车身结构分析—车身振动及噪声讲解
- 格式:ppt
- 大小:4.19 MB
- 文档页数:15
汽车车身噪声与振动控制技术汽车在行驶过程中会产生各种各样的噪声和振动,这些噪声和振动不仅会影响驾驶者的舒适性,还有可能导致车辆的损坏以及对周围环境造成污染。
因此,控制汽车车身噪声和振动成为了汽车制造商和工程师们的重要任务之一。
随着科技的进步,汽车车身噪声与振动控制技术也得到了长足的发展。
1. 汽车噪声和振动的来源在了解和掌握噪声和振动控制技术之前,我们首先需要了解噪声和振动的来源。
汽车车身噪声和振动主要来自于以下几个方面:1.1 发动机噪声和振动:汽车的发动机是噪声和振动产生的主要源头之一。
机械运转和爆炸过程会产生很大的噪声和振动。
1.2 路面噪声和振动:汽车在行驶过程中,轮胎和地面的摩擦会产生噪声和振动。
1.3 车辆空气动力学噪声和振动:汽车在高速行驶时,车身与空气的相互作用也会产生噪声和振动。
1.4 车辆骨架噪声和振动:车辆的车架、车身等部件之间的连接和振动也会引起噪声和振动。
2. 噪声和振动控制技术为了降低汽车车身噪声和振动,汽车制造商采用了许多控制技术。
以下是一些常见的噪声和振动控制技术:2.1 降噪材料的应用:制造商在汽车的车身、座椅和地毯等区域采用吸音材料和隔音材料,以吸收和隔离噪声。
2.2 噪声和振动的隔离:通过改善车辆的悬挂系统和减震系统,阻止噪音和振动传递到车身。
2.3 发动机和排气系统的优化:优化发动机和排气系统的设计,减少机械运转和爆炸过程中产生的噪声和振动。
2.4 车身结构的优化:改善车身结构和连接方式,降低车辆骨架噪声和振动。
3. 新技术在噪声和振动控制方面的应用随着科技的不断发展,还有一些新的技术在汽车车身噪声和振动控制方面得到了应用。
3.1 主动噪声和振动控制技术:该技术使用传感器和控制器,对车辆的噪声和振动进行实时监测和控制,以达到降低噪声和振动的效果。
3.2 振动能量回收技术:该技术利用车辆行驶时产生的振动能量,将其转化为电能并储存起来,从而减少能量浪费和噪声产生。
汽车车身结构的噪音分析在我们日常驾驶汽车的过程中,噪音问题常常会影响到驾驶的舒适性和心情。
而汽车车身结构与噪音的产生有着密切的关系。
今天,咱们就来深入探讨一下汽车车身结构中的噪音来源以及如何进行有效的分析。
首先,让我们了解一下汽车噪音的主要类型。
汽车噪音大致可以分为发动机噪音、风噪、胎噪以及车身结构噪音等。
其中,车身结构噪音是一个较为复杂但又至关重要的方面。
车身结构噪音产生的原因多种多样。
其一,车身的金属板材在行驶过程中会因为振动而产生噪音。
比如,当车辆行驶在不平整的路面上时,车身会受到冲击和振动,这些振动如果不能被有效地抑制和吸收,就会通过车身结构传递并产生噪音。
其二,车辆的密封性不足也会导致噪音问题。
如果车门、车窗等部位的密封胶条老化或者安装不当,外界的声音就容易传入车内。
再者,车身的空腔结构也可能引起共鸣噪音。
当声音在这些空腔中传播时,可能会被放大,从而形成令人不适的噪音。
那么,如何对汽车车身结构的噪音进行分析呢?这需要综合运用多种方法和技术。
一种常用的方法是振动测试。
通过在车身的关键部位安装传感器,可以测量车身在不同工况下的振动情况。
这些传感器能够捕捉到振动的频率、幅度和方向等信息。
通过对这些数据的分析,可以了解车身的振动特性,进而找出可能产生噪音的部位和原因。
声学测量也是必不可少的。
