自然风压的形成原理 图1
- 格式:doc
- 大小:25.00 KB
- 文档页数:1
为了将地面新鲜空气不断输送到井下,并克服井巷阻力而流动,使工作面获得所需风量,矿井通风系统中必须有足够的通风动力。
矿井通风的动力有两种:自然风压(称自然通风)和扇风机风压(即机械通风)。
一、矿井自然通风的基本概念在非机械通风的矿井里常常观测到,风流从气温较低的井筒经工作面流到气温较高的井筒。
这主要是由于风流经过井巷时与岩石发生了热量交换,进、回风井里的气温出现差异,回风井里的空气密度小,因而两个井筒底部的空气压力不相等,其压差就是所谓的自然风压H n。
在自然风压的作用下风流不断流过矿井,形成自然通风过程。
如图1所示,p o为竖井口标高处的大气压。
如果在夏天,地面气温较高,如图1(a)所示的矿井里,p2> p1,就会出现与冬天相反方向的自然通风,如虚矢线所示。
不难设想,由于地面气温的变化,也会导致p2 = p1,因而自然通风停止。
在山区用平硐开拓的矿井,未安主扇通风时,经常可以见到自然通风风向的变化,有时风流停滞。
这就表明,完全依靠自然通风,不能满足安全生产的要求。
图1 自然通风对于一个有主扇通风的矿井,由于上述自然因素的作用,自然通风压依然存在。
设若主扇在回风井抽出式或在进风井压入式工作,当炎热季节温度颇高的地面空气流入进风井巷后,其热量虽然已经不断传给岩石,但通常仍然形成进风井里的空气密度还低于回风井里的空气密度,这时自然风压的方向就与扇风机通风的方向相反,扇风机风压不仅要用来克服井巷通风阻力,而且还要克服反向的自然风压。
冬季情况正好相反,自然风压能够帮助扇风机去克服井巷通风阻力。
从上述自然通风形成的原因也可以说明,即使只有一个出口的井筒或平硐,也可能形成自然通风。
冬天,当井筒周壁不淋水,就可能出现井筒中心部下风而周围上风的现象;夏天,却可能出现相反的通风方向。
大爆破后产生大量温度稍高的有毒有害气体以后,特别是当井下发生火灾产生大量温度较高的烟气时,就会出现局部的自然风压(称为“火风压”),扰乱原来的通风系统风流状况。
第六节 矿井通风动力一 、自然风压(一)、 自然风压及其形成和计算图1—6—1 简化矿井通风系图1-6-1为一个简化的矿井通风系统,2-3为水平巷道,0-5为通过系统最高点的水平线。
如果把地表大气视为断面无限大,风阻为零的假想风路,则通风系统可视为一个闭合的回路。
在冬季,由于空气柱0-1-2比5-4-3的平均温度较低,平均空气密度较大,导致两空气柱作用在2-3水平面上的重力不等。
其重力之差就是该系统的自然风压。
它使空气源源不断地从井口1流入,从井口5流出。
在夏季时,若空气柱5-4-3比0-1-2温度低,平均密度大,则系统产生的自然风压方向与冬季相反。
地面空气从井口5流入,从井口1流出。
这种由自然因素作用而形成的通风叫自然通风。
由上述例子可见,在一个有高差的闭合回路中,只要两侧有高差巷道中空气的温度或密度不等,则该回路就会产生自然风压。
p 为井口的大气压,Pa ;Z 为井深,m ;0-1-2和5-4-3井巷中空气密度的平均值ρm1和ρm2,kg/m 3,则自然风压为:H Zg N m m =-()ρρ12 (1-6-1)(二)、自然风压的影响因素及变化规律1、自然风压变化规律自然风压的大小和方向,主要受地面空气温度变化的影响。
如图1-6-2、图1-6-3所示分别为浅井和我国北部地区深井的自然风压随季节变化的情形。
由图可以看出,对于浅井,夏季的自然风压出现负值;而对于我国北部地区的一些深井,全年的自然风压都为正值。
图1-6-2 浅井自然风压随季节变化图图1-6-3 深井自然风压随季节变化图2、自然风压影响因素(1)两侧空气柱的温度差矿井某一回路中两侧空气柱的温差是影响的主要因素。
影响气温差的主要因素是地面入风气温和风流与围岩的热交换。
