Landsat8的不同波段组合说明
- 格式:docx
- 大小:623.53 KB
- 文档页数:6
landsat8的evi计算公式中的参数
Landsat 8是美国国家航空航天局(NASA)与美国地质调查局(USGS)联合推出的一颗地球观测卫星。
EVl(Enhanced Vegetation Index)即增强型植被指数,是通过Landsat 8的卫星数据来评估植被的生长状况和健康程度的一种指标。
EVl通过反映红外光和可见光之间的比值,可以反映土地表面的植被状况。
具体的计算公式如下:
EVl = 2.5 * (NIR - Red) / (NIR + 6 * Red - 7.5 * Blue + 1)
其中,NIR代表Near-Infrared波段的像素值,Red代表Red波段的像素值,Blue代表Blue波段的像素值。
在计算EVl时,波段的选择很重要。
由于Landsat 8搭载了多种波段传感器,可以选择不同的波段组合来计算EVl。
一种常见的组合是选择NIR、Red和Blue波段,这些波段对植被监测具有较好的效果。
EVl的计算公式中的参数是根据对植被光谱特性的研究和分析得出的,经过大量实验和验证。
这些参数的选择使得计算得出的EVl值能够较准确地反映植被的生长情况和植被指数。
通过计算EVl可以获得植被指数图像,进而进行植被的监测和分析,包括植被覆盖度、生长状况、植被类型等。
这对于农业、林业、环境保护等领域的研究和管理具有重要意义。
综上所述,Landsat 8的EVl计算公式中的参数是通过对植被光
谱特性的研究得出的,通过计算可以得到植被指数图像,来评估植被的生长状况和健康程度。
Landsat卫星的TM/ETM各波段介绍北京揽宇方圆信息技术有限公司拥有WorldView、QuickBird、IKONOS、GeoEye、SPOT、PLEIADES、高分一号、高分二号、资源三号等世界上最高分辨率卫星影像的代理权,能够为户提供全天候、全覆盖、多分辨率、多尺度的影像产品。
整合最丰富的遥感影像数据资源,为用户提供最专业的遥感影像数据服务,北京揽宇方圆致力成为中国遥感影像数据服务第一品牌。
一、波段介绍1.TM1 0.45-0.52um,蓝波段对水体穿透强, 该波段位于水体衰减系数最小,散射最弱的部位(0.45—0.55um),对水体的穿透力最大,可获得更多水下信息,用于判断水深,浅海水下地形,水体浑浊度,沿岸水,地表水等;能够反射浅水水下特征,区分土壤和植被、编制森林类型图、区分人造地物类型,分析土地利用。
对叶绿素与叶色素反映敏感,有助于判别水深及水中叶绿素分布以及水中是否有水华等。
2.TM2 0.52-0.60um,绿波段对植物的绿反射敏感该波段位于健康绿色植物的绿色反射率(0.54—-0.55um)附近;对健康茂盛植物的反射敏感,主要观测植被在绿波段中的反射峰值,这一波段位于叶绿素的两个吸收带之间,利用这一波段增强鉴别植被的能力对绿的穿透力强,探测健康植被绿色反射率,按绿峰反射评价植物的生活状况,区分林型,树种,植被类型和评估作物长势对水体有一定的穿透力,可反映水下特征,水体浑浊度,水下地形,沙洲,沿岸沙地等。
. 可区分人造地物类型,3.TM3 0.62-0.69um ,红波段对水中悬浮泥沙反映敏感。
该波段位于含沙浓度不同的水体辐射峰值(0.58—-0.68um)附近,对水中悬浮泥沙反映敏感。
叶绿素的主要吸收波段,能增强植被覆盖与无植被覆盖之间的反差,亦能增强同类植被的反差,反映不同植物叶绿素吸收,植物健康状况,用于区分植物种类与植物覆盖率,测量植物绿色素吸收率,并以此进行植物分类;此外其信息量大,广泛用于对裸露地表,植被,岩性,地层,构造,地貌等为可见光最佳波段;可区分人造地物类型4 .TM4 0.76-0.96UM 近红外波段,对绿色植物类别差异最敏感,为植物通用波段,用于牧师调查,作物长势测量,处于水体强吸收区,水体轮廓清晰,用于勾勒水体,绘制水体边界、探测水中生物的含量和土壤湿度;区分土壤湿度及寻找地下水,识别与水有关的地质构造,地貌,土壤,岩石类型等均有利。
landsat8反照率各个波段的比例因子Landsat 8是美国国家航空航天局(NASA)和美国地质调查局(USGS)合作开展的一项地球观测计划,旨在提供高空间分辨率和频率的遥感数据。
它搭载了一台名为OLI(Operational Land Imager)的传感器,可以获取多个波段的数据,其中包括蓝、绿、红、近红外、短波红外1、短波红外2和热红外这些波段。
为了将这些波段的数据转化为可用的反射率信息,需要使用比例因子进行校正。
1. 蓝波段(Band 2)比例因子:蓝波段的比例因子为0.0001。
这意味着在计算蓝波段的反射率时,需要将原始数据乘以0.0001。
