1.大学生数学竞赛模拟题一2015.9.4
- 格式:pdf
- 大小:80.93 KB
- 文档页数:2
高数竞赛预赛试题(非数学类)(参加高等数学竞赛的同学最重要的是好好复习高等数学知识,适当看一些辅导书及相关题目,主要是一些各大高校的试题。
)2009年 第一届全国大学生数学竞赛预赛试卷一、填空题(每小题5分,共20分)1.计算=--++⎰⎰y x yx x yy x Dd d 1)1ln()(____________,其中区域D 由直线1=+y x 与两坐标轴所围成三角形区域.解: 令v x u y x ==+,,则v u y v x -==,,v u v u y x d d d d 1110det d d =⎪⎪⎭⎫ ⎝⎛-=, v u u v u u u y x y x x yy x D D d d 1ln ln d d 1)1ln()(⎰⎰⎰⎰--=--++⎰⎰⎰⎰----=---=1021000d 1)ln (1ln d )d ln 1d 1ln (u uu u u u u u u u v v uuv u u u u u ⎰-=12d 1u uu (*) 令u t -=1,则21t u -=dt 2d t u -=,42221t t u +-=,)1)(1()1(2t t t u u +-=-,⎰+--=0142d )21(2(*)tt t⎰+-=1042d )21(2t t t 1516513221053=⎥⎦⎤⎢⎣⎡+-=t t t 2.设)(x f 是连续函数,且满足⎰--=2022d )(3)(x x f x x f , 则=)(x f ____________.解: 令⎰=20d )(x x f A ,则23)(2--=A x x f ,A A x A x A 24)2(28d )23(202-=+-=--=⎰,解得34=A 。
因此3103)(2-=x x f 。
3.曲面2222-+=y x z 平行平面022=-+z y x 的切平面方程是__________.解: 因平面022=-+z y x 的法向量为)1,2,2(-,而曲面2222-+=y x z 在),(00y x 处的法向量为)1),,(),,((0000-y x z y x z y x ,故)1),,(),,((0000-y x z y x z y x 与)1,2,2(-平行,因此,由x z x =,y z y 2=知0000002),(2,),(2y y x z x y x z y x ====,即1,200==y x ,又5)1,2(),(00==z y x z ,于是曲面022=-+z y x 在)),(,,(0000y x z y x 处的切平面方程是0)5()1(2)2(2=---+-z y x ,即曲面2222-+=y x z 平行平面022=-+z y x 的切平面方程是0122=--+z y x 。
趣味数学知识竞赛复习题一、填空题1、(苏步青)是国际公认的几何学权威,我国微分几何派的创始人。
2、(华罗庚)是一个传奇式的人物,是一个自学成才的数学家。
3、编有《三角学》,被称为“李蕃三角”且自称为“三书子”的是(李锐夫)。
4、世界上攻克“哥德巴赫猜想”的第一个人是(陈景润)。
5、(姜立夫)是现代数学在中国最早而又最富成效的播种人”,这是《中国大百科全书》和《中国现代数学家传》对他的共同评价。
6. 设有n个实数,满足|xi|<1(I=1,2,3,…,n), |x1|+|x2|+…+|xn|=19+|x1+x2+…+xn| ,则n的最小值207. 三角形的一个顶点引出的角平分线,高线及中线恰将这个顶点的角四等分,则这个顶角的度数为___90° ___8. 某旅馆有2003个空房间,房间钥匙互不相同,来了2010们旅客,要分发钥匙,使得其中任何2003个人都能住进这2003个房间,而且每人一间(假定每间分出的钥匙数及每人分到的钥匙数都不限),最少得发出_16024______把钥匙.9. 在凸1900边形内取103个点,以这2003个点为顶点,可将原凸1900边形分割成小三角形的个数为______2104 _____.10. 若实数x满足x4+36<13x2,则f(x)=x3-3x的最大值为______18_____11 ."我买鸡蛋时,付给杂货店老板12美分,"一位厨师说道,"但是由于嫌它们太小,我又叫他无偿添加了2只鸡蛋给我。
这样一来,每打(12只)鸡蛋的价钱就比当初的要价降低了1美分。
