分别是AB 和AC 的中点, ∴12DE BC =,//DE BC , ∴DOE COB ∆∆∽, ∴2DOE COB S DE S BC ∆∆⎛⎫= ⎪⎝⎭,即BOC214S ∆=, 解得,8BOC S ∆=,故选:C .【点睛】本题考查了相似三角形的判定和性质、三角形中位线定理,掌握相似三角形的判定定理和性质定理是解题的关键.12.C解析:C【分析】根据相似三角形的性质、三角形的内角和定理可得出另一个三角形的三个内角度数,由此即可得.【详解】由相似三角形的性质得:另一个三角形的两个内角分别为72,63︒︒,则另一个三角形的第三个内角为180726345︒-︒-︒=︒,因此,另一个三角形的最小内角为45︒,故选:C .【点睛】本题考查了相似三角形的性质、三角形的内角和定理,熟练掌握相似三角形的性质是解题关键.二、填空题13.2【分析】根据可设代入原式即可求解【详解】∵∴设∴故答案为:2【点睛】本题考查了比例的性质利用设k 法表示出xyz 求解更简便解析:2【分析】根据::3:2:1x y z =,可设3x k =,2y k =,z k =,代入原式,即可求解.【详解】∵::3:2:1x y z =,∴设3x k =,2y k =,z k =, ∴3242322x y z k k k k x y z k k k k+-+-===-+-+. 故答案为:2.【点睛】本题考查了比例的性质,利用“设k 法”表示出x 、y 、z 求解更简便.14.【分析】根据矩形的性质得到AB ∥CDAB=CDAD=BC ∠BAD=90°根据线段中点的定义得到DE=CD=AB 根据相似三角形的性质即可得到结论【详解】解:∵四边形ABCD 是矩形∴AB ∥CDAB=CD 解析:43【分析】根据矩形的性质得到AB ∥CD ,AB=CD ,AD=BC ,∠BAD=90°,根据线段中点的定义得到DE=12CD=12AB ,根据相似三角形的性质即可得到结论.【详解】解:∵四边形ABCD 是矩形,∴AB ∥CD ,AB=CD ,AD=BC ,∠BAD=90°,∵E 为CD 的中点,∴DE=12CD=12AB , ∴△ABP ∽△EDP ,∴AB PB DE PD =, ∴21PB PD = , ∴23PB BD = , ∵PQ ⊥BC ,∴PQ ∥CD ,∴△BPQ ∽△DBC ,∴23PQ BP CD BD ==, ∵CD=2, ∴PQ=43, 故答案为:43.【点睛】本题考查了相似三角形的判定和性质,矩形的性质,正确的识别图形是解题的关键. 15.【分析】根据已知条件求出abcd 之间的关系再代入计算即可【详解】∵=∴∴故答案为【点睛】本题考查比例的性质熟练根据比例性质把比例式转换成乘积式是解题的关键解析:12020【分析】根据已知条件求出ab 、cd 之间的关系,再代入计算即可.【详解】∵a cb d ==12020∴2020,2020b a d c == ∴1202020202020()2020a c a c a cb d ac a c +++===+++ 故答案为12020 【点睛】本题考查比例的性质。
一、选择题1.如图,D 是△ABC 的边BC 上一点,AC =4,AD =2,∠DAB =∠C .如果△ACD 的面积为15,那么△ABD 的面积为( )A .15B .10C .152D .5 2.如图,在△ABC 中,DE ∥BC ,∠ADE =∠EFC ,AD:BD=5:3,CF =6,则DE 的长为( )A .6B .8C .10D .123.如图,在平行四边形ABCD 中,以对角线AC 为直径的圆O 分别交BC ,CD 于点M ,N ,若13AB =,14BC =,9CM =,则线段MN 的长为( )A .18013B .10C .12613D .14.下列各组线段能成比例的是( )A .1.5cm ,2.5cm , 3.5cm ,4.5cmB .1cm ,2cm ,3cm ,4cmC .3cm , 6cm , 4cm , 8cmD .2cm ,10cm ,5cm ,15cm 5.如图,直线////a b c ,直线m 分别交直线a ,b ,c 于点A ,B ,C ,直线n 分别交直线a ,b ,c 于点D ,E ,F ,若23=AB BC ,则DE DF 的值为( )A .13B .23C .25D .356.如图,在ABC ∆中,E 为BC 边上的一点,F 为AC 边上的一点,连接BF ,AE ,交于点D ,若D 为BF 的中点,CF 2AF =,则:BE CE 的值为( )A .1:2B .1:3C .1:4D .2:37.有下列四种说法:其中说法正确的有( )①两个菱形相似;②两个矩形相似;③两个平行四边形相似;④两个正方形相似. A .4个 B .3个 C .2个 D .1个8.如图,在△ABC 中,DE ∥BC ,EF ∥AB ,AD :BD=5:3,CF=6,则DE 的长为( )A .6B .8C .10D .129.如图,AB 为⊙O 的直径,AC 交⊙O 于E 点,BC 交⊙O 于D 点,CD =BD ,∠C =70°,现给出以下四个结论:①∠A =45°;②AC =AB ;③AE =BE ;④2CE •AB =BC 2,其中正.确.结论有( )A .1个B .2个C .3个D .4个10.如图,放映幻灯片时,通过光源,把幻灯片上的图形放大到屏幕上.若光源到幻灯片的距离为30cm ,光源到屏幕的距离为90cm ,且幻灯片中的图形的高度为7cm ,则屏幕上图形的高度为( )A .21cmB .14cmC .6cmD .24cm11.已知P ,Q 是线段AB 的两个黄金分割点,且AB=10,则PQ 长为( )A .5(5-1)B .5(5+1)C .10(5-2) -D .5(3-5) 12.如图,已知点E 是正方形ABCD 的边AB 边上的黄金分割点,且,AE EB >若1S 表示AE 为边长的正方形面积,2S 表示以BC 为长,BE 为宽的矩形面积,3S 表示正方形ABCD 除去1S 和2S 剩余的面积,则32:S S 的值为( )A .512-B .512+C .352 D .352+ 二、填空题13.如图圆内接正六边形ABCDEF 中,AC 、BF 交于点M .则:ABM AFM S S =△△___________.14.已知a c b d ==12020(b +d ≠0),则a c b d ++的值为_______ . 15.如图,为估算某河的宽度,在河对岸边选定一个目标点A ,在近岸取点B ,C ,D ,使得AB BC ⊥,CD BC ⊥,点E 在BC 上,并且点A ,E ,D 在同一条直线上.若测得20BE m =,10EC m =,20CD m =,则河的宽度AB 等于_______.16.如图,Rt ABC 中,90ACB ∠=︒,6AC =,8BC =,D 是AB 边的中点,P 是BC 边上一动点(点P 不与B 、C 重合),若以D 、C 、P 为顶点的三角形与ABC 相似,则线段PC ______.17.如图,AB 是⊙O 的直径,AB =20cm ,弦BC =12cm ,F 是弦BC 的中点.若动点E 以2cm/s 的速度从A 点出发沿着AB 方向运动,设运动时间为t (s )(0≤t≤10),连接EF ,当△BEF 是直角三角形时,t (s )的值为_______.18.如图,正方形ABCD 中,BE =EF =FC ,CG =2GD ,BG 分别交AE ,AF 于M ,N .下列结论:①AF ⊥BG ;②BN 43=NF ;③38BM MG =;④S 四边形CGNF 12=S 四边形ANGD .其中正确的结论的序号是___________.19.若2a c e b d f===,且4b d f ++=,则a c e ++=_______. 20.如图,已知△ABC 中,若BC =6,△ABC 的面积为12,四边形DEFG 是△ABC 的内接的正方形,则正方形DEFG 的边长是__.三、解答题21.综合与实践将矩形ABCD 和Rt CEF △按如图1的方式放置,已知点D 在CF 上(2CF CD >),90FCE ∠=︒,连接BF ,DE .特例研究(1)如图1,当AD CD =,CE CF =时,线段BF 与DE 之间的数量关系是_______;直线BF 与直线DE 之间的位置关系是_______;(2)在(1)条件下中,将矩形ABCD 绕点C 旋转到如图2的位置,试判断(1)中结论是否仍然成立,并说明理由;探究发现(3)如图3,当2CF CE =,2CB CD =时,试判断线段BF 与DE 之间的数量关系和直线BF 与直线DE 之间的位置关系,并说明理由;知识应用(4)如图4,在(3)的条件下,连接BE ,FD ,若22CE CD ==,请直接写出22BE FD +的值.22.在如图小正方形的边长均为1的正方形网格中,△ABC 的顶点都在格点上.(1)以点O 为位似中心画△ABC 的位似图形△A 1B 1C 1,位似比为1:2.(2)在(1)中所画得图形中,△ABC 的中线CD 与△A 1B 1C 1的中线C 1D 1的位置关系为 .23.如图,在等边ABC 中,点D ,E 分别在AB ,AC 上,连接DE ,DC (E ,C 两点不重合),当AED DCB ∠=∠时,我们把AE EC 称为AD DB 的“类似比”,(1)若12AD DB =,则“类似比”AE EC =___________; (2)若(1)AD k k DB =<时,求“类似比”AE EC的值(用含k 的代数式表示); (3)直接写出AED ∠和“类似比”AE EC 的取值范围. 24.如图,在ABC 中,D 为BC 上一点,BAD C ∠=∠.(1)求证:C ABD BA ∽△△.(2)若6,3AB BD ==,求CD 的长.25.黄金分割为“最美丽”的几何比率,广泛应用于图案设计,下图是一个包装盒的俯视图,线段AB 是这个俯视图的中轴线.某公司想在中轴线AB 上找到黄金分割点,安装视频播放器.(1)请你用尺规作图的方式找出这个点(作出一点即可,保留作图痕迹); (2)请证明你找到的点是黄金分割点.26.将ABC 绕点A 逆时针方向旋转θ,并使各边长变为原来的n 倍,得到AB C ''△,我们将这种变换记为[],n θ.(1)问题发现如图①,对ABC 作变换60⎡︒⎣得AB C ''△,则:AB C ABC S S ''=△△______;直线BC 与直线B C ''所夹的锐角度数为______.(2)拓展探究如图②,ABC 中,35BAC ∠=︒且:AB AC =,连结BB ',CC '.