离心泵的串并联讲义
- 格式:doc
- 大小:85.00 KB
- 文档页数:5
离心泵的串并联实验讲义一、实验目的1.了解离心泵结构与特性,学会离心泵的操作2.测量不同转速下离心泵的特性曲线。
3.测量离心泵串联时的压头和流量的关系。
4.测量离心泵并联时的压头和流量的关系。
二、实验原理1.单台离心泵的特性曲线离心泵的特性曲线是选择和使用离心泵的重要依据之一,其特性曲线是在恒定转速下泵的扬程H 、轴功率N 及效率η与泵的流量V 之间的关系曲线,它是流体在泵内流动规律的外部表现形式。
由于泵内部流动情况复杂,不能用数学方法计算这一特性曲线,只能依靠实验测定。
1)扬程H 的测定与计算在泵进、出口取截面列柏努利方程:gu u Z Z g p p H 221221212-+-+-=ρ 式中:p 1,p 2——分别为泵进、出口的压强 N/m 2 ρ——流体密度 kg/m 3u 1, u 2——分别为泵进、出口的流量m/s g ——重力加速度 m/s 2当泵进、出口管径一样,且压力表和真空表安装在同一高度,上式简化为:gp p H ρ'1'2-= 由上式可知:只要直接读出真空表和压力表上的数值,就可以计算出泵的扬程。
2)轴功率N 的测量与计算轴的功率可按下式计算: w N ∙=94.0式中,N —泵的轴功率,W w —电机输出功率,W由上式可知:测定泵的轴功率,只需测定电机的输出功率,乘上功率转换中的倍率即可。
3)效率η的计算泵的效率η是泵的有效功率Ne 与轴功率N 的比值。
有效功率Ne 是单位时间内流体自泵得到的功,轴功率N 是单位时间内泵从电机得到的功,两者差异反映了水力损失、容积损失和机械损失的大小。
泵的有效功率Ne 可用下式计算:Ne=HV ρg 故η=Ne/N=HV ρg/N4)离心泵性能参数的换算泵的特性曲线是在指定转速下的数据,就是说在某一特性曲线上的一切实验点,其转速都是相同的。
但是,实际上感应电动机在转矩改变时,其转速会有变化,这样随着流量的变化,多个实验点的转速将有所差异,因此在绘制特性曲线之前,须将实测数据换算为平均转速下的数据。
长沙自平衡多级泵厂 离心泵的串联与并联在很多工况场合都能见到,为了满足工况的现场需求而进行的布置,那么离心泵的串联与并联特性时什么呢?有什么需要注意的?将在下面得到讲解。
1、相同特性泵的串联运转。
特点:两台泵串联扬程和流量都增加,其增加程度和装置特性曲线的形状有关。
但都小于单独运行时的两倍。
2、不同特性泵的串联运转。
特点:两台泵串联工作,第二级的压力增高,应注意校核轴封和壳体强度的可靠性。
泵串联工作,按相同的流量分配扬程。
3、相同特性泵的并联运转。
特点:由于存在管路阻力,即使用两台泵并联运行,总的合成流量也小于单独运行流量的2倍。
并联运行的流量随装置特性曲线变陡而减小。
4、两台不同特性泵的并联运转。
特点:泵并联运转按扬程相等分配流量。
5、串联、并联运转的选择。
特点:欲使两台泵增加流量采用并联还是串联,要根据装置特性曲线的形状决定。
当阻力曲线很陡时,串联的流量比并联大。
根据不同要求,选择不同的型式。
让泵得到更好的利用。
离心泵串并联实验讲义一、实验目的1.增进对离心泵并、串联运行工况及其特点的感性认识。
2.绘制单泵的工作曲线和两泵并、串联总特性曲线。
二、实验原理在实际生产中,有时单台泵无法满足生产要求,需要几点组合运行。
组合方式可以有串联和并联两种方式。
下面讨论的容限于多台性能相同的泵的组合操作。
基本思路是:多台泵无论怎样组合,都可以看作是一台泵,因而需要找出组合泵的特性曲线。
1.泵的并联工作当用单泵不能满足工作需要的流量时,可采用两台泵(或两台以上)的并联工作方式,如图所示。
离心泵I 和泵II 并联后,在同一扬程(压头)下,其流量Q并是这两台泵的流量之和,Q并=Q I+QⅡ。