" 厨师买了_18只鸡蛋?12.已知f(x)∈[0,1],则y=f(x)+1的取值范围为 ___[7/9,7/8]____13. 已知函数f(x)与g(x)的定义域均为非负实数集,对任意的x≥0,规定f(x)*g(x)=min{f(x),g(x)}.若f(x)=3-x,g(x)=,则f(x)*g(x)的最大值为____(2√3-1) _____ 14.已知a,b,cd∈N,且满足342(abcd+ab+ad+cd+1)=379(bcd+b+d),设M=a×103+b×102+c×10+d,则M的值为______ 1949 ___.15. 用E(n)表示可使5k是乘积112233…nn的约数为最大的整数k,则E(150)=__ 2975_________16. 从1到100的自然数中,每次取出不同的两个数,使它们的和大于100,则可有_2500________种不同的取法.17. 从正整数序列1,2,3,4,…中依次划去3的倍数和4的倍数,但是其中是5的倍数均保留,划完后剩下的数依次构成一个新的序列:A1=1,A2=2,A3=5,A4=7,…,则A2003的值为____3338 _____.18. .连接凸五边形的每两个顶点总共可得到十条线段(包括边在内),现将其中的几条线段着上着颜色,为了使得该五边形中任意三个顶点所构成的三角形都至少有一条边是有颜色的则n的最小值是_419. 已知x0=2003,xn=xn-1+ (n>1,n∈N),则x2003的整数部分为_______2003___21. 已知ak≥0,k=1,2,…,2003,且a1+a2+…+a2003=1,则S=max{a1+a2+a3,a2+a3+a4,…, a2001+a2002+a2003}的最小值为________3/2007 _.22. 对于每一对实数x,y,函数f满足f(x)+f(y)=f(x+y)-xy-1,若f(1)=1,那么使f(n)=n(n≠1)的整数n共有_1个.23.在棱长为a的正方体内容纳9个等球,八个角各放一个,则这些等球最大半径是____. (√3-3/2)a ___24.已知a,b,c都不为0,并且有sinx=asin(y-z),siny=bsin(z-x),sinz=csin(x-y).则有ab+bc+ca=__-1 _____.二、选择题1、被誉为中国现代数学祖师的是(1、C )。
2015高教社杯全国大学生数学建模竞赛C题评阅要点[说明]本要点仅供参考,各赛区评阅组应根据对题目的理解及学生的解答,自主地进行评阅。
本题目希望学生借助于欧阳修的名句“月上柳梢头,人约黄昏后”来了解天体(太阳和月亮)的运动规律,用天文学的观点来解释它发生的日期与时间。
问题1
(1)需要给出“柳梢头”和“黄昏后”的定义,即月亮的高度角是多少时为“月上柳梢头”,
日落后的多长时间为“黄昏后”。
这两个概念应与月亮和太阳有关,如果只用某个固定的时间定义黄昏是不可取的。
(2)计算黄昏时间需要用到日落时间,而日落时间需要用到太阳高度角的计算公式(自己
推导与查找资料均可)。
希望由公式导出黄昏时间,仅给出定性说明是不可取的。
(3)利用月亮高度角的计算公式(自己推导与查找资料均可)导出“月上柳梢头”的时间,
计算时一般需要对公式及其参数作适当简化,仅给出定性说明是不可取的。
(4)利用已有的知识,如日出、日落、月出、月落时刻(这些内容能在教科书上或网上查
到),验证模型的正确性。
问题2
在完成问题1的基础之上,需将题目所给城市的地理数据(经度与纬度)代入,推算同时发生“月上柳梢头,人约黄昏后”的日期和时间。
这里需注意“当地时间”与“北京时间”的差异。
全国大学生数学竞赛赛试题(1-9届)第一届全国大学生数学竞赛预赛试题一、填空题(每小题5分,共20分)1.计算 $\iint_D \frac{y}{x+y-1} \mathrm{d}x\mathrm{d}y$,其中区域$D$ 由直线$x+y=1$ 与两坐标轴所围成三角形区域。
2.设 $f(x)$ 是连续函数,且满足 $f(x)=3x^2-\intf(x)\mathrm{d}x-2$,则 $f(x)=\underline{\hspace{2em}}$。
3.曲面 $z=\frac{x^2+y^2-2}{2}$ 平行于平面 $2x+2y-z=$ 的切平面方程是 $\underline{\hspace{2em}}$。
4.设函数 $y=y(x)$ 由方程 $xe^{f(y)}=\ln 29$ 确定,其中$f$ 具有二阶导数,且 $f'\neq 1$,则$y''=\underline{\hspace{2em}}$。
二、(5分)求极限 $\lim\limits_{x\to n}\frac{e^{ex+e^{2x}+\cdots+e^{nx}}}{x}$。
三、(15分)设函数 $f(x)$ 连续,$g(x)=\intf(xt)\mathrm{d}t$,且 $\lim\limits_{x\to 1} f(x)=A$,$A$ 为常数,求 $g'(x)$ 并讨论 $g'(x)$ 在 $x=1$ 处的连续性。
四、(15分)已知平面区域 $D=\{(x,y)|0\leq x\leq\pi,0\leq y\leq\pi\}$,$L$ 为 $D$ 的正向边界,试证:1)$\int_L xe^{\sin y}\mathrm{d}y-ye^{-\sinx}\mathrm{d}x=\int_L xe^{-\sin y}\mathrm{d}y-ye^{-\sinx}\mathrm{d}x$;2)$\int_L xe^{\sin y}\mathrm{d}y-ye^{-\sinx}\mathrm{d}x\geq \frac{\pi^2}{2}$。