蓝波段对于水体和植被的观测具有重要意义,可以用于监测水质和植被生长情况。
2. 绿波段(Band 3)比例因子:绿波段的比例因子为0.0001。
与蓝波段类似,计算绿波段的反射率时也需要将原始数据乘以0.0001。
绿波段对于植被的监测非常重要,可以用于研究植被的健康状况和覆盖范围。
3. 红波段(Band 4)比例因子:红波段的比例因子为0.0001。
同样,计算红波段的反射率时需要将原始数据乘以0.0001。
红波段对于土地利用和土地覆盖的分类具有重要作用,可以用于识别不同类型的地表覆盖,如城市、农田和森林。
4. 近红外波段(Band 5)比例因子:近红外波段的比例因子为0.0001。
计算近红外波段的反射率时同样需要乘以0.0001。
近红外波段对于植被的监测也非常重要,可以用于评估植被的健康状况和生长情况。
5. 短波红外1波段(Band 6)比例因子:短波红外1波段的比例因子为0.0001。
在计算短波红外1波段的反射率时,同样需要将原始数据乘以0.0001。
短波红外1波段对于土地覆盖分类和水体观测也具有重要意义。
6. 短波红外2波段(Band 7)比例因子:短波红外2波段的比例因子为0.0001。
在计算短波红外2波段的反射率时,同样需要将原始数据乘以0.0001。
Landsat8卫星包含OLI(Operational Land Imager 陆地成像仪)和TIRS(Thermal Infrared Sensor 热红外传感器)两种传感器。
OLI包括了ETM+的所有波段,为了避免大气吸收部分特征,OLI对波段进行了重新调整,比较大的调整:
1、OLI Band5(0.845–0.885 μm),排除了0.825μm处水汽吸收特征;
2、OLI全色波段Band8波段范围较窄,这种方式可以在全色图像上更好区分植被和无植被特征;
3、新增两个波段:海蓝波段(band 1; 0.433–0.453 μm) 主要应用海岸带观测;短波红外波段,又称卷云波段(band 9; 1.360–1.390 μm) 包含水汽强吸收特征,可用于云检测;
4、近红外band5和短波红外band9与MODIS对应的波段更加接近。
表1Landsat7 Landsat8卫星对比
表3:Landsat TM波段合成总结说明
Landsat8波段组合图示:
432波段合成真彩色图像,接近地物真实色彩,图像平淡,色调灰暗
543波段合成标准假彩色图像,地物色彩鲜明,有利于植被(红色)分类,水体识别
564波段合成非标准假彩色图像,红外波段与红色波段合成,水体边界清晰,利于海岸识别;植被有较好显示,但不便于区分具体植被类别
765对大气层穿透能力较强,例如图像中红色方框内云的影响明显减少
652植被类型丰富,便于植被分类
654便于植被分析。
Landset8卫星波段及常用组合介绍
Landsat8卫星包含OLI(Operational Land Imager 陆地成像仪)和TIRS (Thermal Infrared Sensor 热红外传感器)两种传感器。
OLI包括了ETM+的所有波段,为了避免大气吸收部分特征,OLI对波段进行了重新调整,比较大的调整:
1、OLI Band5(0.845–0.885 μm),排除了0.825μm处水汽吸收特征;
2、OLI全色波段Band8波段范围较窄,这种方式可以在全色图像上更好区分植被和无植被特征;
3、新增两个波段:海蓝波段(band 1; 0.433–0.453 μm) 主要应用海岸带观测;短波红外波段,又称卷云波段(band 9; 1.360–1.390 μm) 包含水汽强吸收特征,可用于云检测;
4、近红外band5和短波红外band9与MODIS对应的波段更加接近。
表1Landsat7 Landsat8卫星对比
表2:OLI波段合成
Landsat8波段组合图示:
432波段合成真彩色图像,接近地物真实色彩,图像平淡,色调灰暗
543波段合成标准假彩色图像,地物色彩鲜明,有利于植被(红色)分类,水
体识别
564波段合成非标准假彩色图像,红外波段与红色波段合成,水体边界清晰,利于海岸识别;植被有较好显示,但不便于区分具体植被类别
765对大气层穿透能力较强,例如图像中红色方框内云的影响明显减少
652植被类型丰富,便于植被分类
654便于植被分析。
Landsat 8 OLI_TIRS 卫星数字产品波段介绍2013 年2月11日,美国航空航天局(NASA) 成功发射Landsat-8卫星。
Landsat-8卫星上携带两个传感器,分别是OLI陆地成像仪(Operational Land Imager)和TIRS热红外传感器(Thermal Infrared Sensor)。