在车内布置麦克风,记录车辆行驶时内部的声音情况。
通过对这些声音数据的频谱分析,可以确定噪音的频率成分和强度。
这有助于判断噪音的来源和类型,比如是高频的风噪还是低频的结构振动噪音。
此外,有限元分析(FEA)在车身结构噪音分析中也发挥着重要作用。
通过建立车身的数字模型,模拟车身在不同载荷和工况下的力学行为,可以预测可能出现的振动和噪音问题。
这种方法可以在车辆设计阶段就发现潜在的噪音问题,并进行相应的优化设计。
在实际的汽车研发和改进过程中,工程师们通常会将上述多种方法结合起来使用。
例如,通过振动测试发现车身某个部位的振动较大,然后利用有限元分析来深入研究该部位的结构,找出优化的方案。
汽车传动系统的振动与噪声分析随着汽车的普及和发展,汽车传动系统的振动与噪声问题逐渐受到人们关注。
因为汽车传动系统的振动和噪声不但会影响驾驶舒适度,也可能会加速汽车的损耗和磨损程度,进一步影响汽车的使用寿命和安全性。
因此,汽车传动系统的振动与噪声分析成为汽车制造业的一个重要研究方向。
1. 振动与噪声的本质振动和噪声是指汽车传动系统中出现的机械运动过程中产生的波动现象。
它们的本质不同:振动是指物体在一定时间内有规则地加速运动并产生重复性波动的现象;噪声则是振动通过空气或其他传递媒介将能量传播出来,进而引起人类听觉的反应。
因此,汽车传动系统的振动与噪声问题不仅涉及到机械工程、力学等领域,同时也和声学有关,是一个涉及多个学科的复合性问题。
2. 汽车传动系统的振动与噪声的来源和分类汽车传动系统中振动和噪声的产生是由多种因素综合作用而引起。
其中,引起振动的因素可以分为自然因素和非自然因素。
自然因素主要包括轮胎的动平衡、阻尼系统的完整性等;非自然因素则主要来自发动机的运转过程。
另一方面,引起噪声的因素则主要来自于发动机的排放系统、轮胎的道路噪声和车身的空气噪声等。
就振动和噪声的分类而言,汽车传动系统的振动主要可以分为自由振动和受迫振动两种类型。
其中,自由振动是指在没有外力作用的条件下,传动系统因自身结构固有特性而产生的振动,其频率和振幅由系统的自身参数决定。
受迫振动则是指在有外力作用下,传动系统产生的振动,其频率与外力频率一致或是其倍频,振幅与外力振幅大小相关。
而噪声则可以分为气动噪声、机械噪声和燃烧噪声等类型。
其中,气动噪声主要来自汽车在运动过程中荧光可视模测造成的空气流动噪声;机械噪声主要来自于发动机运转和传动系统摩擦等因素所引起;燃烧噪声主要来自于发动机燃烧过程中的热量和气体的振动引起。
3. 汽车传动系统的振动与噪声的影响因素汽车传动系统的振动与噪声的影响因素涉及到多个因素引起的复杂作用。
其中,汽车设计参数的合理性是影响传动系统振动和噪声的重要因素之一。
车身结构振动噪声特性分析与优化摘要:驾驶室噪声对车内乘员的乘坐舒适性和身体健康产生直接的影响,汽车的 NVH 水平是整车设计与制造品质的重要体现,直接关系到汽车的市场竞争力。
结合某试生产阶段非承载式车身的怠速振动噪声问题,对车身整车结构进行噪声特性分析与优化。
关键词:车身结构;振动噪声;优化1.引言驾驶室内的振动噪声水平是车内乘员能直接感受到的汽车品质之一,对乘员的心理和生理产生重要的影响,恶劣的振动噪声水平容易导致疲劳和不适,甚至引发交通事故。
汽车的 NVH 水平关系到汽车的市场竞争力。
车身主要由板件焊接而成,板件结构在振动激励下的辐射噪声是车内低频噪声的主要来源。