对ABC 作变换60⎡︒⎣得AB C ''△,求:ABB ACC S S ''△△的值及直线BB '与直线CC '相交所成的较小角的度数,并就图②的情形说明理由.(3)问题解决如图③,ABC 中,30BAC ∠=︒,90ACB ∠=︒,对ABC 作变换[],n θ得AB C ''△,使点B 、C 、C '在同一直线上,且四边形ABB C ''为矩形,请直接写出n 的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】首先证明△ABD ∽△CBA ,由相似三角形的性质可得:△ABD 的面积:△ACB 的面积为1:4,因为△ACD 的面积为15,进而求出△ABD 的面积.【详解】∵∠DAB =∠C ,∠B =∠B ,∴△ABD ∽△CBA ,∵AC =4,AD =2,∴△ABD 的面积:△ACB 的面积=(AD AC)2=1:4, ∴△ABD 的面积:△ACD 的面积=1:3,∵△ACD 的面积为15,∴△ABD 的面积=5.故选:D .【点睛】 本题考查了相似三角形的判定和性质:相似三角形的面积比等于相似比的平方,是中考常见题型.2.C解析:C【分析】由DE //BC 可得出53AD AE BD EC ==,∠AED =∠C ,结合∠ADE =∠EFC 可得出△ADE ∽△EFC ,根据相似三角形的性质可得出53AE DE EC FC ==,再根据CF =6,即可求出DE 的长度.【详解】解:∵DE //BC ,∴53AD AE BD EC ==,∠AED =∠C . 又∵∠ADE =∠EFC ,∴△ADE ∽△EFC , ∴53AE DE EC FC ==, ∵CF =6, ∴563DE =, ∴DE =10.故选C【点睛】 本题考查了相似三角形的判定与性质、平行线分线段成比例定理,根据平行线分线段成比例定理和相似三角形的性质列出比例式是解题的关键.3.A解析:A【分析】连结AM ,AN ,根据圆周角定理可知△ABM 是直角三角形,利用勾股定理即可求出AC 的长;易证△AMN ∽△ACD ,根据相似三角形的性质即可求出MN 的长.【详解】解:连结AM ,AN ,∵AC 是⊙O 的直径,∴∠AMC=90°,∠ANC=90°,∵AB=13,BM=5,∴22AB BM -,∵CM=9,∴AC=15,∵∠MCA=∠MNA ,∠MCA=∠CAD ,∴∠MNA=∠CAD ,∵∠AMN=∠ACN ,∴∠AMN=∠ACN ,∵△NMA ∽△ACD ,∴AM :MN=CD :AC ,∴12:MN=13:15,∴MN=18013. 故选:A .【点睛】本题考查了圆周角定理运用、勾股定理的运用、相似三角形的判定和性质,题目的综合性较强,难度中等,解题的关键是添加辅助线构造相似三角形.4.C解析:C【分析】根据比例线段的概念:如果其中两条线段的乘积等于另外两条线段的乘积,则四条线段叫成比例线段.【详解】解:A 、1.5×4.5≠2.5×3.5,故本选项错误;B 、1×4≠2×3,故本选项错误;C 、3×8=4×6,故本选项正确;D ≠,故本选项错误.故选:C .【点睛】此题考查了比例线段的概念.注意在相乘的时候,最小的和最大的相乘,另外两个相乘,看它们的积是否相等.5.C解析:C【分析】 先由23AB BC =得出25AB AC =,再根据平行线分线段成比例定理即可得到结论. 【详解】 ∵23AB BC =, ∴25AB AC =, ∵a ∥b ∥c ,∴25DE AB DF AC ==, 故选:C .【点睛】 本题考查了平行线分线段成比例定理,掌握三条平行线截两条直线,所得的对应线段成比例是解题的关键.6.B解析:B【分析】过点F 作FG//BC 交AE 于点G ,证明DFG DBE ∆∆可得FG BE =,再由//FG BC 可证得13BE GF AF CE CE AC ===,故可得结论. 【详解】解:过点F 作FG//BC 交AE 于点G∵D 是BF 的中点,∴DB DF =∵//FG BC∴DFG DBE ∆∆∴1FG DF BE DB== ∴FG BE =又∵//FG BC∴F CEC G AF A = ∵CF 2AF =∴3AC AF =∴13BE GF AF CE CE AC === 故选:B .【点睛】此题主要考查了相似三角形的判定与性质以及平行线分线段成比例定理,熟练掌握相关定理与性质是解答此题的关键.7.D【分析】直接利用相似图形的判定方法分别判断得出答案.【详解】解:①两个菱形不一定相似,因为对应角不一定相等;②两个矩形不一定相似,因为对应边不一定成比例;③两个平行四边形不一定相似,因为形状不一定相同;④两个正方形相似,正确.故选:D .【点睛】本题考查了相似多边形的判定,正确掌握判定方法是解题的关键.8.C解析:C【分析】根据DE ∥BC ,EF ∥AB ,判断出DE BF =,在根据DE ∥BC ,EF ∥AB ,便可以找到分的线段成比例。
一、选择题1.如图,已知点D ,E 是AB 的三等分点,DF ,EG 将ABC 分成三部分,且////DF EG BC ,图中三部分的面积分别为1S ,2S ,3S ,则123::S S S 的值为( )A .1:2:3B .1:2:4C .1:3:5D .2:3:4 2.下列判断正确的是( )A .对角线相等的四边形是矩形B .将一个矩形风景画的四周镶上宽度相等的金边后得到的新矩形与原矩形相似C .如果两个相似多边形的面积比为16:9,那么这两个相似多边形的周长比可能是4:3D .若点C 是AB 的黄金分割点,且AB =6cm ,则BC 的长约为3.7cm3.如图,直线////a b c ,直线m 分别交直线a ,b ,c 于点A ,B ,C ,直线n 分别交直线a ,b ,c 于点D ,E ,F ,若23=AB BC ,则DE DF 的值为( )A .13B .23C .25D .354.如图,在菱形ABCD 中,660AB DAB =∠=︒,,A ,E 分别交BC 、BD 于点E 、F ,2CE =,连接CF ,以下结论:①ABF CBF ≌;②点E 到AB 的距离是23③ADF 与EBF △的面积比为3∶2:④ABF 的面积为为35,其中正确的是( )A .①④B .①③④C .①②④D .①②③④ 5.如图,点D 在ABC 的边AC 上,添加下列哪个条件后,仍无法判定ABC ADB ∽△△( )A .C ABD ∠=∠B .CBA ADB ∠=∠C .AB AD AC AB = D .AB BC AC BD = 6.下列图形中一定是相似形的是( )A .两个等腰三角形B .两个菱形C .两个矩形D .两个正方形 7.如图,在平面直角坐标系中,ABC 的顶点坐标分别是()1,2A ,()1,1B ,()3,1C ,以原点为位似中心,在原点的同侧画DEF ,使DEF 与ABC 成位似图形,且相似比为2:1,则线段DF 的长度为( )A .5B .2C .4D .58.如图,在直角坐标系中,矩形OABC 的顶点O 在原点,边OA 在x 轴上,OC 在y 轴上,如果OA B ''△与OAB 关于点O 位似,且OA B ''△的面积等于OAB 面积的14,则点B '的坐标为( )A .3,12⎛⎫ ⎪⎝⎭B .3,12⎛⎫ ⎪⎝⎭或3,12⎛⎫-- ⎪⎝⎭C .()3,2D .()3,2或()3,2--9.有下列四种说法:其中说法正确的有( )①两个菱形相似;②两个矩形相似;③两个平行四边形相似;④两个正方形相似. A .4个 B .3个 C .2个 D .1个10.下列条件中,不能判断△ABC 与△DEF 相似的是( )A .∠A =∠D ,∠B =∠FB .BC AC EF DF =且∠B =∠D C .AB BC AC DE EF DF== D .AB AC DE DF =且∠A =∠D 11.如图,直线l 1//l 2//l 3,分别交直线m 、n 于点A 、B 、C 、D 、E 、F .若AB ∶BC =5∶3,DE =15,则EF 的长为( )A .6B .9C .10D .2512.如图,已知点E 是正方形ABCD 的边AB 边上的黄金分割点,且,AE EB >若1S 表示AE 为边长的正方形面积,2S 表示以BC 为长,BE 为宽的矩形面积,3S 表示正方形ABCD 除去1S 和2S 剩余的面积,则32:S S 的值为( )A .512-B .512+C .352 D .352+ 二、填空题13.如图,在矩形ABCD 中,6,AD AE BD =⊥,垂足为,3E ED BE =,动点,P Q 分别在,BD AD 上,则AE 的值为__________,AP PQ +的最小值为_____________.14.如图,在Rt ABC 中,90ACB ︒∠=,5AC =,12BC =,D 、E 分别是边BC 、AC 上的两个动点,且8DE =,P 是DE 的中点,连接PA ,PB ,则13PA PB +的最小值为________.15.如图,D 是AC 上一点,//BE AC ,BE AD =,AE 分别交BD 、BC 于点F 、G ,12∠=∠.若8DF =,4FG =,则GE =________.16.如图,在四边形ABCD 中,AC 平分∠BAD ,AD=AC ,以A 为圆心,AB 长为半径画弧,交AC 于点E ,连接DE 、BE ,并延长BE 交CD 于点F ,下列结论:①△BAC ≌ △EAD ,②BC+CF=DE+EF ,③∠ABE+∠ADE=∠BCD ,其中正确的有____(填序号)17.如图,在ABC 纸片中,13AB AC ==,24BC =,D 是BC 边上任意一点,将ABD △沿AD 折叠得到AED ,AE 交BC 于点F ,当DEF 是直角三角形时,则BD 的长为________.18.目前,某市正积极推进“五城联创”,其中扩充改造绿地是推进工作计划之一.现有一块直角三角形绿地,量得两直角边长分别为a=3米和b=4米,现要将此绿地扩充改造为等腰三角形,且扩充部分为含以b 为直角边的直角三角形,则扩充后等腰三角形的周长为____________米19.如图,正方形ABCD 中,BE =EF =FC ,CG =2GD ,BG 分别交AE ,AF 于M ,N .下列结论:①AF ⊥BG ;②BN 43=NF ;③38BM MG =;④S 四边形CGNF 12=S 四边形ANGD .其中正确的结论的序号是___________.20.