一、填空题(每小题5分,共20分)1.计算=--++⎰⎰y x yx x yy x Dd d 1)1ln()(__ ,其中区域D 由直线1=+y x 与两坐标轴所围成三角形区域. 2.设)(x f 是连续函数,且满足⎰--=222d )(3)(x x f x x f , 则=)(x f ____________.3.曲面2222-+=y x z 平行平面022=-+z y x 的切平面方程是__________. 4.设函数)(x y y =由方程29ln )(yy f e xe=确定,其中f 具有二阶导数,且1≠'f ,则=22d d xy_____.二、(5分)求极限xenx x x x ne e e )(lim 20+++→Λ,其中n 是给定的正整数.三、(15分)设函数)(x f 连续,⎰=10d )()(t xt f x g ,且A xx f x =→)(lim,A 为常数,求)(x g '并讨论)(x g '在0=x 处的连续性.四、(15分)已知平面区域}0,0|),{(ππ≤≤≤≤=y x y x D ,L 为D 的正向边界,试证:(1)⎰⎰-=---Lx y L x y x ye y xe x ye y xe d d d d sin sin sin sin ; (2)2sin sin 25d d π⎰≥--L y y x ye y xe .五、(10分)已知x x e xe y 21+=,x x e xe y -+=2,x x x e e xe y --+=23是某二阶常系数线性非齐次微分方程的三个解,试求此微分方程.六、(10分)设抛物线c bx ax y ln 22++=过原点.当10≤≤x 时,0≥y ,又已知该抛物线与x 轴及直线1=x 所围图形的面积为31.试确定c b a ,,,使此图形绕x 轴旋转一周而成的旋转体的体积最小.七、(15分)已知)(x u n 满足),2,1()()(1Λ=+='-n e x x u x u xn n n, 且n eu n =)1(, 求函数项级数∑∞=1)(n n x u 之和. 八、(10分)求-→1x 时, 与∑∞=02n n x 等价的无穷大量.一、(25分,每小题5分)(1)设22(1)(1)(1),n n x a a a =+++L 其中||1,a <求lim .n n x →∞(2)求21lim 1x x x e x -→∞⎛⎫+ ⎪⎝⎭。
目录前言................................................................................................. 错误!未定义书签。
目录........................................................................................................................... - 0 - 一、什么是数学模型............................................................................................... - 3 -2001年B题……公交车调度......................................................................... - 4 - 2001年C题……基金使用计划..................................................................... - 9 - 2002年A题……车灯线光源的优化设计................................................... - 10 - 2002年B题……彩票中的数学................................................................... - 11 - 2003年A题……SARS的传播.................................................................... - 15 - 2003年B题……露天矿生产的车辆安排................................................... - 26 - 2003年D题……抢渡长江........................................................................... - 