利用车身模态分析,找出驾驶室结构中的薄弱处进行优化;或者针对板块辐射噪声大的区域进行局部刚度增强以及阻尼涂贴都是抑制车身低频噪声的有效方法。
整车开发流程中,经过方案设计、概念设计、工程设计以及样车试制阶段之后,就进入投产准备阶段。
汽车开发的各个阶段,NVH 性能开发与验证贯穿其中。
从设计到生产过程中,产品的结构往往会发生变化,使得 NVH目标与预期不相符的情况。
因此,驾驶室的减振降噪需根据汽车特定的生产阶段,综合考虑整车轻量化、碰撞安全性及成本等要求,采取合适的方案进行结构修改。
2.汽车振动噪声的传递与控制2.1车内噪声产生机理车内噪声是指经各种途径传入驾驶室及驾驶室内部产生的噪声。
主要的噪声源包括发动机噪声、轮胎噪声、进气噪声以及排气噪声等。
在理想状态下这些噪声源所占的车内噪声比例分别为 40%、35%、13%和12%。
传动系统的噪声也在车内噪声中占有一定比重。
在车辆不同的工况下,汽车车内主要噪声的类型也有一定差异。
怠速状态下,以发动机噪声及车身结构的辐射噪声为主;行驶状态下,轮胎噪声、进排气噪声以及风噪等噪声的比重随着车速的增加而迅速增加。
噪声源产生的噪声经汽车结构及空气两条途径传入驾驶室,形成驾驶室混响声场。
因此,通常将车内噪声分为结构噪声和空气传播噪声。
车辆工程中的噪音与振动控制技术在现代社会,车辆已经成为人们生活中不可或缺的一部分。
然而,随着车辆性能的不断提升和人们对舒适性要求的日益提高,车辆工程中的噪音与振动问题逐渐受到了广泛的关注。
噪音和振动不仅会影响驾驶者和乘客的舒适性,还可能对车辆的结构和零部件造成损害,降低车辆的使用寿命。
因此,研究和应用有效的噪音与振动控制技术,对于提高车辆的品质和性能具有重要的意义。
一、车辆噪音与振动的来源要有效地控制车辆的噪音与振动,首先需要了解其来源。
车辆中的噪音和振动主要来自以下几个方面:1、发动机发动机是车辆的动力源,也是噪音和振动的主要产生部件。
发动机在工作过程中,燃烧产生的压力变化、活塞的往复运动、气门的开闭等都会引起机械振动,并通过发动机的安装支架传递到车身。
同时,发动机的进气、排气和风扇等也会产生空气动力性噪音。
2、传动系统传动系统包括变速器、传动轴、差速器等部件。
在传动过程中,齿轮的啮合、传动轴的旋转不平衡等都会产生振动和噪音。
特别是在换挡时,由于齿轮的冲击和摩擦,会产生明显的噪声。
3、轮胎与路面轮胎与路面的接触和摩擦会产生噪音,尤其是在粗糙的路面上行驶时,噪音更为明显。
此外,轮胎的不平衡和花纹的设计也会影响噪音的产生。
4、车身结构车身结构的固有频率与外界激励频率接近时,会发生共振,从而产生较大的振动和噪音。
车身的密封性不好也会导致外界的风噪传入车内。
5、空调系统空调压缩机的工作、风扇的转动以及风道内的气流流动都会产生一定的噪音。
二、噪音与振动的危害车辆中的噪音和振动会给人们带来多方面的危害:1、影响舒适性长时间处于噪音和振动环境中,会使驾驶者和乘客感到疲劳、烦躁,降低乘坐的舒适性,影响身心健康。
2、干扰驾驶强烈的噪音和振动会干扰驾驶者的注意力和判断力,影响驾驶安全。
3、损害车辆部件持续的振动会导致车辆零部件的松动、磨损甚至损坏,缩短车辆的使用寿命。
三、噪音与振动控制技术为了降低车辆的噪音和振动,车辆工程师们采用了多种控制技术,主要包括以下几个方面:1、优化设计(1)发动机优化通过改进发动机的结构设计,如采用平衡轴、优化活塞形状和气门正时等,减少发动机内部的不平衡力和振动。