如图,线段CD 两个端点的坐标分别为C (1,2)、D (2,0),以原点为位似中心,将线段CD 放大得到线段AB ,若点B 坐标为(5,0),则点A 的坐标为__________.三、解答题21.如图,△ABC 在网格中(每个小方格的边长均为1).(1)请在网格上建立平面直角坐标系,使A 点坐标为(2,3),C 点坐标为(6,2),并求出B 点坐标;(2)在(1)的基础上,以原点O 为位似中心,相似比为2,在第一象限内将△ABC 放大,画出放大后的图形△A B C ''';(3)△A B C '''的面积S = .22.如图在ABCD 中,点E 是BA 延长线上的点,过E 、A 、C 三点作O 分别交BC于点F ,交AD 于点G ,直径EC EB =.(1)证明:EC 平分BCG ∠;(2)若6GC =,3HC EH =,求AG 的长度.23.下图是由边长为1的小正方形组成的5×4网格,A 、B 、C 、D 、E 、F 、P 、Q 均为网格格点,请用无刻度直尺作图,保留作图痕迹,不写画法.(1)在线段AB 上找到一点M ,使△AQM ≌△BPM.(2)在线段CD 上找点N ,使△ECN ∽△FDN.24.如图,在正方形网格中建立平面直角坐标系,已知点()0,0O ,()1,3A -,()4,0B ,连接OA ,OB ,AB .(1)若将OAB 向上平移4个单位长度,再向右平移5个单位长度,得到111O A B △,点O ,A ,B 的对应点分别为1O ,1A ,1B ,画出111O A B △并写出顶点1A 的坐标; (2)画出22OA B △,使22OA B △与OAB 关于原点对称,点A ,B 的对应点分别为2A ,2B ;(3)以点O 为位似中心,在给定的网格中将OAB 放大2倍得到33OA B ,点A ,B 的对应点分别为3A ,3B ,画出33OA B 并直接写出33A B 的长度.25.如图,△ABC 是⊙O 的内接三角形,AD 是△ABC 的高,AE 是⊙O 的直径.求证:△ABE ~△ADC .26.将ABC 绕点A 逆时针方向旋转θ,并使各边长变为原来的n 倍,得到AB C ''△,我们将这种变换记为[],n θ.(1)问题发现如图①,对ABC 作变换603⎡⎤︒⎣⎦得AB C ''△,则:AB C ABC S S ''=△△______;直线BC 与直线B C ''所夹的锐角度数为______.(2)拓展探究如图②,ABC 中,35BAC ∠=︒且:2AB AC =,连结BB ',CC '.对ABC 作变换603⎡︒⎣得AB C ''△,求:ABB ACC S S ''△△的值及直线BB '与直线CC '相交所成的较小角的度数,并就图②的情形说明理由.(3)问题解决如图③,ABC 中,30BAC ∠=︒,90ACB ∠=︒,对ABC 作变换[],n θ得AB C ''△,使点B 、C 、C '在同一直线上,且四边形ABB C ''为矩形,请直接写出n 的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据题意易得ADF AEG ABC ,则有13AD AB =,23AE AB =.进而可求得119ABC S S =,213ABC S S =,359ABC S S =,最后即可求出结果.【详解】∵DF ∥EG ∥BC ,∴ADF AEG ABC ,∵D 、E 是AB 的三等分点, ∴13AD AB =,23AE AB =,∴119ABC S S =,49AEG ABC S S =.∵21411993AEG ABC ABC ABC S S S S S S =-=-=,34599ABC AEG ABC ABC ABC S S S S S S =-=-=. ∴123115::::1:3:5939ABC ABC ABC S S S S S S ==.故选C .【点睛】 本题主要考查相似三角形的判定与性质,掌握面积比等于相似比的平方是解题的关键. 2.C解析:C【分析】A .利用矩形的判定定理对角线相等的平行四边形可判断;B .一个矩形风景画的四周镶上宽度相等的金边后得到的新矩形与原矩形相似应满足长与宽相等时可以,而矩形的长与宽一般不等;C.利用相似图形的性质即可;D .利用黄金分割法可求出BC 有两个值即可.【详解】解:A 、对角线相等的平行四边形是矩形,故此选项错误;B 、将一个矩形风景画的四周镶上宽度相等的金边后得到的新矩形与原矩形不一定相似,故此选项错误;C 、如果两个相似多边形的面积比为16:9,则两个相似多边形的相似比为4:3,那么这两个相似多边形的周长比等于相似比是4:3,故此选项正确;D 、若点C 是AB 的黄金分割点,且AB =6cm ,则BC 的长约为3.7cm 或2.3cm ,故此选项错误;故选择:C .【点睛】 本题综合性考查矩形,矩形相似,相似多边形的性质,黄金分割问题,掌握矩形的判定方法,矩形相似的判定方法,相似多边形的性质,会求黄金分割中线段的长是解题关键. 3.C解析:C【分析】先由23AB BC =得出25AB AC =,再根据平行线分线段成比例定理即可得到结论. 【详解】∵23AB BC =, ∴25AB AC =, ∵a ∥b ∥c ,∴25DE AB DF AC ==, 故选:C .【点睛】 本题考查了平行线分线段成比例定理,掌握三条平行线截两条直线,所得的对应线段成比例是解题的关键.4.C解析:C【分析】根据菱形的性质得出△ABF 和△CBF 全等的条件,从而可判断①成立;过点E 作EG ⊥AB ,过点F 作MH ⊥AB ,求得EG 的长度,则可判断②是否成立;由AD ∥BE ,可判定△ADF ∽△EBF ,由相似三角形的性质可得△ADF 与△EBF 的面积比,从而可判断③是否成立;利用相似三角形的性质和等边三角形的性质,可求得△ABF 在AB 边上的高,进而求得△ABF 的面积,则可判断④是否成立.【详解】解:∵四边形ABCD 是菱形,AB=6,∴BC=AB=6,∵∠DAB=60°,∴AB=AD=DB=6,∠ABD=∠DBC=60°,在△ABF 与△CBF 中,AB BC ABF FBC BF BF =⎧⎪∠=∠⎨⎪=⎩,∴△ABF ≌△CBF (SAS ),故①成立;如图,过点E 作EG ⊥AB 延长线于点G ;过点F 作MH ⊥AB 交AB ,CD 于点H ,M , 则由菱形的对边平行可得MH ⊥CD ,∵CE=2,BC=6,∠ABC=120°,∴BE=6-2=4,∠EBG=60°∵EG ⊥AB ,∴= 故②成立;∵AD ∥BE , ∴△ADF ∽△EBF , ∴2269()(),44ADF EBF S AD S BE ∆∆=== 故③不成立;∵△ADF ∽△EBF ,32DF AD FB EB ∴== ∵DB=6, ∴BF= 125∴FH= 125, ∴S △ABF =12AB•FH=162⨯=, 故④成立.综上所述,一定成立的有①②④.故选:C .【点睛】本题考查了菱形的性质、全等三角形的判定、相似三角形的判定与性质及三角形的面积计算,熟练掌握相关性质及定理是解题的关键.5.D解析:D【分析】根据三角形相似的判定方法一一判断即可.【详解】解:A 、根据两角对应相等两三角形相似,可以判定△ABC ∽△ADB ;B 、根据两角对应相等两三角形相似,可以判定△ABC ∽△ADB ;C 、根据两边成比例夹角相等两三角形相似即可判定△ABC ∽△ADB ;D 、无法判断三角形相似.故选:D .【点睛】本题考查相似三角形的判定,解题的关键是熟练掌握基本知识,属于中考常考题型. 6.D解析:D【分析】根据对应角相等,对应边成比例的两个图形,叫做相似图形进行判断即可.【详解】A 、两个等腰三角形,三个角不一定相等,因此不一定相似,故本选项错误,不符合题意.B 、两个菱形对应角不一定相等,故本选项不符合题意;C 、两个矩形的边不一定成比例,故不一定相似,故本选项错误,不符合题意.D 、两个正方形四个角相等,各边一定对应成比例,所以一定相似,故本选项正确,符合题意;故选:D .【点睛】本题考查了相似图形的判定,掌握对应角相等,对应边成比例的两个图形,叫做相似图形是解题的关键.7.A解析:A【分析】根据位似图形的性质可得DF =2AC ,然后根据两点间的距离公式求出AC 即可解决问题.【详解】解:∵DEF 与ABC 是位似图形,且相似比为2:1,∴DF =2AC ,∵AC ==∴DF =故选:A .【点睛】本题考查了位似图形的性质和两点间的距离,熟练掌握位似图形的性质是解题的关键. 8.D解析:D【分析】 由OA B ''△与OAB 关于点O 位似,且OA B ''△的面积等于OAB 面积的14,利用相似三角形的面积比等于相似比的平方,即可求得OA B ''△与OAB 的位似比为1:2,又由点B 的坐标为(6,4),即可求得答案.【详解】解:∵OA B ''△与OAB 关于点O 位似, ∴OA B ''△∽OAB ,∵OA B ''△的面积等于OAB 面积的14, ∴位似比为1:2,∵点B 的坐标为(6,4), ∴点B′的坐标是:(3,2)或(-3,-2).故选D .【点睛】此题考查了位似图形的性质.此题难度不大,注意位似图形是特殊的相似图形,注意掌握相似三角形的面积比等于相似比的平方定理的应用,注意数形结合思想的应用. 9.D解析:D【分析】直接利用相似图形的判定方法分别判断得出答案.【详解】解:①两个菱形不一定相似,因为对应角不一定相等;②两个矩形不一定相似,因为对应边不一定成比例;③两个平行四边形不一定相似,因为形状不一定相同;④两个正方形相似,正确.故选:D .【点睛】本题考查了相似多边形的判定,正确掌握判定方法是解题的关键.10.B解析:B【分析】直接根据三角形相似的判定方法分别判断得出答案.【详解】解:A 、A D ∠=∠,B F ∠=∠,根据有两组角对应相等的两个三角形相似,可以得出ABC DFE ∽△△,故此选项不合题意;B 、BC AC EF DF=,且B D ∠=∠,不是两边成比例且夹角相等,故此选项符合题意; C 、AB BC AC DE EF DF==,根据三组对应边的比相等的两个三角形相似,可以得出ABC DEF ∽△△,故此选项不合题意;D 、AB AC DE DF=且A D ∠=∠,根据两组对应边的比相等且夹角对应相等的两个三角形相似,可以得出ABC DEF ∽△△,故此选项不合题意;故选:B .【点睛】此题主要考查了相似三角形的判定,关键是掌握三角形相似的判定方法:(1)平行线法:平行于三角形的一边的直线与其他两边相交,所构成的三角形与原三角形相似;(2)三边法:三组对应边的比相等的两个三角形相似;(3)两边及其夹角法:两组对应边的比相等且夹角对应相等的两个三角形相似;(4)两角法:有两组角对应相等的两个三角形相似. 