29 - 2004年C题……饮酒驾车........................................................................... - 32 - 2004年B题……电力市场的输电阻塞管理............................................... - 34 - 电力市场交易规则:............................................................................. - 35 -输电阻塞管理原则:............................................................................. - 36 -表1各机组出力方案(单位:兆瓦,记作MW) ............................ - 39 -表2各线路的潮流值(各方案与表1相对应,单位:MW) ......... - 41 -表3各机组的段容量(单位:MW) ................................................. - 42 -表4各机组的段价(单位:元/兆瓦小时,记作元/MWh)............. - 42 -表5各机组的爬坡速率(单位:MW/分钟) .................................... - 43 -表6各线路的潮流限值(单位:MW)和相对安全裕度 ................. - 43 -2008年B题……高等教育学费标准探讨................................................... - 43 - 2008年D题……NBA赛程的分析与评价 ................................................. - 45 - 2009年A题……制动器试验台的控制方法分析....................................... - 47 - 2009年B题……眼科病床的合理安排....................................................... - 50 - 【附录】2008-07-13到2008-09-11的病人信息 ................................ - 51 - 2009年D题……会议筹备........................................................................... - 77 - 附表1……10家备选宾馆的有关数据................................................. - 78 -附表2……本届会议的代表回执中有关住房要求的信息(单位:人)- 79 -附表3……以往几届会议代表回执和与会情况.................................. - 80 -附图(其中500等数字是两宾馆间距,单位为米)......................... - 81 -二、为什么要学习数学模型................................................................................. - 83 -1、数学模型无处不在,我们的生活、工作、学习都离不开它............... - 83 -例1买房贷款问题................................................................................. - 83 -例2物体冷却过程的数学模型............................................................. - 84 -2、是学好数学用好数学的必经之路........................................................... - 86 -3、是数学教学改革的重要手段和有效路径............................................... - 88 -4、数学建模竞赛所提唱的团队精神是现代大学生必须具备素质........... - 91 -5、数学建模竞赛鼓励学生用跳跃式的、发散式的形象思维方法,这有利于培养学生的创新意识。
“互联网+”时代的出租车资源配置摘要近几年来,随着燃油价格、维修等费用的上涨,导致了出租车运行成本显著上涨,“打车难”成了人们关注的一个热点问题。
为了缓解大城市打车难的问题,打车软件应运而生。