Landsat-8 在空间分辨率和光谱特性等方面与Landsat 1-7保持了基本一致,卫星一共有11个波段,波段1-7,9-11的空间分辨率为30米,波段8为15米分辨率的全色波段,卫星每16 天可以实现一次全球覆盖。
OLI陆地成像仪有9个波段,成像宽幅为185x185km。
与Landsat-7 上的ETM 传感器相比,OLI陆地成像仪做了以下调整:1. Band 5的波段范围调整为0.845–0.885 μm,排除了0.825μm处水汽吸收的影响;2. Band 8全色波段范围较窄,从而可以更好区分植被和非植被区域;3. 新增两个波段。
Band 1蓝色波段(0.433–0.453 μm) 主要应用于海岸带观测,Band 9短波红外波段(1.360–1.390 μm) 应用于云检测。
LandSat-8上携带的TIRS热红外传感器主要用于收集地球两个热区地带的热量流失,目标是了解所观测地带水分消耗。
Landsat TM (ETM+)7个波段可以组合很多RGB方案用于不同地物的解译,Landsat8的OLI陆地成像仪包括9个波段,可以组合更多的RGB方案。
OLI包括了ETM+传感器所有的波段,为了避免大气吸收特征,OLI对波段进行了重新调整,比较大的调整是OLI Band5(0.845–0.885 μm),排除了0.825μm处水汽吸收特征;OLI 全色波段Band8波段范围较窄,这种方式可以在全色图像上更好区分植被和无植被特征;此外,还有两个新增的波段:蓝色波段(band 1; 0.433–0.453 μm) 主要应用海岸带观测,短波红外波段(band 9; 1.360–1.390 μm) 包括水汽强吸收特征可用于云检测;近红外band5和短波红外band9与MODIS对应的波段接近,详情参考表3。
TM数据各波段中心波长值/ 波谱宽度即wavelength / FWHM Landsat 1-5Wavelength FWHMTM1:0.485μm/0.066TM2:0.569μm或0.56 / 0.082TM3:0.660 μm/0.067TM4:0.840μm或0.83 /0.128TM5:1.676μm或1.65 /0.217TM7:2.223μm或 2.22 /0.252TM6: 11.4μmLandsat 1-5表3 美国USGS发布的Lmax与Lmin值波段Lmax Lmin1 -1.52 193.002 -2.84 365.003 -1.17 264.004 -1.51 221.005 -0.37 30.206 1.2378 15.30327 -0.15 16.50表4 Landsat5TM 数据头文件中的Lmin与Lmax值波段Lmax Lmin1 1.26880 -0.01002 2.98126 -0.02323 1.76186 -0.00784 2.81771 -0.01935 0.65277 -0.00806 3.20107 0.259947 0.44375 -0.0040表5 TM 数据波段对应波谱宽度波段号频谱宽度1 0.0662 0.0823 0.0674 0.1285 0.2177 0.252Landsat 7OLI陆地成像仪包括9个波段,空间分辨率为30米,其中包括一个15米的全色波段,成像宽幅为185x185km。
OLI传感器高度为761km,轨道高度为705km。
OLI包括了ETM+传感器所有的波段,为了避免大气吸收特征,OLI对波段进行了重新调整,比较大的调整是OLI Band5 (NIR)(0.845–0.885 μm),排除了0.825μm处水汽吸收特征;OLI全色波段Band8波段范围较窄,这种方式可以在全色图像上更好区分植被和无植被特征;此外,还有两个新增的波段:蓝色波段(band 1; 0.433–0.453 μm) 主要应用海岸带观测,短波红外波段(band 9; 1.360–1.390 μm) (卷云波段)包括水汽强吸收特征可用于云检测;近红外band5和短波红外band9与MODIS对应的波段接近。
Landsat8 ETM+7个不同波段组合说明Landsat TM (ETM+)7个波段可以组合很多RGB方案用于不同地物的解译,Landsat8的OLI陆地成像仪包括9个波段,可以组合更多的RGB方案。
OLI包括了ETM+传感器所有的波段,为了避免大气吸收特征,OLI对波段进行了重新调整,比较大的调整是OLI Band5(0.845–0.885 μm),排除了0.825μm处水汽吸收特征;OLI全色波段Band8波段范围较窄,这种方式可以在全色图像上更好区分植被和无植被特征;此外,还有两个新增的波段:蓝色波段 (band 1; 0.433–0.453 μm) 主要应用海岸带观测,短波红外波段(band 9; 1.360–1.390 μm) 包括水汽强吸收特征可用于云检测;近红外band5和短波红外band9与MODIS对应的波段接近,详情参考表3。