第六章 车辆的噪声及车身结构的减噪控制§6-1 汽车噪声的声源及评价指数一、汽车噪声的种类——主要声源道路噪声——路面构造、轮胎构造引起车轴、悬架、车身壳体的振动。
气流噪声——车身外形,车外凸出物,车窗密封等。
附件噪声——主要是冷、暖气装置工作噪声;发动机噪声——由进排气管系、冷却风扇、配气机构、附件、缸体、 曲轴等的振动产生,大小与其振动、声响特性、缸内 燃烧压力变动特性有关;传动系振动噪声——扭矩变化、旋转部件不平衡、传动系复合共振、 齿轮松动等有关;齿轮啮合噪声——与齿轮及轴的构造、加工精度、齿轮箱振动、扭矩 变化、传动轴振动等有关。
汽车噪声包括很多复杂的声源和振动传递系统,因此使噪声控制变得十分困难。
二、噪声的量度及评价指标噪声——不受欢迎的声音总称—⎪⎩⎪⎨⎧妨碍注意力集中 妨碍谈话 音色不悦耳影响休息和工作 很大的声音目前,尚无十分完善的评价指数。
可供参考的有如下几种:1.声强级和响度级车内噪声车身悬架、各种防振橡胶件直接传入车内上述噪声→→所起作用十分复杂态各异。
听的人的习惯和心理状噪声的种类不同;评价的目的不同;探讨问题的环境不同;⎪⎪⎭⎪⎪⎬⎫∙∙∙∙因:1°声强——单位时间内垂直通过单位面积的声能对平面声波,设声强为I,声压为P,空气密度为ρ,空气中的声速为C,则:声强: I=P2/(ρC)因耳杂听到的声强范围非常广,上述公式算出的值太大,使用不便,采用dB(分贝)计量单位表示。
一般用下式:声强级: A=10·lg(I/I0) dB(A)(SIL) I0——比较标准,I0=10-12 w/m2。
2°声压声压级: A=20lg(P/P0), P0——比较基准,P0=2×10-5 P a;(SPL) P——声压,P a。
3°响度耳朵的感觉因频率而异。
强度级相同,而频率不同,耳朵听到的声音响度感觉也不同。
将听到的同样响度的声音用同一数值表示时,其单位可以采用响度级——即任意声音的响度级可用与之响度相同的1000Hz纯音的强度级来表示,单位用phon(口方)。
整车NVH介绍一、 NVH定义NVH是指Noise(噪声),Vibration(振动)和Harshness(声振粗糙度),由于以上三者在汽车等机械振动中是同时出现且密不可分,因此常把它们放在一起进行研究。
声振粗糙度是指噪声和振动的品质,是描述人体对振动和噪声的主观感觉,不能直接用客观测量方法来度量。
由于声振粗糙描述的是振动和噪声使人不舒适的感觉,因此有人称Har shness为不平顺性。
又因为声振粗糙度经常用来描述冲击激励产生的使人极不舒适的瞬态响应,因此也有人称Harshness为冲击特性。
二、噪声的种类产生汽车噪声的主要因素是空气动力、机械传动、电磁三部分。
从结构上可分为发动机(即燃烧噪声),底盘噪声(即传动系噪声、各部件的连接配合引起的噪声),电器设备噪声(冷却风扇噪声、汽车发电机噪声),车身噪声(如车身结构、造型及附件的安装不合理引起的噪声及噪声源通过各种声学途径传入车内的噪声及汽车各部分振动传递途径激发车身板件的结构振动向驾驶室内辐射的噪声组成车内噪声。
)。
其中发动机噪声占汽车噪声的二分之一以上,包括进气噪声和本体噪声(如发动机振动,配气轴的转动,进、排气门开关等引起的噪声)。
因此发动机的减振、降噪成为汽车噪声控制的关键。
此外,汽车轮胎在高速行驶时,也会引起较大的噪声。
这是由于轮胎在地面流动时,位于花纹槽中的空气被地面挤出与重新吸入过程所引起的泵气声,以及轮胎花纹与路面的撞击声。