本文通过Matlab拟合和定性分析以及计算等方法,建立演化博弈模型,针对打车难问题设计出了合理的补贴方案。
针对问题一,根据2014年各省拥有的出租车总数量情况和城市人口情况,发现北京、上海、杭州、武汉等城市具有拥有出租车数量较多,常驻人口多,流动人口大,出租车需求量大等特点,所以选取这四个城市,查找高峰期与非高峰期时刻的出租车需求量和实载量数据,以实载量与需求量的比值作为指标,通过计算,分析出不同时空的出租车资源的供求匹配程度,在凌晨一点时上海出租车需求量大,其次是杭州、北京,武汉需求量小,早上七点时,北京出租车需求量大,其次是上海、杭州,武汉需求量小,下午一点时,北京需求量大,其次是上海、杭州,武汉需求量小,晚上19点时,上海出租车需求量大,其次是北京、杭州,武汉需求量小,但总体供小于求。
并采用Matlab软件画出各个城市对应的供求关系图。
针对问题二,建立出租车司机与乘客对打车软件使用意向的演化博弈模型,通过乘客与出租车司机效益的对比,对模型求解与分析,得出结论,认为乘客由于出租车价格偏高而不愿意使用打车软件,又通过计算,发现出租车司机使用打车软件后由于较高的燃油费导致收入增加不明显,而不太愿意使用打车软件。
所以公司只在司机收入方面部分缓解了打车难这个问题。
针对问题三,通过分析传统打车方式下的出租车的供求关系,可以看出打车软件的出现却有其现实意义,但在实践过程中也存在一些不足,比如部分出租车司机抱怨有较高的燃油费,收入相对来说偏低。
面对燃油价格的变化,出租车经营者不能按照自己目标制定出租车经营策略。
本文根据燃油价格变化情况,以达到利润最大化为目标,制定了基于经营合理利润水平的出租车补贴方案;又根据出租车经营利润的变化率与燃油价格变化率成正比,制定了基于燃油价格变化率的出租车补贴方案。
大学生数学建模技能测试题考虑现实世界问题(不要求解答):在一条新公共汽车路线上,要沿路设置公共汽车站且每个车站都需要遮雨棚。
公交公司希望这种服务既要满足顾客的需求同时又不能超过公交车的要求。
请问车站设置在什么位置,才能使尽可能多的人享受到这种服务?在设计一个简单的数学模型时,您认为以下的假定哪个最不重要?A.假设仅仅能建一个遮雨棚B.假设路是平直的C.假设晴天是雨天的两倍D.假设公共汽车运行的是半小时的时间表E.假设顾客不会走很远的路去乘车2考虑现实世界问题(不要求解答):沿一条新电车路线,安置电车站。
且每个车站都需要遮雨棚。
电车公司希望这种服务既要满足顾客的需求同时又不能超过电车的要求。
请问车站设置在什么位置,才能使尽可能多的人享受到这种服务?在设计一个简单的数学模型时,您认为以下的假定哪个最不重要?A.假设顾客不会走很远的路去乘电车B.假设电车运行的是20 分钟的时间表C.假设电车线是单轨道D.假设电车司机能从电车的前后都可以驾驶E.假设电车站可以设置在任何位置。
3考虑现实世界问题(不要求解答):一个步行者要穿过一条交通繁忙的马路,假设马路是一条直的单行机动车道。
在设计一个是否需要设置人行横道的简单数学模型时,您认为以下假定哪个最不重要?A 横穿马路将由行人通过按钮来控制B 交通流量是恒定的C 车流速度是常数并且等于限制速度D. 行人以恒定的速度通过马路E. 行人不会走很远路来由此穿过马路4考虑现实世界问题(不要求解答)自行车轮子的最佳尺寸是多少?以下哪个问题最能说明骑车的稳定性?A 轮子与脚蹬间有链条相连吗?B 骑车人有多高?C 自行车传动装置吗?D 能骑上去的最高路缘是多少?E. 地形情况怎样?5考虑现实世界问题(不要求解答)婴儿车轮子的最佳尺寸是多少?下面的哪一个陈述的问题最能表明小孩坐车感到平稳?A.婴儿车有三个轮子还是四个轮子?B.前后轮子之间的距离是多少?C.座位装有软垫吗?D.孩子有多大?E.是柏油碎石路面还是混泥土路面?6考虑现实世界问题(不要求解答)您希望将您的汽车倒入已停好的一排车中间的一个空车位。
众筹筑屋规划方案设计摘要本题针对众筹筑屋规划问题,以容积率大小为指标,综合分析众筹屋建设方案表、核算相关数据、各种房型建设约束范围、参筹登记网民对各种房型的满意比例和相关说明,运用线性规划、检验法分别建立了收益最大化模型、检验方法模型,运用EXCEL、LINGO等数学软件得出了相应的各种房型的套数。
最后,我们从收益最大化的角度对方案II进行了评价,与方案I作对比得到了新方案更优的结论。
针对问题一,根据题目给出数据对开发成本、收益、容积率、增值税,建立数学模型。
1.成本=开发成本+土地支付的金额+税收成本(所有收入的5.56%)2.收益(L)=(各建筑每平米的售价-每各建筑平米开发成本)*各建筑建筑面积*各房屋套数-购地成本-税收3.容积率=总建筑面积/土地所有面积4.增值税将其他类型的房型根据普通和非普通房型面积比例分摊,再分类为普通宅和非普通宅分别计算增值额和扣除项目金额。
再由附件二得出数学模型增值额:iiiizpnez-=∑=1111分别计算普通房型和非普通房型的增值税,整合得出增值税。