其影响程度随矿井的开拓方式、采深、地形和地理位置的不同而有所不同。
(2)矿井深度当两侧空气柱温差一定时,自然风压与矿井或回路最高与最低点间的高差Z 成正比。
深1000m的矿井,“自然通风能”占总通风能量的30%。
课后习题1-1 地面空气的主要成分是什么?矿井空气与地面空气有何区别?1-2 氧气有哪些性质?造成矿井空气中氧浓度减少的主要原因有娜些?1-3 矿井空气中常见的有害气体有哪些?《规程》对矿井空气中有害气体的最高容许浓度有哪些具体现定?1-4 CO有哪些性质?试说明CO对人体的危害以及矿井空气中CO的主要来源。
1-5 什么是矿井气候?简述井下空气温度的变化规律。
1-6 简述风速对矿内气候的影响。
1-7 简述湿度的表示方式以及矿内湿度的变化规律。
1-8 某矿井冬季总进风流的温度为5℃,相对湿度为70%,矿井总回风流的温度为20℃,相对湿度为90%,矿井总进、总回风量平均为2500 m3/min。
试求风流在全天之内从井下带走多少水分?(已知总进、回空气的饱和湿度为 4.76 和15.48 g/m3)1-9 某矿一采煤工作面C02的绝对涌出量为7.56 m3/min,当供风量为850 m3/min 时,问该工作面回风流中CO2浓度为多少?能否进行正常工作。
1-10 井下空气中,按体积计CO浓度不超过0.0024%.试将体积浓度(%)换算为0℃压力为101325 Pa状态的质量浓度(mg/m3)。
2-1 何谓空气的静压,它是怎样产生的?说明其物理意义和单位。
2-2 何谓空气的重力位能?说明其物理意义和单位。
2-3 简述绝对压力和相对压力的概念。
为什么在正压通风中断面上某点的相对全压大于相对静压,而在负压通风中断面某点的相对全压小于相对静压?2-4 试述能量方程中各项的物理意义。
2-5 分别叙述在单位质量和单位体积流体能量方程中,风流的状态变化过程是怎样反映的?2-6 在压入式通风的风筒中,测得风流中某点i 的相对静压hsi =600 Pa,速压h vi=100 Pa,已知风筒外与i 点同标高处的压力为100kPa。
求:(1)i 点的相对全压、绝对全压和绝对静压;(2)将上述压力之间的关系作图表示(压力为纵坐标轴,真空为0 点)。
自然风压的形成原理 图1-1为一个简化的矿井通风系统,0-5为通过系统最高点的水平面,2-3为水平巷道,0-1为两井口的的标高差。
在水平面0-5上,各点的大气压力均相等;在该水平面一下,由于空气温度、湿度的不同,空气柱0-1-2和5-4-3的密度也就不同,只是两空气柱作用在水平面2-3上的重力不等,其重力差就是该系统的自然风压。
在冬季,由于空气柱0-1-2比5-4-3的平均温度较低,平均空气密度较大,导致两空气柱作用在2-3水平面上的重力,2处大于3处,它使空气源源不断地从井口1流入,从井口5流出。
在夏季时,若空气柱5-4-3比0-1-2温度低,平均密度大,则系统产生的自然风压方向与冬季相反。
地面空气从井口5流入,从井口1流出。
图1-1 简化矿井通风系统 从上述中可知,在一个有高差的闭合回路中,只要两侧巷道存在高差,空气的温度或密度不等,则该回路就会产生自然风压。
根据自然风压的定义,图1-1所示系统的自然风压Hn 可用下式计算:
)(1-1 g d z ρ-g d z ρHn 5
3212
0⎰⎰= 式中 z —矿井最高点至最低水平间的距离,m ;
g —重力加速度,;
—分别为0-1-2和5-4-3井巷中dZ 段空气密度,。
由于空气密度受多种因素影响,因此利用式1-1计算自然风压较为困难。
为了简化计算,一般采用测算出0-1-2和5-4-3井巷中空气柱的平均密度和,用其分别代替公式(1-1)中的ρ1和ρ2,则公式(1-1)可写为:
)(m2m1ρ-ρzg Hn = (1-2)。