第二章电极与电极过程概述
- 格式:ppt
- 大小:421.00 KB
- 文档页数:21
电极过程的基本历程和特点电极过程是指在电化学反应中,电子从电极中流出或流入溶液的过程。
电极过程是电化学反应的关键步骤,它决定了整个电化学反应的进行方式和速率。
本文将从基本历程和特点两个方面进行解释。
一、基本历程:电极过程包括氧化过程和还原过程两个方面。
在氧化过程中,电极上的物质失去电子,形成正离子;在还原过程中,电极上的物质获得电子,形成负离子或中性物质。
氧化过程的基本历程如下:1. 电子从电极中流出:电极上的物质失去电子,形成正离子,并将电子传递给电解质溶液中的其他物质。
2. 离子在溶液中扩散:正离子在电解质溶液中自由扩散,并与其他物质发生反应。
3. 反应生成产物:正离子与电解质溶液中的其他物质发生反应,生成新的物质。
还原过程的基本历程如下:1. 电子进入电极:电解质溶液中的物质失去电子,形成负离子或中性物质,并将电子传递给电极。
2. 离子在溶液中扩散:负离子或中性物质在电解质溶液中自由扩散,并与其他物质发生反应。
3. 反应生成产物:负离子或中性物质与电解质溶液中的其他物质发生反应,生成新的物质。
二、特点:1. 电极过程是电化学反应的关键步骤:电极过程决定了电化学反应的进行方式和速率。
通过控制电极上的物质的氧化和还原过程,可以控制电化学反应的方向和速率。
2. 电极过程与电极材料的性质相关:电极过程的进行受到电极材料的性质影响。
不同的电极材料对电极过程的催化作用不同,可以加速或减缓电极过程的进行。
3. 电极过程与电解质溶液的浓度相关:电极过程的进行受到电解质溶液中物质浓度的影响。
电解质溶液中物质浓度越高,电极过程的进行越容易。
4. 电极过程与温度的变化相关:电极过程的进行受到温度的影响。
温度升高可以加快电极过程的进行速率,而温度降低则会减慢电极过程的进行速率。
5. 电极过程与电流的大小相关:电极过程的进行速率与电流的大小呈正相关关系。
电流越大,电极过程进行得越快,反之亦然。
电极过程是电化学反应中的关键步骤,它决定了反应的进行方式和速率。
电极过程简明教程电极过程是化学反应中重要的一环,它使反应物受到电子的作用,从而产生电子的行为。
它是一种能够交换电子的过程,广泛应用于日常的实验,也广泛应用于医学、农业和其他行业。
本文将简要介绍电极过程的基本原理和过程。
一、电极反应的定义电极反应是指当反应物受到电子的作用时,发生的电子行为。
这种电子行为可以使反应物产生电子流动,从而使反应物之间产生联系,从而实现反应。
电极反应可分为催化电极反应、氧化还原电极反应和电极分离反应等。
二、电极反应的基本原理电极反应是电子在反应物之间传输的过程,表面上可以看到电子从一种物质到另一种物质的迁移。
这一过程是以反应物之间的能量差值为基础的,比如物质A含有低能量电子,物质B含有高能量电子,当两者之间存在能量差时,电子就会从物质A向物质B迁移,从而实现反应。
三、电极反应的基本过程电极反应的过程主要包括以下几步:1.反应物和电极连接起来,使其具有电流流过反应物的能力。
2. 使用电源提供电压,以产生电流,从而使反应物之间形成电子反应,从而进行反应。
3.过监测反应物及其产物的活性变化,确定反应是否发生,及其反应的方向和程度。
4.后断开电极连接,停止反应过程。
四、电极反应的实验步骤1.备所需设备:电源、电极、容器、反应物等。
2.电极放置在容器中,将反应物放入容器中,充分混合;3.接电极与电源,调节电压,使电极反应开始;4.测反应物及其产物的活性变化;5.整电压,使反应接近平衡;6.开连接,停止反应过程,完成实验。
五、总结电极反应是指当反应物受到电子的作用时,发生的电子行为,是一种能够交换电子的过程。
本文介绍了电极反应的基本原理、基本过程及实验步骤,希望能够给相关人员搭建一座桥梁,扩大电极反应的应用范围,促进电极反应实验的顺利进行。
电化学原理第一章 绪论两类导体:第一类导体:凡是依靠物体内部自由电子的定向运动而导电的物体,即载流子为自由电子(或空穴)的导体,叫做电子导体,也称第一类导体。
第二类导体:凡是依靠物体内的离子运动而导电的导体叫做离子导体,也称第二类导体。
三个电化学体系:原电池:由外电源提供电能,使电流通过电极,在电极上发生电极反应的装置。
电解池:将电能转化为化学能的电化学体系叫电解电池或电解池。
腐蚀电池:只能导致金属材料破坏而不能对外界做有用功的短路原电池。
阳极:发生氧化反应的电极 原电池(-)电解池(+) 阴极:发生还原反应的电极 原电池(+)电解池(-) 电解质分类:定义:溶于溶剂或熔化时形成离子,从而具有导电能力的物质。
分类:1.弱电解质与强电解质—根据电离程度2.缔合式与非缔合式—根据离子在溶液中存在的形态3.可能电解质与真实电解质—根据键合类型 水化数:水化膜中包含的水分子数。
水化膜:离子与水分子相互作用改变了定向取向的水分子性质,受这种相互作用的水分子层称为水化膜。
可分为原水化膜与二级水化膜。
活度与活度系数: 活度:即“有效浓度”。