11.B解析:B【分析】根据平行线分线段成比例定理列出比例式,代入计算得到答案.【详解】解:∵l 1∥l 2∥l 3,DE=15, ∴53DE AB EF BC ==,即1553EF =, 解得,EF=9,故选:B .【点睛】 本题考查了平行线分线段成比例定理,灵活运用定理、找准对应关系是解题的关键. 12.A解析:A【分析】设正方形ABCD 的边长为a ,关键黄金分割点的性质得到51AE AB 和12BE AE =,用a 表示出1S 、2S 和3S 的面积,再求比例.【详解】解:设正方形ABCD 的边长为a ,∵点E 是AB 上的黄金分割点,∴512AE AB ,则12AE a =,∴BE AE =,则2BE a ==⎝⎭,∵2221S AE ⎫===⎪⎪⎝⎭,2232S BE BC a =⋅=,∴)222232S a a =-=,∴)2232:2S S a a ==. 故选:A .【点睛】本题考查黄金分割点,解题的关键是掌握黄金分割点的性质.二、填空题13.3【分析】在Rt △ABE 中利用三角形相似可求得AEDE 的长设A 点关于BD 的对称点A′连接A′D 可证明△ADA′为等边三角形当PQ ⊥AD 时则PQ 最小所以当A′Q ⊥AD 时AP +PQ 最小从而可求得AP +P解析:3【分析】在Rt △ABE 中,利用三角形相似可求得AE 、DE 的长,设A 点关于BD 的对称点A′,连接A′D ,可证明△ADA′为等边三角形,当PQ ⊥AD 时,则PQ 最小,所以当A′Q ⊥AD 时AP +PQ 最小,从而可求得AP +PQ 的最小值等于DE 的长.【详解】设BE x =,则3DE x =,∵四边形ABCD 为矩形,且AE BD ⊥, 90BAE ABE ︒∴∠+∠=,90BAE DAE ︒∠+∠=,ABE DAE ∴∠=∠,又AEB DEA ∠=∠,ABE DAE ∴∽,2AE BE DE ∴=⋅,即223AE x =,AE ∴=,在Rt ADE △中,由勾股定理可得222AD AE DE =+,即2226)(3)x =+,解得:x =3,AE DE ∴==,如图,设A 点关于BD 的对称点为A ',连接,A D PA '', 则26,6A A AE AD AD A D ''=====,AA D '∴是等边三角形,PA PA '=,∴当A '、P Q 、三点在一条线上时,A P PQ '+最小,由垂线段最短可知当PQ AD ⊥时,A P PQ '+最小,AP PQ A P PQ A Q DE ''∴+=+===故答案是:3;【点睛】本题主要考查轴对称的应用,利用最小值的常规解法确定出A 的对称点,从而确定出AP +PQ 的最小值的位置是解题的关键,利用条件证明△A′DA 是等边三角形,借助几何图形的性质可以减少复杂的计算.14.【分析】在BC 上截取CF =连接PFCPAF 通过证明△ACP ∽△PCF 可得则PA+PB =PA+PF 当点A 点P 点F 共线时PA+PB 的最小值为AF 由勾股定理可求解【详解】解:如图:在BC 上截取CF =连接P 解析:241 【分析】 在BC 上截取CF =43,连接PF ,CP ,AF .通过证明△ACP ∽△PCF ,可得31=PF BP ,则PA 13+PB =PA+PF ,当点A 点P ,点F 共线时.PA+13PB 的最小值为AF ,由勾股定理可求解.【详解】 解:如图:在BC 上截取CF =43,连接PF ,CP ,AF .∵DE =8,P 是DE 的中点,∴CP =12DE =4 ∵5AC =,12BC =,∵41132==CP BC ,41334==CF CP ; ∴=CP CF BC CP,且∠FCP =∠BCP ∴△PCF ∽△BCP , ∴13==PF CF BP CP , ∴PF =13BP , ∵PA+13PB =PA+PF , 当点A 、点P 、点F 共线时,PA+13PB 的最小值为AF ∴AF.. 【点睛】本题考查了相似三角形的性质和判定,勾股定理,添加恰当的辅助线是解答本题的关键. 15.12【分析】利用AAS 判定△FEB ≌△FAD 得BF=DF 根据有两组角对应相等的两个三角形相似可得到△BFG ∽△EFB 根据相似三角形的对应边成比例即可得到BF2=FG•EF 由条件可求出EF 长则GE 长可解析:12【分析】利用AAS 判定△FEB ≌△FAD ,得BF=DF ,根据有两组角对应相等的两个三角形相似,可得到△BFG ∽△EFB ,根据相似三角形的对应边成比例即可得到BF 2=FG•EF ,由条件可求出EF 长,则GE 长可求出.【详解】解:∵AD//BE ,∴∠1=∠E .在△FEB 和△FAD 中1E EFB AFD BE AE ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△FEB ≌△FAD ;∴BF=DF ,∵∠1=∠E ,∠1=∠2,∴∠2=∠E .又∵∠GFB=∠BFE ,∴△BFG ∽△EFB , ∴BF FG EF BF=, ∴BF 2=FG•EF ,∴DF 2=FG•EF ,∵DF=8,FG=4,∴EF=16,∴GE=EF-FG=16-4=12.故答案为:12.【点睛】本题考查了三角形全等、相似的性质和判定,熟练掌握全等三角形的判定及相似三角形的判定是关键.16.①②③【分析】先由已知条件利用SAS 证明△BAC ≌△EAD 得到①;由全等得到BC=DE 然后再通过证明△ABE ∽△ACD 得到∠ABE=∠ACD=∠AEB 进而再得到CF=EF 得到BC+CF=DE+EF 即解析:①②③【分析】先由已知条件利用SAS 证明△BAC ≌ △EAD ,得到①;由全等得到BC=DE ,然后再通过证明△ABE ∽△ACD ,得到∠ABE=∠ACD=∠AEB ,进而再得到CF=EF ,得到BC+CF=DE+EF ,即②正确;由∠ABE=∠ACD ,∠BCA=∠EDA ,可得到∠ABE+∠ADE=∠BCD ,即③正确.【详解】解:由题意可知,∠BAC=∠CAD ,AB=AE ,在△BAC 和△EAD 中,AB AE BAC CAD AC AD =⎧⎪=⎨⎪=⎩∠∠∴△BAC ≌ △EAD ,故①正确;∵△BAC ≌ △EAD ,∴BC=ED ,∠BCA=∠EDA ,由于AB=AE ,AC=AD ,∠BAC=∠CAD , ∴AB AE AC AD=, ∴△ABE ∽△ACD ,且△ABE 和△ACD 都为等腰三角形,∴∠ABE=∠ACD=∠AEB ,∵∠AEB=∠CEF ,∴∠ECF=∠CEF ,∴CF=EF ,∴BC+CF=DE+EF ,故②正确;由以上过程知道∠ABE=∠ACD ,∠BCA=∠EDA ,∴∠ABE+∠ADE=∠ACD+∠BCA=∠BCD ,故③正确.故答案为:①②③.【点睛】本题考查了全等三角形的判定和性质,相似三角形的判定和性质,正确找到全等三角形是解题的关键.17.或7【分析】是直角三角形时有两种情况:∠EDF=90°或∠EFD=90°通过找相似三角形然后利用对应边成比例即可得到结果【详解】解:如图当∠EDF=90°时过A 作AG ⊥BC 于G 则DE ∥AG ∵AG ⊥B 解析:263或7. 【分析】 DEF 是直角三角形时,有两种情况:∠EDF=90°或∠EFD=90°,通过找相似三角形,然后利用对应边成比例即可得到结果. 【详解】解:如图,当∠EDF=90°时,过A 作AG ⊥BC 于G ,则DE ∥AG ,∵13AB AC ==,24BC =,AG ⊥BC ,∴1122BG BC ==, 在直角三角形ABG 中,2213125AG -=,由折叠可知∠B=∠E ,BD=ED ,AE=AB=13,∵DE ∥AG ,∴∠FAG=∠E=∠B ,∴Rt △AFG ∽Rt △BAG ,∴AB BG AF AG =,即13125AF =, ∴6512AF = ∴6591131212EF =-=,由∠B=∠E ,∠EDF=∠ABG=90°,可知△ABG ∽△FED , ∴AB BG EF DE =,即13129112DE =, ∴7DE =,即7BD =;如图,当∠EFD=90°时,由折叠可知∠B=∠E ,BD=ED ,AE=AB=13,由于∠EFD=90°,因此AF ⊥BC ,在直角三角形ABF 中,2213125AF =-=,∴1358EF =-=,∵∠B=∠E ,∠AFB=∠EFD=90°, ∴△ABF ∽△DEF , ∴AB BF DE EF =,即13128DE =, ∴263DE =,即263BD =; 综上,263BD =或7BD =, 故答案为:263或7. 【点睛】 本题考查了相似三角形的性质和判定以及折叠问题,找到相似三角形是解题的关键,要注意分类讨论. 18.16或10+2或【分析】分三种情形讨论即可①AB=BE1②AB=AE3③E2A=E2B 分别计算即可【详解】解:如图在Rt △ABC 中∵∠ACB=BC=3AC=4∴①当BA=BE1=5时CE1=2∴∴△解析:16或5或403 【分析】分三种情形讨论即可,①AB=BE 1,②AB=AE 3,③E 2A=E 2B ,分别计算即可.【详解】解:如图在Rt △ABC 中,∵∠ACB=90,BC=3,AC=4 ∴225AB BC AC =+=①当BA=BE 1=5时,CE 1=2, ∴221125AE AC CE =+=∴△ABE 1周长为(5②当AB=AE 3=5时,CE 3=BC=3,BE 3=6,∴△ABE 3周长为16米.③当E 2A=E 2B 时,作E 2H ⊥AB ,则BH=AH=2.5,∵∠B=∠B ,∠ACB=∠BHE 2=90∘,∴△BAC ∽△BE 2H , ∴2BE BH BC AB= ∴BE 2=256, ∴△ABE 2周长为25402563⨯+=米. 综上所述扩充后等腰三角形的周长为16或5403米 故答案为:16或5403【点睛】 本题考查等腰三角形的定义、勾股定理、相似三角形的性质与判定、三角形周长等知识,正确理解题意是解题的关键,运用了分类讨论的数学思想,注意漏解.19.①③【分析】①易证△ABF ≌△BCG 即可解题;②易证△BNF ∽△BCG 即可求得的值即可解题;③作EH ⊥AF 令AB=3即可求得MNBM 的值即可解题;④连接AGFG 根据③中结论即可求得S 四边形CGNF 和解析:①③【分析】①易证△ABF ≌△BCG ,即可解题;②易证△BNF ∽△BCG ,即可求得BN NF 的值,即可解题; ③作EH ⊥AF ,令AB=3,即可求得MN ,BM 的值,即可解题;④连接AG ,FG ,根据③中结论即可求得S 四边形CGNF 和S 四边形ANGD ,即可解题.