针对问题二,根据所给房型的建设约束范围、参筹满意度比例等条件,确定各种房型的对应比例。
在考虑总成本即开发成本、扣除项目金额和地价最小的前提下运用线性规划思想,建立了收益最大化模型。
以容积率小于或等于2.28为条件,同时为了确定各种房型的建房套数和网民对各种房型的满意比例之间的对应关系,我们引入了0—1规划并运用LINGO数学软件分别对11个房型进行线性规划分析,从而得到11种房型的套数。
针对问题三,我们在问题一和问题二的基础上,首先,本文还对模型的误差进行了定性分析;利用lingo软件对问题二中的方案II进行了检验,恰当地对新的方案址进行了评价;最后对众筹筑房问题进行了推广。
本文建模思路清晰,观点独到,分析全面,特色分明。
关键词:众筹筑屋 0-1规划 LINGO EXCEL§1 问题的重述众筹筑屋是互联网时代一种新型的房地产形式。
大学生数学建模技能测试题考虑现实世界问题(不要求解答):在一条新公共汽车路线上,要沿路设置公共汽车站且每个车站都需要遮雨棚。
公交公司希望这种服务既要满足顾客的需求同时又不能超过公交车的要求。
请问车站设置在什么位置,才能使尽可能多的人享受到这种服务?在设计一个简单的数学模型时,您认为以下的假定哪个最不重要?A.假设仅仅能建一个遮雨棚B.假设路是平直的C.假设晴天是雨天的两倍D.假设公共汽车运行的是半小时的时间表E.假设顾客不会走很远的路去乘车2考虑现实世界问题(不要求解答):沿一条新电车路线,安置电车站。
且每个车站都需要遮雨棚。
电车公司希望这种服务既要满足顾客的需求同时又不能超过电车的要求。
请问车站设置在什么位置,才能使尽可能多的人享受到这种服务?在设计一个简单的数学模型时,您认为以下的假定哪个最不重要?A.假设顾客不会走很远的路去乘电车B.假设电车运行的是20 分钟的时间表C.假设电车线是单轨道D.假设电车司机能从电车的前后都可以驾驶E.假设电车站可以设置在任何位置。
3考虑现实世界问题(不要求解答):一个步行者要穿过一条交通繁忙的马路,假设马路是一条直的单行机动车道。
在设计一个是否需要设置人行横道的简单数学模型时,您认为以下假定哪个最不重要?A 横穿马路将由行人通过按钮来控制B 交通流量是恒定的C 车流速度是常数并且等于限制速度D. 行人以恒定的速度通过马路E. 行人不会走很远路来由此穿过马路4考虑现实世界问题(不要求解答)自行车轮子的最佳尺寸是多少?以下哪个问题最能说明骑车的稳定性?A 轮子与脚蹬间有链条相连吗?B 骑车人有多高?C 自行车传动装置吗?D 能骑上去的最高路缘是多少?E. 地形情况怎样?5考虑现实世界问题(不要求解答)婴儿车轮子的最佳尺寸是多少?下面的哪一个陈述的问题最能表明小孩坐车感到平稳?A.婴儿车有三个轮子还是四个轮子?B.前后轮子之间的距离是多少?C.座位装有软垫吗?D.孩子有多大?E.是柏油碎石路面还是混泥土路面?6考虑现实世界问题(不要求解答)您希望将您的汽车倒入已停好的一排车中间的一个空车位。
第1页 共5页2015年大学生数学竞赛试卷答案___________专业________班级 学号________________ 姓名___________一、 解答下列各题(本题满分共20分)1. (10分,每5分)()332300tan 13lim lim s in 3(1)x x x x x xx x x x x ο→→++--== (2)求极限21/sin 02cos lim 3x x x →+⎛⎫ ⎪⎝⎭222221/sin 1/sin 001(cos 1)/3(/2)/362cos cos 1lim lim 133lim lim x x x x x x xx x x x x e e e→→---→→+-⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭===2. (10分)设函数3222, 1(), 1157, 1x x f x Ax Bx Cx D x x x -<-⎧⎪=+++-≤≤⎨⎪+>⎩试确定常数A,B,C,D 的值,使()f x 处处可导。
第2页 共5页此处不能书写此处不能书写此处不能书写此处不能书写此处不能书写此处不能书写此处不能书写……………………………………………装………………………………订…………………………线……………………………………………………1321121(10)lim(22)4(1).(1)(22)|2(1)()|(32)|32.(10)(10)12,(1)32(1) 5.x x x x f x f A B C D f x f Ax Bx Cx D Ax Bx C A B C f A B C D f f A B C f →--=-+=-=--+---=-=-=-+-+''''-=-==-=+++=++=-+-=+++=+=''=++==解:=43221232 5.{ -9/4, 3/4, 41/4, 13/4}.A B C D A B C A B C D A B C A B C D -+-+=-⎧⎪-+=⎪⎨+++=⎪⎪++=⎩====二、解答下列各题(本题满分共30分,每题10分)3.确定常数,a b R ∈,使2001lim2sin x x ax x →=-⎰。