活度系数:活度与浓度的比值,反映了粒子间相互作用所引起的真实溶液与理想溶液的偏差。
规定:活度等于1的状态为标准态。
对于固态、液态物质和溶剂,这一标准态就是它们的纯物质状态,即规定纯物质的活度等于1。
离子强度I :离子强度定律:在稀溶液范围内,电解质活度与离子强度之间的关系为: 注:上式当溶液浓度小于0.01mol ·dm-3 时才有效。
电导:量度导体导电能力大小的物理量,其值为电阻的倒数。
符号为G ,单位为S ( 1S =1/Ω)。
影响溶液电导的主要因素:(1)离子数量;(2)离子运动速度。
当量电导(率):在两个相距为单位长度的平行板电极之间,放置含有1 克当量电解质的溶液时,溶液所具有的电导称为当量电导,单位为Ω-1 ·cm2·eq-1。
5.电极过程和电极过程动力学5.1电化学装置的可逆性:化学反应可逆性;热力学上可逆性5.2电极的极化5.3电极过程的控制步骤:电极反应的特点;电极反应的控制步骤5.4电荷转移动力学方程5.5交换电流密度与电极反应速度常数5.6稳态极化时的电极动力学方程5.7浓差极化及其电机动力学方程5.8化学极化分解电压E分:在可逆情况下使电解质有效组元分解的最低电压,称为理论分解电压(V e)。
理论分解电压是阳极平衡电极电位(εe(A))与阴极平衡电极电位(εe(K))之差。
Ve=εe(A)- εe(K)(10 - 5)当电流通过电解槽,电极反应以明显的速度进行时,电极反应将会明显偏离平衡状态,而成为一种不可逆状态,这时的电极电位就是不平衡电位,阳极电位偏正,阴极电位偏负。
这时,能使电解质熔体连续不断地发生电解反应所必需的最小电压叫作电解质的实际分解电压。
显然,实际分解电压比理论分解电压大,有时甚至大很多。
实际分解电压简称分解电压(V),是阳极实际析出电位(ε(A))和阴极析出电位(ε(K))之差。
V=ε(A)- ε(K)(10 - 6)当得知阴、阳极在实际电解时的偏离值(称为超电位)就可以算出某一电解质的实际分解电压。
分解电压符合能斯特方程,可以表示为如下形式:式中E i,E0分别表示实际和标准状态下组元i的分解电压;a i__组元的活度;n i __组元在熔盐中的化合价;F __ 法拉弟常数;可以看出,温度和电解质组成均会影响分解电压电极极化电解时的实际分解电压比理论分解电压要大很多,这是由于电流通过电解槽时,电极反应偏离了平衡状态。
通常将这种偏离平衡电极电位的现象称为极化现象。
电解过程实际分解电压和理论分解电压之差称为超电压。
⏹电解电极反应一般包含1:☐(1)反应离子由熔体向双电层移动并继续经双电层向电极表面靠近。
这一阶段在很大程度上靠扩散实现,扩散则是由于导电离子在熔体和双电层外界的浓度差别引起的。
☐(2)反应离子在电极表面进行电极反应前的转化过程,如表面吸附等;☐(3)在电极上的电子传递- - 电化学氧化或电化学还原反应;☐(4)反应产物在电极表面进行反应后的转化过程,例如自电极表面的脱附,反应产物的复合、分解和其它化学反应;☐(5)反应产物形成新相,或反应产物自电极表面向电解质熔体的传递。
电极过程概述——《电化学原理》李荻电极过程•概念:在电化学中,把发生在电极/溶液界面上的电极反应、化学转化和电极附近液层中的传质作用等一系列变化的总和称为电极过程。
•电极过程动力学:有关电极过程的历程、速度及其影响因素的研究就称为电极过程动力学。
一、电极的极化现象•概念:有电流通过时电极电位偏离平衡电位的现象。
•实验表明,在电化学体系中,发生电极极化时,阴极的电极电位总是变得比平衡电位更负,阳极的电极电位总是变得比平衡电位更正。
因此,电极电位偏离平衡电位向负移为阴极极化,向正移称为阳极极化。
过电位•过电位:在一定的电流密度下,电极电位与平衡电位的差值称为该电流密度下的过电位。
η=ψ-ψ平•过电位是表征电极极化程度的参数。
习惯上取过电位为正值,因此规定阴极极化时ηc=ψ平-ψc;阳极极化时ηa=ψa-ψ平•把电极在没有电流通过时的电位称为静止电位ψ静,把有电流通过时的电位(极化电位)与静止电位的差值称为极化值,Δψ•Δψ=ψ-ψ静二、电极极化的原因•有电流通过时,一方面,电子的流动,在电极表面积累电荷,使电极电位偏离平衡状态,即极化作用;另一方面,电极反应,吸收电子运动所传递过来的电荷,使电极电位恢复平衡状态,即去极化作用。
电极性质的变化就取决于极化作用和去极化作用的对立统一。
•实验表明,电子的运动速度往往是大于电极反应速度的,因而通常是极化作用占主导地位。
•有电流通过时,阴极上由于电子流入电极的速度大,造成负电荷的积累;阳极上由于电子流出电极的速度大,造成正电荷的积累。
因此阴极电位向负移动,阳极电位向正移动,都偏离了原来的平衡状态,产生所谓的“电极的极化”现象。
•电极极化现象的实质:电极极化现象是极化与去极化作用的综合结果,其实质是电极反应速度跟不上电子运动速度而造成的电荷在界面的积累,即产生电极极化现象的内在原因正是电子运动速度与电极反应速度之间的矛盾。
•两种特殊的极端情况:理想极化电极和理想不计划电极。