【详解】解:①∵四边形ABCD 为正方形,∴AB=BC=CD ,∵BE=EF=FC ,CG=2GD ,∴BF=CG ,∵在△ABF 和△BCG 中,90AB BC ABF BCG BF CG ︒=⎧⎪∠=∠=⎨⎪=⎩,∴△ABF ≌△BCG ,∴∠BAF=∠CBG ,∵∠BAF+∠BFA=90°,∴∠CBG+∠BFA=90°,即AF ⊥BG ;①正确;②∵在△BNF 和△BCG 中,90CBG NBF BCG BNF ︒∠=∠⎧⎨∠=∠=⎩, ∴△BNF ∽△BCG , 32BN BC NF CG ∴==, BN 32NF =,②错误; ③作EH ⊥AF ,令AB=3,则BF=2,BE=EF=CF=1,2213AF AB BF =+=1122ABF AF BN AB BF S ∆=⋅=⋅,6132413,3N 1B 133NF BN === 3AN 91AF NF =∴=-, ∵E 是BF 中点,∴EH 是△BFN 的中位线,313213,NH EH ==∴,BN ∥EH , 1113AH AN MN AH EH∴==,,解得:MN=2713, ∴BM=BN-MN=313,MG=BG-BM=813, 38BM MG ∴=,③正确; ④连接AG ,FG ,根据③中结论,则713 11142712213S 13CFG GNF CGNF S S CG CF NF NG ∆∆=+=⋅+⋅=+=四边形, 11633512226213ANG ADG ANGD S S S AN GN AD DG ∆∆=+=⋅+⋅=+=四边形, S 12CGNF S ≠四边形,④错误; 故答案为 ①③.【点睛】本题考查了正方形的性质,全等三角形的判定和性质,考查了相似三角形的判定和对应边成比例的性质,本题中令AB=3求得AN ,BN ,NG ,NF 的值是解题的关键.20.(255)【分析】利用位似图形的性质结合对应点坐标与位似比的关系得出A 点坐标【详解】解:∵以原点O 为位似中心在第一象限内将线段CD 放大得到线段AB ∴B 点与D 点是对应点则位似比为:5:2∵C (12)∴解析:(2.5,5).【分析】利用位似图形的性质结合对应点坐标与位似比的关系得出A 点坐标.【详解】解:∵以原点O为位似中心,在第一象限内,将线段CD放大得到线段AB,∴B点与D点是对应点,则位似比为:5:2,∵C(1,2),∴点A的坐标为:(2.5,5)故答案为(2.5,5).【点睛】本题考查位似图形的应用,熟练掌握位似图形的相似比和两点间的距离公式是解题关键.三、解答题21.(1)()21B,;(2)作图见解析;(3)16;【分析】(1)直接利用已知点坐标得出各点位置进而得出答案;(2)直接利用位似图形的性质得出对应点位置进而得出答案;(3)利用三角形面积求法得出答案.【详解】解:(1)如图所示:B点坐标为(2,1);(2)△A'B'C'即为所求;(3)△A'B'C'的面积S=12×4×8=16.故答案为:16.【点睛】此题主要考查了位似变换,正确得出对应点位置是解题关键.22.(1)见详解;(2)9【分析】(1)连接EF,EG,先推出BF=CF=12BC,再证明HF=CF=GC,即证明四边形CFHG为菱形,即可证明结论;(2)根据平行线分线段成比例定理可得1==3EH AH HC HD ,由(1)知Rt △EFC ≌Rt △EGC ,求出AH ,根据GH=GC=6,即可得出答案.【详解】 (1)连接EF ,EG ,∵CE 是O 的直径, ∴∠EFC=∠EGC=90°,又∵EC=EB ,EF ⊥BC , ∴F 为BC 中点,即BF=CF=12BC , 连接BH ,FH ,AC ,则∠CAE=90°,即AC ⊥EB ,由对称可知:BH ⊥EC ,∴在Rt △BHC 中,F 为BC 中点,∴HF=12BC , ∴HF=CF=GC ,∴四边形CFHG 为菱形,∴CE 为∠BCG 的平分线;(2)∵AB ∥CD ,∴1==3EH AH HC HD , 由(1)知Rt △EFC ≌Rt △EGC ,∴FC=GC=6,∴BC=AD=2FC=12,∴AH=14AD=3, 又GH=GC=6, ∴AG=AH+GH=3+6=9.【点睛】本题考查了菱形的判定,平行线分线段成比例定理,圆的性质,掌握这些知识灵活运用是解题关键.23.(1)见解析(2)见解析【分析】(1)连接PQ,AB 交点即为所求;(2)找到F 点关于CD 的对称点F’,连接CD,EF’,交点即为所求.【详解】(1)如图,M 点为所求;(2)如图,N 点为所求.【点睛】此题主要考查网格中作图,解题的关键是熟知熟知网格的特点、对称性、全等三角形与相似三角形的判定方法.24.(1)作图见解析,()16,1A ;(2)作图见解析;(3)作图见解析,33A B 的长度为62【分析】(1)先根据平移作图画出点111,,O A B ,再顺次连接即可得111O A B △,然后根据点坐标的平移变换规律即可得点1A 的坐标;(2)先根据关于原点对称的点坐标变换规律得出点22,A B 的坐标,再画出点22,A B ,然后顺次连接点22,,O A B 即可得;(3)先根据位似的性质得出33,A B 的坐标,再画出点33,A B ,然后顺次连接点33,,O A B 即可得33OA B ,最后利用两点之间的距离公式即可得33A B 的长度.【详解】(1)先画出点111,,O A B ,再顺次连接即可得111O A B △,如图所示:由点坐标的平移变换规律得:()115,34A +-+,即()16,1A ;(2)关于原点对称的点坐标变换规律:横、纵坐标均互为相反数,()()1,3,4,0A B -,()()221,3,4,0A B ∴--,先画出点22,A B ,再顺次连接点22,,O A B 即可得22OA B △,如图所示:(3)()()1,3,4,0A B -,()()3312,32,42,02A B ⨯-⨯⨯⨯∴,即()()332,6,8,0A B -,2332(82)(06)62A B ∴=-++=先画出点33,A B ,再顺次连接点33,,O A B 即可得33OA B ,如图所示:【点睛】本题考查了平移作图、关于原点对称的点坐标变换规律、位似画图等知识点,熟练掌握各画图方法和点坐标的变换规律是解题关键.25.见解析.【分析】根据∠AEB =∠ACB (同弧所对的圆周角相等)和AD 是△ABC 的高,AE 是⊙O 的直径,利用一个三角形的两个角与另一个三角形的两个角对应相等,即可证明.【详解】证明:∵AB=AB∴∠AEB =∠ACB (同弧所对的圆周角相等),∵AE 为直径,∴∠ABE =90°(直径所对的圆周角是直角),又∵AD ⊥BC ,即∠ADC =90°,∴∠ABE =∠ADC ,∴△ABE ∽△ADC .【点睛】此题主要考查学生对相似三角形的判定和圆周角定理的理解和掌握,解题的关键是利用同弧上的圆周角相等,先求证∠AEB =∠ACB ,然后即可得出结论.26.(1)3:1,60;(2)35︒,理由见解析;(3)2n =.【分析】(1)利用新定义得出[],n θ的意义,利用旋转的性质得到AB C ''△∽ABC ,且相似比3,60BAB '∠=︒,进而求出面积比,通过外角的性质得到DEB '∠即可求出直线BC 与直线B C ''所夹的锐角度数;(2)利用新定义得出[],n θ的意义,得到::1:3AB AB AC AC ''==,35BAC B AC ''∠=∠=︒,进而可以得到BAB CAC ''∠=∠,下证BAB '△∽CAC '△,通过题中给的相似比即可求出面积之比,延长CC '交BB '于D ,通过DEB AEC ''∠=∠,BB A CC A ''∠=∠,可以证得DEB '△∽AEC ',从而得到C DB ''∠的度数,即可得直线BB '与直线CC '相交所成的较小角的度数;(3)由四边形ABB C ''为矩形,得到90BAC '∠=︒,进而求出CAC '∠的度数,利用含30角的直角三角形的性质即可得到AC AC'的值,进而求出n 的值. 【详解】解:(1)由题意可知:对ABC 作变换60,3⎡⎤︒⎣⎦得AB C ''△,∴AB C ''△∽ABC ,且相似比为3:1,60BAB '∠=︒,∴B B '∠=∠,∴()2:3:13:1AB C ABC S S ''==, ADE B BAB '∠=∠+∠,ADE B DEB ''∠=∠+∠,∴60DEB BAB ''∠=∠=︒,即直线BC 与直线B C ''所夹的锐角度数为:60︒.故答案为:3:1,60.(2)根据题意得:::1:3AB AB AC AC ''==,35BAC B AC ''∠=∠=︒, ∴BAC B AC B AC B AC ''''∠+∠=∠+∠,∴BAB CAC ''∠=∠,∴BAB '△∽CAC '△,∴相似比AB k AC=,BB A CC A ''∠=∠, :2AB AC =, ∴()2:22ABB ACC S S ''==,延长CC '交BB '于D ,如图,设CC '交AB '于E .DEB AEC ''∠=∠,BB A CC A ''∠=∠,∴DEB '△∽AEC ',∴35C DB B AC ''''∠=∠=︒,∴:2ABB ACC S S ''=△△,直线BB '与直线CC '相交所成的较小角的度数为35︒. (3)四边形ABB C ''为矩形,∴90BAC '∠=︒,30BAC ∠=︒,∴60CAC BAC BAC ''∠=∠-∠=︒,90ACB ∠=︒,∴90ACC '∠=︒,在Rt ACC '△中,12AC AC '=, ∴21AC AC '=, ∴2AC n AC'==, 即n 的值为2.【点睛】本题考查了图形的旋转,相似三角形的判定和性质,新定义运算,三角形的外角性质以及含30角的直角三角形的性质,解题的关键是根据题意得出[],n θ的意义.。