太阳影子定位(一)摘要根据影子的形成原理和影子随时间的变化规律,可以建立时间、太阳位置和影子轨迹的数学模型,利用影子轨迹图和时间可以推算出地点等信息,从而进行视频数据分析可以确定视频的拍摄地点。
本文根据此模型求解确定时间地点影子的运动轨迹和对于已知运动求解地点或日期。
直立杆的影子的位置在一天中随太阳的位置不断变化,而其自身的所在的经纬度以及时间都会影响到影子的变化。
但是影子的变化是一个连续的轨迹,可以用一个连续的函数来表达。
我们可以利用这根长直杆顶端的影子的变化轨迹来描述直立杆的影子。
众所周知,地球是围绕太阳进行公转的,但是我们可以利用相对运动的原理,将地球围绕太阳的运动看成是太阳围绕地球转动。
我们在解决问题一的时候,利用题目中所给出的日期、经纬度和时间,来解出太阳高度角h,太阳方位角Α,赤纬角δ,时角Ω,直杆高度H和影子端点位置(x0,y o),从而建立数学模型。
影子的端点坐标是属于时间的函数,所以可以借助时间写出参数方程来描述影子轨迹的变化。
问题二中给出了日期和随时间影子端点的坐标变化,可以根据坐标变化求出运用软件拟合出曲线找到在正午时纵坐标最小,横坐标最大,影子最短的北京时间,根据时差与经度的关系,求出测量地点的经度。
根据太阳方位角Α,赤纬角δ,时角Ω,可以求出太阳高度角h。
再结合问题一中的表达式,建立方程求解测量地点的纬度Ф。
我们在求解第三问的思路也是沿用之间的模型,但第三问上需要解出日期。
对于问题四的求解,先获取自然图像序列或者视频帧,并对每一帧图像检测出影子的轨迹点;然后确定多个灭点,并拟合出地平线;拟合互相垂直的灭点,计算出仿射纠正和投影纠正矩阵;进而还原出经过度量纠正的世界坐标;在拟合出经过度量纠正世界坐标中的影子点的轨迹,利用前面几问中的关系求出经纬度。
关键字:太阳影子轨迹Matlab曲线拟合(二)问题重述确定视频拍摄地点和拍摄日期是视频数据分析的重要方面,太阳影子定位技术就是通过分析视频中物体的太阳影子变化,确定视频拍摄的地点和日期的一种方法。
高数竞赛预赛试题(非数学类)(参加高等数学竞赛的同学最重要的是好好复习高等数学知识,适当看一些辅导书及相关题目,主要是一些各大高校的试题。
)2009 年 第一届全国大学生数学竞赛预赛试卷一、填空题(每小题5 分,共 20 分)(xy) ln(1 y)1.计算xdxdy ____________ ,其中区域 D 由直线 x y 1与两D1 x y坐标轴所围成三角形区域.1解 : 令 xy u, x v ,则 xv, y u v ,11( x y) ln(1y ) Dx dxdy1 xyu ln u u ln v dudvD1 u1u ln uu uu(udvln vdv)du0 1 01 u 0 1u 2 ln u u(u ln u u) 01 u 1 u du1u 2du( * )1 u令 t 1 u ,则u 1 t 2du2tdt , u 21 2t 2t 4 , u(1 u) t 2 (1 t)(1 t) ,(*)0 ( 12t2t 4)d t2112 t31 t 512t 4)dt 2 t2 (1 2t352.设 f ( x) 是连续函数,且满足f (x)3x 22f (x)dx16152 , 则 f (x)____________.令 A 23x2A 2 ,解:f (x)dx ,则 f ( x)A 2A 2)d x 82(A 2)4 2A ,( 3x 2解得 A4 。
因此 f (x) 3x 2 10 。
3 3 .曲面 z x 2y 2 2 平行平面 2x 2 y z0 的切平面方程是 __________. 32解: 因平面2x2 yz 0 的法向量为 (2,2,1) , 而 曲 面 z x 2 y 22 在2 ( x 0 , y 0 ) 处 的 法 向 量 为 ( z x (x 0 , y 0 ), z y ( x 0 , y 0 ), 1), 故( z x ( x 0 , y 0 ), z y ( x 0 , y 0 ), 1) 与 ( 2,2, 1) 平 行 , 因 此 , 由 z x x , z y 2y 知2 z x ( x 0 , y 0 ) x 0 ,2 z y (x 0 , y 0 )2y 0 ,即 x 02, y 0 1 , 又 z( x 0 , y 0 ) z( 2,1) 5 , 于 是 曲 面 2x 2yz 0 在( x 0 , y 0 , z( x 0 , y 0 )) 处的切平面方程是 2( x 2) 2( y 1) ( z5)0 ,即曲面zx 2 y 2 2 平行平面22x 2 y z 0 的切平面方程是 2x 2y z 1 0 。