如表1是国外公布的OLI波段合成的简单说明。
表2是前人在长期工作中总结的Landsat TM(ETM+)不同波段合成对地物增强的效果。
对比表3,可以将表1和表2的组合方案结合使用。
表1:OLI波段合成741 741波段组合图像具有兼容中红外、近红外及可见光波段信息的优势,图面色彩丰富,层次感好,具有极为丰富的地质信息和地表环境信息;而且清晰度高,干扰信息少,地质可解译程度高,各种构造形迹(褶皱及断裂)显示清楚,不同类型的岩石区边界清晰,岩石地层单元的边界、特殊岩性的展布以及火山机构也显示清楚。
742 1992年,完成了桂东南金银矿成矿区遥感地质综合解译,利用1:10万TM7、4、2假彩色合成片进行解译,共解译出线性构造1615条,环形影像481处, 并在总结了构造蚀变岩型、石英脉型、火山岩型典型矿床的遥感影像特征及成矿模式的基础上,对全区进厅成矿预测,圈定金银A类成矿远景区2处,B类 4处,C类5处。
为该区优选找矿靶区提供遥感依据。
743 我国利用美国的陆地卫星专题制图仪图象成功地监测了大兴安岭林火及灾后变化。
landsat8波段介绍landsat8:Landsat 8 是美国陆地卫星计划(Landsat)的第八颗卫星,于2013年2月11号在加利福尼亚范登堡空军基地由Atlas-V火箭搭载发射成功,最初称为“陆地卫星数据连续性任务”(Landsat Data Continuity Mission,LDCM)。
Landsat 8上携带陆地成像仪(Operational Land Imager ,OLI)和热红外传感器(Thermal Infrared Sensor,TIRS)。
简介:Landsat 8是NASA与美国地质调查局(USGS)合作开发并由轨道科学公司(Orbital Science Corporation)建造的。
NASA负责了设计、建造、发射和在轨校准阶段,在此期间卫星被称为Landsat 数据连续性任务(Landsat Data Continuity Mission ,LDCM)。
2013年5月30日,USGS接管了常规操作,卫星改名为Landsat 8。
USGS 在地球资源观测与科学(EROS)中心负责发射后的校准活动、卫星操作、数据产品生成和数据存档。
介绍:OLI陆地成像仪包括9个波段,空间分辨率为30米,其中包括一个15米的全色波段,成像宽幅为185x185km。
OLI包括了ETM+传感器所有的波段,为了避免大气吸收特征,OLI对波段进行了重新调整,比较大的调整是OLI Band5(0.845–0.885 μm),排除了0.825μm处水汽吸收特征;OLI全色波段Band8波段范围较窄,这种方式可以在全色图像上更好区分植被和无植被特征;此外,还有两个新增的波段:蓝色波段(band 1; 0.433–0.453 μm) 主要应用海岸带观测,短波红外波段(band 9; 1.360–1.390 μm) 包括水汽强吸收特征可用于云检测;近红外band5和短波红外band9与MODIS对应的波段接近。
Landsat8的不同波段组合说明
Landsat TM (ETM+)7个波段可以组合很多RGB方案用于不同地物的解译,Landsat8的OLI陆地成像仪包括9个波段,可以组合更多的RGB方案。
OLI包括了ETM+传感器所有的波段,为了避免大气吸收特征,OLI对波段进行了重新调整,比较大的调整是OLI Band5(0.845–0.885 μm),排除了0.825μm处水汽吸收特征;OLI 全色波段Band8波段范围较窄,这种方式可以在全色图像上更好区分植被和无植被特征;此外,还有两个新增的波段:蓝色波段(band 1; 0.433–0.453 μm) 主要应用海岸带观测,短波红外波段(band 9; 1.360–1.390 μm) 包括水汽强吸收特征可用于云检测;近红外band5和短波红外band9与MODIS对应的波段接近,详情参考表3。
如表1是国外公布的OLI波段合成的简单说明。
表2是前人在长期工作中总结的Landsat TM(ETM+)不同波段合成对地物增强的效果。
对比表3,可以将表1和表2的组合方案结合使用。
表1:OLI波段合成
表2:Landsat TM波段合成总结说明
ENVI中进行波段组合非常方便,如下图为打开一个标准Landsat8数据,根据需求选择对应RGB合成显示即可。
图2-图5为几个RGB组合。
图1:数据管理面板
图2:7、6、4,水体和植被得到了增强
图3:6、5、2,裸地得到增强,可以与有作物的耕地区分
图4:5、6、2,植被呈现不同颜色
图5:6、5、4,植被非常鲜艳,植被和非植被区很好的区分。