一、选择题1.如图,已知点D ,E 是AB 的三等分点,DF ,EG 将ABC 分成三部分,且////DF EG BC ,图中三部分的面积分别为1S ,2S ,3S ,则123::S S S 的值为( )A .1:2:3B .1:2:4C .1:3:5D .2:3:4 2.下列各组线段的长度成比例的是( )A .2cm ,4cm ,6cm ,8cmB .10cm ,20cm ,30cm ,40cmC .2.2cm ,3.3cm ,5cm ,8cmD .20cm ,30cm ,60cm ,40cm 3.在ABC 中,D ,E 分别为,BC AC 上的点,且2AC EC =,连结,AD BE ,交于点F ,设:,:x CD BD y AF FD ==,则( )A .1y x =+B .1x y x +=C .413y x =+D .21x y x -=- 4.如图,在△ABC 中,DE ∥BC ,∠ADE =∠EFC ,AD:BD=5:3,CF =6,则DE 的长为( )A .6B .8C .10D .125.如图,在平面直角坐标系中,矩形ABCO 的边CO 、OA 分别在x 轴、y 轴上,点E 在边BC 上,将该矩形沿AE 折叠,点B 恰好落在边OC 上的F 处.若()0,8A ,4CF =,则点E 的坐标是( )A .()8,4-B .()10,3-C .()10,4-D .()8,3-6.如图,ABC 中,DE ∥BC ,AD:BD=1:3,则OE :OB=( )A .1:3B .1:4C .1:5D .1:67.如图,在ABC ∆中,,D E 分别是边,BC AC 上的点,且11,BD BC AE AC n m ==,连接,AD BE 交于点F ,则AF AD的值为( )A .1m n -B .1m m n +-C .1n m n +-D .1n m - 8.已知两个相似三角形一组对应高分别是15和5,面积之差为80,则较大三角形的面积为( )A .90B .180C .270D .36009.大自然巧夺天工,一片小心树叶也蕴含着“黄金分割”.如图,P 为AB 的黄金分割点(AP >PB ),如果AP 的长度为8cm ,那么AB 的长度是( )A .5B .12-5C .12+45D .45 10.如图,△ABC 、△FGH 中,D 、E 两点分别在AB 、AC 上,F 点在DE 上,G 、H 两点在BC 上,且DE ∥BC ,FG ∥AB ,FH ∥AC ,若BG :GH :HC=4:6:5,则△ADE 与△FGH 的面积比为何?( )A .2:1B .3:2C .5:2D .9:4第II 卷(非选择题) 请点击修改第II 卷的文字说明参考答案11.如图,正方形ABCD 中,ABC 绕点A 逆时针旋转到AB C ''△,AB '、AC '分别交对角线BD 于点E 、F ,若4AE =,则EF ED ⋅的值为( )A .4B .6C .8D .16 12.如图,每个小正方形边长均为1,则下列图中的三角形(阴影部分)与图中△ABC 相似的是( )A .B .C .D .二、填空题13.如果x :y =3:2,那么x y x-的值是__. 14.如图,D 是AC 上一点,//BE AC ,BE AD =,AE 分别交BD 、BC 于点F 、G ,12∠=∠.若8DF =,4FG =,则GE =________.15.如图,矩形ABCD 中,2AB =,E 为CD 的中点,连接AE 、BD 交于点P ,过点P 作PQ BC ⊥于点Q ,则PQ =________.16.如图1,课本中有一道例题:有一块三角形余料ABC ,它的边120BC mm =,高80AD mm =.要把它加工成正方形零件,使正方形的一边在BC 上,其余两个顶点分别在AB ,AC 上.设PN xmm =,用x 的代数式表示AE =________mm ,由//PN BC ,可得APN ABC ∽△△,再利用相似三角形对应高的比等于相似比,可求得PN =________mm .拓展:原题中要加工的零件是一个矩形,且此矩形是由两个并排放置的正方形所组成,如图2,此时,PN =________mm .17.大自然是美的设计师,即使是一片小小的树叶,也蕴含着“黄金分割”.如图,P 为AB 的黄金分割点()AP PB >,如果AB 的长度为8cm ,那么AP 的长度是_____________.18.△ABC 的三边长分别为7、6、2,△DEF 的两边分别为1、3,要使△ABC ∽△DEF ,则△DEF 的第三边长为______.19.若2a c e b d f===,且4b d f ++=,则a c e ++=_______. 20.已知b c c a a b a b c +++===k ,则k =______.参考答案三、解答题21.如图,在ABC 中,点D 、E 分别在AB 、AC 上,//DE BC ,若4AE =,2DB =,2AD CE =,求AD 的长.22.在如图所示的12个小正方形组成的网格中,ABC 的三个顶点都在小正方形的顶点上.仅用无刻度的直尺按要求完成下列作图.(1)在图1网格中找格点D ,作直线BD ,使直线BD 与AC 的交点P 是AC 的中点. (2)在图2网格中找格点E ,作直线BE 交AC 于点Q ,使得CQ CB =.23.定义:若一个四边形能被其中一条对角线分割成两个相似三角形,则称这个四边形为“友爱四边形”,这条对角线叫“友爱线”.(1)如图1,在44⨯的正方形网格中,有一个网格Rt ABC △和两个网格四边形ABCD 与四边形ABCE ,其中是被AC 分割成的“友爱四边形”的是______.(2)如图2,四边形ABCD 是“友爱四边形”,对角线AC 是“友爱线”,同时也是BCD ∠的角平分线,若ABC 中,2AB =,3BC =,4AC =,求友爱四边形ABCD 的周长.(3)如图3,在ABC 中,AB BC ≠,60ABC ∠=︒,ABC 的面积为33,点D 是ABC ∠的平分线上一点,连接AD ,CD .若四边形ABCD 是被BD 分割成的“友爱四边形”,求BD 的长.24.如图,△ABC 中,E 、F 分别是边AB 、AC 的中点,EF =a ,动点P 在射线EF 上,BP 交CE 于D ,∠CBP 的平分线交CE 于Q ,(1)当CQ =12CE 时,求EP+BP 的值. (2)当CQ =13CE 时,求EP+BP 的值. (3)当CQ =1nCE 时,直接写出EP+BP 的值.25.如图,△ABC 是⊙O 的内接三角形,AD 是△ABC 的高,AE 是⊙O 的直径.求证:△ABE ~△ADC .26.将ABC 绕点A 逆时针方向旋转θ,并使各边长变为原来的n 倍,得到AB C ''△,我们将这种变换记为[],n θ.(1)问题发现如图①,对ABC 作变换603⎡⎤︒⎣⎦得AB C ''△,则:AB C ABC S S ''=△△______;直线BC 与直线B C ''所夹的锐角度数为______.(2)拓展探究如图②,ABC 中,35BAC ∠=︒且:2AB AC =,连结BB ',CC '.对ABC 作变换603⎡︒⎣得AB C ''△,求:ABB ACC S S ''△△的值及直线BB '与直线CC '相交所成的较小角的度数,并就图②的情形说明理由.(3)问题解决如图③,ABC 中,30BAC ∠=︒,90ACB ∠=︒,对ABC 作变换[],n θ得AB C ''△,使点B 、C 、C '在同一直线上,且四边形ABB C ''为矩形,请直接写出n 的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据题意易得ADF AEG ABC ,则有13AD AB =,23AE AB =.进而可求得119ABC S S =,213ABC S S =,359ABC S S =,最后即可求出结果.【详解】∵DF ∥EG ∥BC ,∴ADF AEG ABC ,∵D 、E 是AB 的三等分点,∴13AD AB =,23AE AB =, ∴119ABC S S =,49AEG ABC S S =.∵21411993AEG ABC ABC ABC S S S S S S =-=-=,34599ABC AEG ABC ABC ABC S S S S S S =-=-=. ∴123115::::1:3:5939ABC ABC ABC S S S S S S ==.故选C .【点睛】 本题主要考查相似三角形的判定与性质,掌握面积比等于相似比的平方是解题的关键. 2.D解析:D【分析】根据如果其中两条线段的乘积等于另外两条线段的乘积,则四条线段叫成比例线段,对每一项进行分析即可.【详解】解:A 、2×8≠4×6,故本选项错误;B 、10×40≠20×30,故选项错误;C 、2.2×8≠3.3×5,故选项错误;D 、20×60=30×40,故本选项正确.故选:D .【点睛】此题考查了比例线段,用到的知识点是成比例线段的概念,注意在相乘的时候,最小的和最大的相乘,另外两个相乘,看它们的积是否相等.3.A解析:A【分析】过D 作DG ∥AC 交BE 于G ,可得△BDG ∽△BCE ,△DGF ∽△AEF ,根据相似三角形的性质可得x 与y 的数量关系.【详解】解:如图,过D 作DG ∥AC 交BE 于G ,∴△BDG ∽△BCE ,△DGF ∽△AEF ,∴BD DG BC CE=,DG DF AE AF =,∵AC =2EC ,∴AE =CE , 则BD DF BC AF = ∴BD DF BD CD AF =+, ∴BD CD AF BD DF +=, ∵x =CD :BD ,y =AF :FD ,∴1+x =y ,∴y =x +1,故选:A ..【点睛】本题考查相似三角形的性质和应用,恰当作辅助线构建相似三角形是解题的关键. 4.C解析:C【分析】由DE //BC 可得出53AD AE BD EC ==,∠AED =∠C ,结合∠ADE =∠EFC 可得出△ADE ∽△EFC ,根据相似三角形的性质可得出53AE DE EC FC ==,再根据CF =6,即可求出DE 的长度.【详解】解:∵DE //BC ,∴53AD AE BD EC ==,∠AED =∠C . 又∵∠ADE =∠EFC ,∴△ADE ∽△EFC , ∴53AE DE EC FC ==, ∵CF =6,∴563DE =, ∴DE =10.故选C【点睛】 本题考查了相似三角形的判定与性质、平行线分线段成比例定理,根据平行线分线段成比例定理和相似三角形的性质列出比例式是解题的关键.5.B解析:B【分析】根据题意可求得CE 、OF 的长度,根据点E 在第二象限,从而可以得到点E 的坐标.【详解】解:∵四边形ABCO 是矩形∴90ECF FOA B ∠=∠=∠=︒∵将该矩形沿AE 折叠,点B 恰好落在边OC 上的F 处.