三、噪声的抑制1、改进噪声源噪声源抑制主要为发动机减震、进气噪声抑制、排气噪声抑制及传动系噪声抑制,即优化前消声器、主消声器及降低排气吊挂刚度;改进空气滤清器;采用小动不平衡量传动轴(在动力线校核后基础上)。
1.1、发动机减震减震垫布置原则:动力总成悬置布置主要分为三点式、四点式两种,KZ218系列车型动力总成悬置采用三点式布置。
动力总成质心理论上应布置在三角形重心上,并发动机悬置平面法线交点应在动力总成惯性主轴上方。
车载测试中的噪声和振动分析车辆是人们生活中不可或缺的交通工具,而车辆的安全性和舒适性是用户关注的重点。
为了确保汽车在各种复杂路况下的表现,车载测试便成为了必不可少的环节。
而在车载测试中,噪声和振动是需要重点关注和分析的问题。
一、噪声分析在车辆运行过程中,发动机、车轮以及风阻都会产生噪声。
这些噪声对乘坐者的听觉健康和舒适感产生直接影响。
因此,对车辆的噪声进行分析和控制是至关重要的。
1. 噪声来源车辆噪声主要来自于以下几个方面:- 发动机噪声:发动机在运转时会产生机械和排气噪声;- 轮胎噪声:车辆在路面行驶时,轮胎与路面的摩擦会产生噪声;- 风噪声:车辆行驶时气流产生的噪声;- 底盘噪声:底盘存在的共振和传导也会产生噪声。
2. 噪声测试为了准确分析车辆噪声,一般会采用专业的噪声测试仪器进行测量。
测试过程中需要注意以下几点:- 测试环境:应该在符合标准的噪声测试室或者闭合的空旷环境中进行;- 测试位置:车辆不同位置的噪声值可能存在差异,需要选取代表性的位置进行测试;- 测试方式:可以采用频谱分析等方法,获取不同频率下的噪声数据;- 数据处理:通过对数据的统计分析,得出噪声的特性和分布规律。
3. 噪声控制根据噪声测试结果,可以采取以下几种方式进行噪声控制:- 发动机隔音:采用吸声材料对发动机进行隔音,减少发动机噪声的传导;- 轮胎降噪:选择低噪声轮胎,减少与路面的摩擦声;- 风噪声控制:优化车辆外形设计,减少风噪声的产生;- 底盘隔音:对共振点进行隔音处理,减少底盘传导噪声。
二、振动分析车辆振动是指车辆在运行过程中产生的机械振动。
振动分析可以帮助了解车辆结构的稳定性和舒适性。
1. 振动来源车辆振动主要来源于以下几个方面:- 发动机振动:发动机在运转时会产生振动;- 轮胎不平衡:轮胎在高速行驶时由于不均匀磨损会导致横向振动;- 路面不平:路面起伏、坑洼等会引起车辆振动;- 悬挂系统:悬挂系统对车辆振动吸收和缓冲起到重要作用。
汽车车身结构的振动分析汽车,作为现代社会中不可或缺的交通工具,其性能和舒适度在很大程度上取决于车身结构的稳定性和抗振能力。
车身结构的振动不仅会影响乘坐的舒适性,还可能对车辆的安全性和耐久性产生潜在威胁。
因此,对汽车车身结构的振动进行深入分析具有重要的意义。
首先,我们来了解一下汽车车身结构振动的来源。
汽车在行驶过程中,会受到多种激励因素的作用,从而导致车身产生振动。
路面的不平整度是最常见的激励源之一。
当车轮经过凸起、凹陷或坑洼的路面时,会产生垂直方向的冲击力,通过悬架系统传递到车身。
发动机的运转也是一个重要的激励源。
发动机的往复运动和旋转部件的不平衡会产生振动,通过动力传动系统传递到车身。
此外,风阻、车辆的加速和减速、转向等操作也可能引起车身的振动。
那么,车身结构的振动会带来哪些影响呢?最直观的就是乘坐舒适性的下降。
频繁和强烈的振动会让乘客感到不适,甚至出现疲劳和晕车的症状。