并联后的系统特性曲线,就是在各相同扬程下,将两台泵特性曲线 (Q - H )I和 (Q - H )II上的对应的流量相加,得到并联后的各相应合成流量Q并,最后绘出 (Q - H )并曲线如图所示。
图中两根虚线为两台泵各自的特性曲线 (Q - H )I和 (Q - H )II;实线为并联后的总特性曲线 (Q - H )并,根据以上所述,在 (Q - H )并曲线上任一点M,其相应的流量Q M是对应具有相同扬程的两台泵相应流量Q A和Q B之和,即Q M=Q A+Q B。
图泵的并联工作东真-515图两台性能曲线相同的泵的并联特性曲线上面所述的是两台性能不同的泵的并联。
在工程实际中,普遍遇到的情况是用同型号、同性能泵的并联,如图所示。
(Q - H )I和 (Q - H )II特性曲线相同,在图上彼此重合,并联后的总特性曲线为 (Q - H )并。
本实验台就是两台相同性能的泵的并联。
进行教学实验时,可以分别测绘出单台泵I 和泵II 工作时的特性曲线 (Q - H )I和(Q - H )II,把它们合成为两台泵并联的总性能曲线 (Q - H )并。
再将两台泵并联运行,测出并联工况下的某些实际工作点与总性能曲线上相应点相比较。
2.泵的串联工作当单台泵工作不能提供所需要的压头(扬程)时,可用两台泵(或两台上)的串联方式工作。
离心泵的串并联讲义
离心泵是一种常见的工业泵,其工作原理是将液体通过旋转叶轮的离心力输送。
离心泵的使用非常灵活,可用于各种场合,例如水处理、化学生产和石油提取等。
离心泵的串联和并联是在工业过程中经常用到的两种操作方式。
串联是将两个或多个泵连接在一起,使它们的输出流量逐级增加,压力也逐级增高;并联则将两个或多个泵连接在一起,使它们的流量同时进入一个管道,从而获得更大的流量。
本文将详细介绍离心泵的串联和并联操作。
离心泵的串联是将多个离心泵连接在一起,让它们的流出口和流入口分别连通,以便将其同步用于输送高压和大流量的液体。
串联操作将多个离心泵按照流量逐级相连,形成一个输送液体的管道,输出流量随着泵的数量逐级增加,压力也逐级增高。
串联离心泵的优点是可以获得高压和大流量,能够将液体输送到较远的地方。
但是串联也存在不足之处,例如多个泵之间可能产生流量不均,泵的寿命缩短等问题。
因此,在进行串联操作时,需要根据具体情况进行技术评估和设计,以达到最佳效果。
并联离心泵的优点是可以获得更高的流量,能够快速将液体输送到目的地。
并联操作通常使用于液体输送量大且距离近的场合,比如污水处理厂,水厂和工厂等。
需要注意的是,在进行离心泵的并联时,需要确保所有泵的输出流量相同,否则会出现其中一台泵输出过量,其他泵流量不足的现象,导致整个操作失败。
在实际操作过程中,需要根据具体情况选择串联和并联操作方式。
一般来说,串联操作更适合输送高压和大流量的液体,可以输送到较远的地方;而并联操作适合输送大量液体,其中流量相对较小,但是输送距离较近。
因此,在选择操作方式时,需要充分考虑液体输送距离、输送量和压力等因素。
离心泵的串并联实验讲义
一、实验目的
1.了解离心泵结构与特性,学会离心泵的操作
2.测量不同转速下离心泵的特性曲线。
3.测量离心泵串联时的压头和流量的关系。
4.测量离心泵并联时的压头和流量的关系。
二、实验原理
1.单台离心泵的特性曲线
离心泵的特性曲线是选择和使用离心泵的重要依据之一,其特性曲线是在恒定转速下泵的扬程H 、轴功率N 及效率η与泵的流量V 之间的关系曲线,它是流体在泵内流动规律的外部表现形式。
由于泵内部流动情况复杂,不能用数学方法计算这一特性曲线,只能依靠实验测定。
1)扬程H 的测定与计算
在泵进、出口取截面列柏努利方程:
g
u u Z Z g p p H 221221212-+-+-=ρ 式中:p 1,p 2——分别为泵进、出口的压强 N/m 2
ρ——流体密度 kg/m 3 u 1, u 2——分别为泵进、出口的流量m/s g ——重力加速度 m/s 2
当泵进、出口管径一样,且压力表和真空表安装在同一高度,上式简化为:
g
p p H ρ'1'2-= 由上式可知:只要直接读出真空表和压力表上的数值,就可以计算出泵的扬程。
2)轴功率N 的测量与计算
轴的功率可按下式计算: w N ∙=94.0
式中,N —泵的轴功率,W w —电机输出功率,W
由上式可知:测定泵的轴功率,只需测定电机的输出功率,乘上功率转换中的倍率即可。
3)效率η的计算
泵的效率η是泵的有效功率Ne 与轴功率N 的比值。
有效功率Ne 是单位时间内流体自泵得到的功,轴功率N 是单位时间内泵从电机得到的功,两者差异反映了水力损失、容积损失和机械损失的大小。
泵的有效功率Ne 可用下式计算:
Ne=HV ρg 故η=Ne/N=HV ρg/N
4)离心泵性能参数的换算
泵的特性曲线是在指定转速下的数据,就是说在某一特性曲线上的一切实验点,其转速都是相同的。
但是,实际上感应电动机在转矩改变时,其转速会有变化,这样随着流量的变化,多个实验点的转速将有所差异,因此在绘制特性曲线之前,须将实测数据换算为平均转速下的数据。
换算关系如下:
流量 n n V V '=' 扬程 2)(n
n H H '=' 轴功率 3)(
n n N N '=' N 效率 ηρρη=='''='N g VH N g H V 2.离心泵在不同转速下的性能参数
打开变频开关,调节离心泵的转速,在新转速条件下测定离心泵的特性曲线。
3.离心泵串并联的压头和流量的关系
在实际的工业生产过程中,往往单台泵无法满足流体输送任务,此时需要采用离心泵的串并联操作。
对于两台相同的离心泵进行串联操作时,由于每台泵的压头和流量均相同,因此在同一流量下,两台串联的压头为单台泵的两倍。
因此根据单台离心泵特性曲线,在保持横坐标(Q )不变的情况下,使纵坐标(H )加倍,由此得到离心泵的串联特性曲线。
对于两台相同的离心泵进行并联操作时,在同一压头下,两台并联泵的流量等于单台泵的两。
因此根据单台离心泵特性曲线,在保持纵坐标(H )不变的情况下,使横坐标(Q )加倍,由此得到离心泵的并联特性曲线。
三、实验装置与流程
离心泵性能特性曲线测定系统装置工艺控制流程图如图2-1:
图2-1 离心泵实验装置流程示意图
3.仪表控制柜面板如图1-2所示:
图2-2 流体力学综合实验装置仪表面板
1、空气开关
2、
3、4电源指示灯5、流量控制仪6、6路巡检仪(单位m3/h):第一通道测量离心泵进口压力(单位:kpa),第二通道测量离心泵出口压力(单位:kpa),第三通道测量离心泵转速(单位:r/min)第四通道测量流体阻力压差(单位:pa)第五通道测量流体温度(单位:摄氏度),第六通道没用,7、功率表(单位:KW)8、仪表电源指示灯、9、仪表电源开关,10、变频器电源指示灯,11、变频器电源开关,12、离心泵电源指示灯、13、离心泵直接或变频器运行转换开关,1
4、离心泵启动按钮,1
5、离心泵停止按钮。
四、实验步骤
1.灌泵
储水箱中出水到适当位置(大概三分之二处)关闭阀1、阀2、阀3、阀4、阀5、打开离心泵出口排气阀和进口灌水阀,用水杯从灌水阀灌水,气体从排汽阀排出,直到排水阀有水排出并且没有气泡灌水完毕,关闭排气阀和灌水阀。
2.启动水泵
打开控制柜上1空气开关,打开9仪表电源开关,仪表指示灯10亮,仪表上电,显示被测数据。
3.调节离心泵出口阀的开度,测量在不同的流量下离心泵进出口的压力值,功率表读数,作出离心泵的特性曲线。
4.打开变频器开关,调节离心泵转速至2500rpm,测定离心泵在新转速下的离心泵特性曲线。
5.打开离心泵的串联阀门,将两台离心泵串联在一起,测定串联离心泵在不同流量下的扬程。
6.打开离心泵的并联阀门,将两台离心泵并联在一起,测定并联离心泵在不同流量下的扬程。
五、实验内容
1.单台离心泵特性曲线
2.离心泵串联时的扬程和流量关系图
3.离心泵并联时的扬程和流量关系图
Welcome To Download !!!
欢迎您的下载,资料仅供参考!。