若()0,8A∴90AFE B ∠=∠=︒∴90CEF CFE OFA CFE ∠+∠=∠+∠=︒∴CEF OFA ∠=∠∴Rt ECF Rt FOA ∽根据题意可设CE x =,则8BE x =-,则8BE x =-∵4CF =∴在Rt ECF △中,()22248x x +=- ∴3x =根据题意可设OF y =∵Rt ECF Rt FOA ∽ ∴CE CF OF OA= ∴348y = ∴6y =∴6OF =∴10CO CF OF =+=∴点E 的坐标为()10,3-.故选:B【点睛】本题考查了勾股定理、矩形的性质、翻折变换、坐标与图形变化(轴对称)、相似三角形的判定和性质等知识点,解题的关键是明确题意找出所求问题需要的条件,利用数形结合的思想进行解答.6.B解析:B【分析】先根据DE ∥BC ,得出ADE ∽ABC ,进而得出1=4AD DE AB BC = ,再根据DE ∥BC ,得到ODE ∽OCB ,进而得到1=1:44OE DE OB CB ==. 【详解】解:∵DE ∥BC , ∴ADE ∽ABC , ∴=AD DE AB BC, 又∵1=3AD BD , ∴1=4AD DE AB BC =, ∵DE ∥BC , ∴ODE ∽OCB , ∴1=1:44OE DE OB CB ==. 故选:B .【点睛】 本题主要考查了相似三角形的判定与性质,平行于三角形的一边的直线与其他两边相交,所构成的三角形与原三角形相似.7.C解析:C【分析】过D 作DG ∥AC 交BE 于G ,易证△BDG ∽△BCE ,△DGF ∽△AEF,利用三角形相似的性质即可解答.【详解】解:过D 作DG ∥AC 交BE 于G ,则△BDG ∽△BCE , ∴DG BD CE BC=, ∵1BD BC n =, ∴1DG BD CE BC n==,∵1AE AC m =, ∴1m CE AC m-=, ∴DG=11m CE AC n mn-⋅= ∵DG ∥AC ,∴△DGF ∽△AEF ,∴111m AC DF DG m mn AF AE n AC m--===, ∴1AD m n AF n +-=,即1AF n AD m n =+-, 故选:C .【点睛】本题考查了相似三角形的判定与性质、比例性质,熟练掌握相似三角形的判定与性质,添加辅助线构造相似三角形是解答的关键.8.A解析:A【分析】由两个三角形的高之比可得出两个三角形的相似比,进而得出两个三角形的面积之比,根据两个三角形的面积之比设未知数,列方程,求出较大三角形的面积即可.【详解】由题意得,两个三角形的相似比为:15∶5=3∶1,故面积比为:9∶1,设两个三角形的面积分别为9x ,x ,则9x -x =80,解得:x =10,故较大三角形的面积为:9x =90.故选:A .【点睛】本题主要考查相似三角形的性质,熟记相似三角形的高之比等于相似比,面积之比等于相似比的平方是解题关键.9.D解析:D【分析】根据黄金分割的定义得到AB ,然后把AP=8代入后可求出AB 的长. 【详解】∵P 为AB 的黄金分割点(AP >PB ),∴AB , ∴)8414==(cm ), 故选:D .【点睛】本题考查了黄金分割以及分母有理化.把线段AB 分成两条线段AC 和BC (AC >BC ),且使AC 是AB 和BC 的比例中项(即AB :AC=AC :BC ),叫做把线段AB 黄金分割,点C 叫做线段AB 的黄金分割点.其中AC=12AB .并且线段AB 的黄金分割点有两个. 10.D解析:D【解析】分析:只要证明△ADE ∽△FGH ,可得2⎛⎫= ⎪⎝⎭△△FGH ADE S DE S GH ,由此即可解决问题. 详解:∵BG :GH :HC=4:6:5,可以假设BG=4k ,GH=6k ,HC=5k ,∵DE ∥BC ,FG ∥AB ,FH ∥AC ,∴四边形BGFD 是平行四边形,四边形EFHC 是平行四边形,∴DF=BG=4k ,EF=HC=5k ,DE=DF+EF=9k ,∠FGH=∠B=∠ADE ,∠FHG=∠C=∠AED , ∴△ADE ∽△FGH , ∴2299=64ADE FGH S DE k S GH k ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭. 故选D .点睛:本题考查相似三角形的判定和性质,平行四边形的判定和性质等知识,解题的关键是学会利用参数解决问题,属于中考常考题型.11.D解析:D【分析】先根据正方形的性质、旋转的性质可得45EAF EDA ∠=∠=︒,再根据相似三角形的判定与性质即可得.【详解】四边形ABCD 是正方形,45BAC EDA ∴∠=∠=︒,由旋转的性质得:B AC BAC ''∠=∠,B AC EDA ''∴∠=∠,即EAF EDA ∠=∠,在AEF 和DEA △中,EAF EDA AEF DEA ∠=∠⎧⎨∠=∠⎩, AEF DEA ∴~,EF AE AE DE ∴=,即44EF DE=, 16EF DE ∴⋅=,故选:D .【点睛】本题考查了正方形的性质、旋转的性质、相似三角形的判定与性质,熟练掌握相似三角形的判定与性质是解题关键.12.B解析:B【分析】本题主要应用两三角形相似判定定理,三边对应成比例,分别对各选项进行分析即可得出答案.【详解】解:由勾股定理得:AB ,BC =2,AC ,∴AC:BC :AB =1A 、三边之比为1,图中的三角形(阴影部分)与△ABC 不相似;B 、三边之比:1△ABC 相似;C 3,图中的三角形(阴影部分)与△ABC 不相似;D 、三边之比为2△ABC 不相似. 故选:B .【点睛】此题考查三角形相似判定定理的应用,解答关键是应用勾股定理求出边长.二、填空题13.【分析】根据已知条件得出再把化成然后代值计算即可得出答案【详解】∵∴∴故答案为:【点睛】此题考查了比例的性质熟练掌握比例的性质是解题的关键解析:13【分析】 根据已知条件得出23y x =,再把x y x -化成1y x -,然后代值计算即可得出答案. 【详解】∵:3:2x y =, ∴23y x =, ∴211133x y y x x -=-=-=. 故答案为:13. 【点睛】此题考查了比例的性质,熟练掌握比例的性质是解题的关键.14.12【分析】利用AAS 判定△FEB ≌△FAD 得BF=DF 根据有两组角对应相等的两个三角形相似可得到△BFG ∽△EFB 根据相似三角形的对应边成比例即可得到BF2=FG•EF 由条件可求出EF 长则GE 长可解析:12【分析】利用AAS 判定△FEB ≌△FAD ,得BF=DF ,根据有两组角对应相等的两个三角形相似,可得到△BFG ∽△EFB ,根据相似三角形的对应边成比例即可得到BF 2=FG•EF ,由条件可求出EF 长,则GE 长可求出.【详解】解:∵AD//BE ,∴∠1=∠E .在△FEB 和△FAD 中1E EFB AFD BE AE ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△FEB ≌△FAD ;∴BF=DF ,∵∠1=∠E ,∠1=∠2,∴∠2=∠E .又∵∠GFB=∠BFE ,∴△BFG ∽△EFB , ∴BF FG EF BF=,∴BF 2=FG•EF ,∴DF 2=FG•EF ,∵DF=8,FG=4,∴EF=16,∴GE=EF-FG=16-4=12.故答案为:12.【点睛】本题考查了三角形全等、相似的性质和判定,熟练掌握全等三角形的判定及相似三角形的判定是关键.15.【分析】根据矩形的性质得到AB ∥CDAB=CDAD=BC ∠BAD=90°根据线段中点的定义得到DE=CD=AB 根据相似三角形的性质即可得到结论【详解】解:∵四边形ABCD 是矩形∴AB ∥CDAB=CD 解析:43【分析】根据矩形的性质得到AB ∥CD ,AB=CD ,AD=BC ,∠BAD=90°,根据线段中点的定义得到DE=12CD=12AB ,根据相似三角形的性质即可得到结论. 【详解】解:∵四边形ABCD 是矩形,∴AB ∥CD ,AB=CD ,AD=BC ,∠BAD=90°,∵E 为CD 的中点,∴DE=12CD=12AB , ∴△ABP ∽△EDP , ∴AB PB DE PD =, ∴21PB PD = , ∴23PB BD = , ∵PQ ⊥BC ,∴PQ ∥CD ,∴△BPQ ∽△DBC , ∴23PQ BP CD BD ==, ∵CD=2, ∴PQ=43,故答案为:43.【点睛】本题考查了相似三角形的判定和性质,矩形的性质,正确的识别图形是解题的关键. 16.48【分析】根据相似三角形的性质可得对应高的比等于相似比进行计算然后根据矩形的性质可设则进行求解即可;【详解】设则∵PN ∥BC ∴∴即解得∴拓展:设则∵PN ∥BC ∴∴∴解得∴;故答案是:;48;【点睛 解析:80x -484807 【分析】根据相似三角形的性质可得对应高的比等于相似比进行计算,然后根据矩形的性质可设BQ x =,则2PN x =,80AE x =-,进行求解即可;【详解】设PN xmm =,则PN PQ ED xmm ===,()80AE AD ED x mm =-=-,∵PN ∥BC ,∴APN ABC , ∴PN AE BC AD =, 即8012080x x -=,解得48x =, ∴48PN mm =,拓展:设PQ xmm =,则2PN xmm =,()80AE AD ED x mm =-=-,∵PN ∥BC ,∴APN ABC , ∴PN AE BC AD =, ∴28012080x x -=,解得2407x =,∴48027PN x ==; 故答案是:80x -;48;4807. 【点睛】 本题主要考查了相似三角形的应用,准确分析计算是解题的关键.17.()cm 【分析】利用黄金分割的定义计算出AP 【详解】为的黄金分割点故答案为:()cm 【点睛】此题考查黄金分割的定义黄金分割物体的较大部分等于与整体的解析:(4)cm【分析】利用黄金分割的定义计算出AP .【详解】 P 为AB 的黄金分割点()AP PB >,()84AP AB cm ∴===故答案为:(4)cm.【点睛】. 18.35【分析】根据△ABC ∽△DEF 得到结合△ABC 的三边长分别为762△DEF 的两边分别为13可以得到△DEF 的两边13分别与△ABC 的两边26是对应边得到两三角形相似比为可以求出△DEF 的第三边【解析:3.5【分析】根据△ABC ∽△DEF ,得到AB AC BC DE DF EF==,结合△ABC 的三边长分别为7、6、2,△DEF 的两边分别为1、3,可以得到△DEF 的两边1、3分别与△ABC 的两边2,6是对应边,得到两三角形相似比为12,可以求出△DEF 的第三边. 