长期处于振动环境中,还可能对人体健康造成一定的损害。
对于车辆本身来说,振动会加速零部件的磨损,降低其使用寿命。
例如,过度的振动可能导致悬架系统、连接件、电子设备等部件的损坏或失效,增加维修成本。
此外,振动还可能影响车辆的操控性能和稳定性,给驾驶带来安全隐患。
为了有效地分析车身结构的振动,我们需要借助一系列的工具和方法。
其中,有限元分析(Finite Element Analysis,简称 FEA)是一种常用的技术。
通过将车身结构离散化为有限个单元,并对这些单元的力学特性进行建模,可以模拟车身在不同载荷和工况下的振动响应。
在进行有限元分析时,需要准确地建立车身的几何模型,并定义材料属性、边界条件和载荷等参数。
实验测试也是振动分析中不可或缺的手段。
例如,可以使用加速度传感器安装在车身的关键部位,测量实际行驶过程中的振动加速度信号。
通过对这些信号进行处理和分析,可以获得车身振动的频率、幅值等特征参数。
在车身结构设计中,有一些关键因素会影响其振动特性。
关于汽车的振动的分析汽车振动系统是由多个子系统组成的具有质量、弹簧和阻尼的复杂的振动系统。
汽车振动源主要有:路面和非路面对悬架的作用、发动机运动件的不平衡旋转和往复运动、曲轴的变动气体负荷、气门组惯性力和弹性力、变速器啮合齿轮副的负荷作用、传动轴等速万向节的变动力矩等。
在汽车工程中,多数振动是连续扰动力,而其他一些则是汽车承受的冲击力和短时间的瞬态振动力。
振动又可分为周期性的和随机性的,发动机旋转质量的不平衡转动是周期振动的典型例子,而随机振动主要是由路面不平引起的。
所有质量--弹性系统都有自己的固有频率,如果作用于系统的干扰频率接近振动系统的固有频率,就会发生共振现象。
因此即使自身具有抗干扰能力的系统,装配到汽车上时仍有可能产生振动问题,这就要求在设计阶段准确建立系统模型及运动方程,分析自由振动特性和受迫振动响应,研究控制振动的方法。
汽车振动按照频率范围可分为:1、影响行驶平顺性的低频振动:它产生的主要振源由于路面不平度激励使得汽车非悬挂质量共振和发动机低频刚体振动,从而引起悬架上过大的振动和人体座椅系统的共振造成人体的不舒适,其敏感频率主要在1-8Hz(最新的研究表明:当考虑人体不同方向的响应时可到16Hz)。
对于乘员其评价指标一般是:针对载货汽车的疲劳降低工效界限和针对乘用汽车的疲劳降低舒适界限,或直接采用人体加权加速度均方根值进行评价;对于货物其评价指标是:车箱典型部位的均方根加速度。
由于该指标于人体生理主观反映密切相关,因此试验和评价往往采用测试和主观评价相结合。
2、车身结构振动和低频噪声:大的车身结构振动,不仅引起自身结构的疲劳损坏,而且更是车内低频结构辐射噪声源。
其频率主要分布在20—80Hz 的频带内。
由两方面引起:(1)激励源;主要有:道路激励、动力传动系统尤其是动力不平衡和燃烧所产生的各阶激励、空气动力激励;(2)车身结构和主要激励源系统的结构动力特性匹配不合理引起的路径传递放大。
汽车噪音和振动问题剖析汽车噪音和振动问题剖析在车辆故障中,噪音和振动故障是比较难诊断的,特别是车辆行驶中或行驶在特殊道路环境下才出现的故障,往往会给技术人员的诊断和维修带来困难。
而且目前还没有完善的诊断仪器能对这类故障进行准确的诊断,在维修中往往只能更多地依赖于经验和零件的互换来排除故障。
如何更准确快捷地对这类故障进行诊断呢?让我们先了解一下何为“噪音”和“振动”。