【详解】解:∵要使△ABC ∽△DEF ,需AB AC BC DE DF EF==, ∵△ABC 的三边长分别为7、6、2,△DEF 的两边分别为1、3,∴△DEF 的两边1、3分别与△ABC 的两边2,6是对应边,∴两三角形相似比为12,∴△DEF 的第三边长为:7×12=3.5. 故答案为:3.5.【点睛】 本题考查了相似三角形的性质,根据两三角形相似,结合两三角形的线段长求出相似比是解题的关键.19.8【分析】根据等比性质可得答案【详解】由等比性质得所以故答案为:8【点睛】本题考查了比例的性质利用了等比性质解析:8【分析】根据等比性质,可得答案.【详解】2a c e b d f===, 由等比性质,得24a c e a c eb d f ++++==++, 所以8ac e ++=.故答案为:8.【点睛】本题考查了比例的性质,利用了等比性质.20.2或-1【分析】此题分情况考虑:①当a+b+c≠0时根据比例的等比性质求得k 的值;②当a+b+c=0时即a+b=-c 求得k 的值【详解】解析:2或-1.【分析】此题分情况考虑:①当a+b+c≠0时,根据比例的等比性质,求得k 的值;②当a+b+c=0时,即a+b=-c ,求得k 的值.【详解】①当a+b+c≠0时,由等比性质得k=2()a b c a b c++++=2; ②当a+b+c=0时,即a+b=-c(或a+c=-b 或b+c=-a),得k=c c-=-1. 故答案为2或-1.【点睛】 此题考查比例的等比性质,解题时要注意等比性质的条件.三、解答题21.AD =4【分析】设AD=x,则12CE x=,根据平行线分线段成比例定理可得关于x的方程,解方程即可求出答案.【详解】解:∵DE∥BC,∴AD AEDB EC=,设AD=x,则12CE x=,∴4122xx=,解得:x=4或﹣4(舍去),即AD=4.【点睛】本题考查了平行线分线段成比例定理和简单的一元二次方程的解法,熟练掌握上述知识、灵活应用方程思想是解题的关键.22.(1)画图见解析;(2)画图见解析.【分析】(1)根据题意画图即可;(2)由平行线性质得到MAQ NCQ∠=∠,继而可证明AMQ CNQ∽△△,再根据相似三角形的性质解得35CQ AC=,最后根据勾股定理解题即可.【详解】(1)如图1所示,取格点D,连接AD,CD,则四边形ABCD为矩形,连接BD交AC于点P,由于矩形对垂线互相平分,则点P为AC中点,故图1中直线BD,格点D即为所求.(2)如图2所示,找格点M,N,使得2AM =,3CN =,连接MN 与AC 交于点Q ,连接BQ 并延长交格点于点E ,则格点E 即为所求.∵//AM CN ,MAQ NCQ ∴∠=∠,又AQM CQN ∠=∠(对顶角相等)AMQ CNQ ∴∽△△,23AM AQ CN CQ ∴==, 即35CQ AC =, 由勾股定理得:222AC AB BC =+,又4AB =,3BC =,22435AC ∴=+=335355CQ AC CB ∴==⨯==, 故CQ CB =,∴格点E 即为所求.【点睛】本题考查网格作图,涉及相似三角形的判定与性质等知识,是重要考点,难度较易,掌握相关知识是解题关键.23.(1)四边形ABCE ;(2)13或10;(2)3【分析】(1)根据勾股定理分别求出三个三角形的各边长,根据三边对应成比例的三角形相似、“友爱四边形”的定义判断;(2)根据旋转变换的性质、平行线的性质、两角相等的两个三角形相似证明;(3)AM ⊥BC ,根据含30°的直角三角形的特殊性质及勾股定理用AB 表示出AM ,根据三角形的面积公式得到BC ×AB =12,根据相似三角形的性质列式计算,得到答案.【详解】解:(1)∵AB =2,BC =1,AD =4,∴由勾股定理得,ACCDAE =CE 5,∴BC AC =AB AE =AC CE , ∴ABC ∽EAC ,∴四边形ABCE 是“友爱四边形”, ∵BC AC ≠AC CD , ∴ABC 与ACD 不相似,∴四边形ABCD 不是“友爱四边形”,故答案为:四边形ABCE ;(2)∵AC 平分∠BCD ,∴∠ACB=∠ACD ,当∠B=∠DAC 时,ABC ∽DAC , 则BC AC =AB AD =AC CD, ∵2AB =,3BC =,4AC =, ∴34=2AD =4CD, 解得AD =83,CD =163, ∴友爱四边形ABCD 的周长为816321333+++=; 当∠B=∠D 时,ABC ∽ADC , 则BC DC =AB AD =AC AC=1, ∵2AB =,3BC =,4AC =, ∴3DC =2AD=1, 解得AD =2,CD =3,∴友爱四边形ABCD 的周长为233210+++=,综上所述,友爱四边形ABCD 的周长为13或10;(3)如图3,过点A 作AM ⊥BC 于M ,则∠AMB =90°,∵60ABC ∠=︒,∴∠BAM =30°,∴BM =12AB ,∴在Rt △ABM 中,AM =22AB BM - =221()2AB AB - =32AB , ∵ABC 的面积为33, ∴12BC ×3AB =33, ∴BC ×AB =12,∵四边形ABCD 是被BD 分割成的“友爱四边形”,且AB ≠BC ,∴ABD ∽DBC ∴AB BD BD BC=, ∴BD 2=AB ×BC =12,∴BD =12=23.【点睛】本题考查的是相似三角形的判定和性质、旋转变换的性质、三角形的面积计算,掌握相似三角形的判定定理和性质定理、理解“友爱四边形”的定义是解题的关键.24.(1)2a ;(2)4a ;(3)2an ﹣2a .【分析】(1)延长BQ 交EF 的延长线于点G ,根据三角形中位线定理求出BC ,证明△BQC ∽△GQE ,根据相似三角形的性质得到EG=BC=2a ,根据角平分线的定义、平行线的性质得到PB=PG ,得到答案;(2)(3)仿照(1)的解法解答.【详解】解:(1)如图1,延长BQ 交EF 的延长线于点G ,∵E 、F 分别是边AB 、AC 的中点,∴EF 是△ABC 的中位线,∴BC=2EF=2a ,EF ∥BC ,∴△BQC ∽△GQE , ∴1EG EQ BC QC==, ∴EG=BC=2a ,∵BQ 是∠CBP 的平分线,∴∠PBQ=∠CBQ ,∵EF ∥BC ,∴∠EGQ=∠CBQ ,∴∠PBQ=∠EGQ ,∴PB=PG ,∴PE+PB=PE+PG=EG=2a ;(2)如图2,延长BQ 交EF 的延长线于点M ,由(1)可知,△BQC ∽△MQE ,∴1.2BC CQ EM EQ ==, ∴EM=2BC=4a ,∴PE+PB=PE+PM=EM=4a ;(3)如图2,当1CQ CE n=时,则EQ=(n-1)CQ , 由EF ∥BC 得,△MEQ ∽△BCQ ,∴1EM EQ n BC QC==-, ∴EM=(n-1)BC=2a (n-1),即EP+BP=2an-2a .【点睛】本题考查了相似三角形的判定与性质、角平分线的定义、平行线的性质,延长BQ 构造出相似三角形,求出EP+BP=EM 并得到相似三角形是解题的关键.25.见解析.【分析】根据∠AEB =∠ACB (同弧所对的圆周角相等)和AD 是△ABC 的高,AE 是⊙O 的直径,利用一个三角形的两个角与另一个三角形的两个角对应相等,即可证明.【详解】证明:∵AB=AB∴∠AEB =∠ACB (同弧所对的圆周角相等),∵AE 为直径,∴∠ABE =90°(直径所对的圆周角是直角),又∵AD ⊥BC ,即∠ADC =90°,∴∠ABE =∠ADC ,∴△ABE ∽△ADC .【点睛】此题主要考查学生对相似三角形的判定和圆周角定理的理解和掌握,解题的关键是利用同弧上的圆周角相等,先求证∠AEB =∠ACB ,然后即可得出结论.26.(1)3:1,60;(2)35︒,理由见解析;(3)2n =.【分析】(1)利用新定义得出[],n θ的意义,利用旋转的性质得到AB C ''△∽ABC ,且相似比,60BAB '∠=︒,进而求出面积比,通过外角的性质得到DEB '∠即可求出直线BC 与直线B C ''所夹的锐角度数;(2)利用新定义得出[],n θ的意义,得到::AB AB AC AC ''==35BAC B AC ''∠=∠=︒,进而可以得到BAB CAC ''∠=∠,下证BAB '△∽CAC '△,通过题中给的相似比即可求出面积之比,延长CC '交BB '于D ,通过DEB AEC ''∠=∠,BB A CC A ''∠=∠,可以证得DEB '△∽AEC ',从而得到C DB ''∠的度数,即可得直线BB '与直线CC '相交所成的较小角的度数;(3)由四边形ABB C ''为矩形,得到90BAC '∠=︒,进而求出CAC '∠的度数,利用含30角的直角三角形的性质即可得到AC AC'的值,进而求出n 的值. 【详解】解:(1)由题意可知:对ABC 作变换60⎡︒⎣得AB C ''△,∴AB C ''△∽ABC ,60BAB '∠=︒,∴B B '∠=∠, ∴()2:3:13:1AB C ABC S S ''==, ADE B BAB '∠=∠+∠,ADE B DEB ''∠=∠+∠,∴60DEB BAB ''∠=∠=︒,即直线BC 与直线B C ''所夹的锐角度数为:60︒.故答案为:3:1,60.(2)根据题意得:::1:3AB AB AC AC ''==,35BAC B AC ''∠=∠=︒, ∴BAC B AC B AC B AC ''''∠+∠=∠+∠,∴BAB CAC ''∠=∠,∴BAB '△∽CAC '△,∴相似比AB k AC=,BB A CC A ''∠=∠, :2AB AC =,∴()2:22ABB ACC S S ''==,延长CC '交BB '于D ,如图,设CC '交AB '于E .DEB AEC ''∠=∠,BB A CC A ''∠=∠,∴DEB '△∽AEC ',∴35C DB B AC ''''∠=∠=︒,∴:2ABB ACC S S ''=△△,直线BB '与直线CC '相交所成的较小角的度数为35︒. (3)四边形ABB C ''为矩形,∴90BAC '∠=︒,30BAC ∠=︒,∴60CAC BAC BAC ''∠=∠-∠=︒,90ACB ∠=︒,∴90ACC '∠=︒,在Rt ACC '△中,12AC AC '=, ∴21AC AC '=,∴2AC n AC'==, 即n 的值为2.【点睛】本题考查了图形的旋转,相似三角形的判定和性质,新定义运算,三角形的外角性质以及含30角的直角三角形的性质,解题的关键是根据题意得出[],n θ的意义.。