一、噪音1.噪音在一些专业资料中,噪音通常是指令人产生烦躁和不安的声音,我们不能机械地用某个指标来对噪音进行判断。
汽车排气的轰鸣声在赛道上可以认为是赛车的音乐;优美的音乐对不同的欣赏者来说,可能会被认为是噪音。
在实际工作中我们经常会遇到这种情况,当客户接到已经维修完毕的车辆后非常生气,“我要求你们排除的是车轮的那种怪怪的声音而不是你们说的减振器的声音,车轮的怪声让我担心轮胎会跑掉。
就算减振器坏了,我暂时可以忍受。
”所以,在诊断汽车噪音故障前,一定要认真听取客户对噪音故障现象的描述,这将决定你是否能顺利排除故障;故障排除后一定要请客户来进行验证。
这就是我们常说的“问诊”,后面我们还会继续讨论。
2.声音的衡量指标(1)响度——声音的响度是由人耳感受的声压的大小来决定的,声波振幅越大,相应声压越大,人耳感知的声音就越响。
(2)音频——音频是由声波的频率来决定,频率越高,音频就越高,也就是我们俗话说的“尖声”。
(3)音调——音调是由声波的波形来决定,同样一个音调,钢琴和小提琴演奏出来的声音是不同的(图1)。
3.声音的速度声音的传播速度受温度影响较大。
在0℃时,声速为331.5m/s。
每增加1℃,速度增加0.61m/s。
另外,声音与传播的媒介也有关系,在水中声音传播的速度为1500m/s,如果在金属中传播,速度将增加到5000m/s。
4.车内声音的共鸣反应由于在车内空间中存在声音共鸣现象,一个低频的声音会产生很大的“隆隆”声。
表1对车内出现的共鸣声进行了说明。
汽车车身NVH基本原理及方案资料汽车车身NVH(Noise, Vibration, and Harshness)是指汽车在运行过程中产生的噪音、振动和粗糙感。
车身NVH的质量对汽车的舒适性和乘坐体验有着重要的影响。
本文将介绍汽车车身NVH的基本原理及相应的解决方案。
1.噪音:汽车在行驶过程中会产生很多噪音,如发动机噪音、风噪音、轮胎噪音等。
这些噪音会直接影响驾驶员和乘客的舒适感,且长期暴露于高噪音环境中对健康也有一定的危害。
2.振动:汽车在行驶过程中,各种运动部件会产生振动,例如发动机、悬挂系统等。
这些振动通过车身传输到车内,给乘客带来不适感。
3.粗糙感:汽车在行驶过程中,路面的不平坦会导致车身的颠簸,给驾驶员和乘客带来颠簸感和冲击感。
这种粗糙感会影响驾驶员的操控能力和乘客的乘坐舒适性。
为了解决汽车车身NVH问题,汽车制造商采用了以下几种方案:1.车身结构优化:汽车的车身结构对NVH问题有着重要的影响。
通过合理的车身设计和材料选择,可以降低振动和噪音的传输。
比如,采用较厚的隔音材料和减震材料来降低噪音和振动的传递。
2.隔音措施:在汽车车身的关键位置安装隔音材料,如隔音棉、隔音膜等。
这些材料能够吸收和隔离噪音,减少其传递到车内的程度。
此外,在车身内部采用良好的密封设计也可以减少外界噪音的干扰。
3.减震措施:采用减震技术可以减少振动的传递。
常见的减震措施包括悬挂系统的优化、使用减震器等。
这些措施可以降低车身的振动,提高乘坐舒适性。
4.空气动力学设计:通过优化车身的造型和气动性能,可以降低风噪音的干扰。
减小车身与空气之间的阻力,减少湍流的产生,可以有效降低风噪音。
总之,汽车车身NVH的原理及解决方案涉及到车身结构设计、材料选择、隔音措施、减震技术、空气动力学设计和超静音技术等多个方面。
通过综合应用这些解决方案,可以有效地降低汽车车身NVH水平,提升车辆的乘坐舒适性和驾驶体验。