阻尼器TMD工作原理是怎样的
- 格式:doc
- 大小:637.04 KB
- 文档页数:2
调频质量阻尼器减振原理及设计方法一、减振原理及TMD构造一、减振原理应用范围:桥梁(主梁、塔)、高层建筑、高耸结构、输电线(防振锤)调频质量阻尼器系统由固体质量、弹簧和阻尼元件组成,它将阻尼器系统自身的振动频率调整到结构振动的主要频率附近,通过TMD与主结构间的相互作用,可实现能量从主结构向调频质量阻尼器系统的转移,达到减小主结构振动的目的。
模态质量、模态刚度和频率一、基本构造-竖向TMD1、阻尼单元-提供TMD系统必要的阻尼2、质量导向系统-保证质量块沿设计的方向运动3、质量块-提供TMD系统的质量4、弹簧系统-提供TMD系统必要的刚度5、支座系统-将TMD与主结构相连低频结构的静伸长问题一、基本构造-水平TMD1、阻尼单元-提供TMD系统必要的阻尼2、质量导向系统-保证质量块沿设计的方向运动3、质量块-提供TMD系统的质量4、弹簧系统-提供TMD系统必要的刚度5、支座系统-将TMD与主结构相连一、基本构造-水平摆式TMD 复摆单摆L m d θt t=0u d u L g d /=ωu L m d u+u l u+u l +u d L g d 2/=ω!!25,1.0m L Hz f d ==mL Hz f d 5.12,1.0==一、TMD的基本形式一、TMD组成部分质量块——质量块。
调频质量阻尼器中使用的质量块可以是混凝土块、装铅的钢箱等,质量可达数百吨。
质量块的大小由质量比μ确定,一般选取0.01<μ<0.05。
阻尼器——阻尼一般由油阻尼器、黏滞阻尼器或黏弹性阻尼器提供;在使用黏弹性阻尼器时,应尽量避免阻尼器的刚度显著改变调频质量系统的振动频率。
目前另外一种应用较多的阻尼实现方式是电涡流阻尼,电涡流阻尼器由永磁体和导电板组成电涡流阻尼原理导体以速度V通过磁场而引起的电涡流,F=CV理想黏滞阻尼一、TMD组成部分弹簧——功能是提供恢复力维持质量块振动,钢丝螺旋弹簧,单摆和弹性悬臂梁都可以作为TMD的弹簧。
TMD减振原理与设计方法TMD(Tuned Mass Damper,调谐质量减振器)是一种被广泛应用于建筑结构和桥梁等领域的减振装置。
它利用动力学原理和调谐效应,在结构震动频率处产生反向的质量振动,以达到减小结构振动的目的。
TMD减振原理主要包括质量-刚度法和质量-阻尼法。
1.质量-刚度法:质量-刚度法采用了动力学原理中的质量和刚度两个概念。
根据结构的振动频率和模态形状,选取合适的质量、位置和刚度,使得TMD和结构形成共振,从而通过反向作用达到减振的效果。
该方法主要依靠质量差异的原理,通过调整质量的大小和位置,使得TMD的振动频率与结构的主振动频率相匹配,形成共振,从而减小结构的振动。
2.质量-阻尼法:质量-阻尼法是利用质量和阻尼的相互作用原理,通过改变系统的阻尼特性来实现减振。
在该方法中,通过调整阻尼器的阻尼系数和位置,使得阻尼器与结构之间产生物理耦合,形成共振,从而吸收和耗散结构的能量,减小振动幅度。
该方法的优点是可以调整阻尼器的位置,适应任意的结构形态。
TMD的设计方法主要包括质量估计、模型选择和参数调整等。
1.质量估计:在设计TMD时,首先需要估计结构的振动特性,包括自振频率和振动模态。
通过理论分析或实测等方法,确定结构的特征频率和振型。
然后,根据结构的质量和振动特性,估计TMD的质量大小。
一般来说,TMD的质量应足够大,以确保能够产生足够的反作用力来减小结构的振动。
2.模型选择:TMD的选择与结构的振动特性密切相关。
根据结构的振动模态和频率,选择合适的TMD模型,包括单自由度TMD、多自由度TMD和连续系统TMD 等。
一般来说,对于单自由度结构,可以选择单自由度TMD进行设计;对于多自由度结构,可以选择多自由度TMD或者连续系统TMD进行设计。
选择合适的TMD模型是确保减振效果的关键。
3.参数调整:TMD的参数调整是设计中的重要环节。
主要包括质量、位置和刚度的调整。
通过调整TMD的质量、位置和刚度等参数,实现TMD的频率调谐,使其与结构的振动频率形成共振,从而达到减振的目的。
tmd调频质量阻尼器设计方法摘要:1.引言2.TMD调频质量阻尼器的工作原理3.TMD调频质量阻尼器的设计方法4.设计参数及其影响因素5.设计实例及分析6.结论正文:【引言】调频质量阻尼器(TMD)作为一种被动控制系统,在工程结构减震控制领域得到了广泛的应用。
TMD系统主要由质量块、弹簧和阻尼器组成。
通过对TMD系统进行合理设计,可以有效降低结构在地震、风载等动力荷载下的响应,提高结构的安全性和舒适性。
本文将详细介绍TMD调频质量阻尼器的设计方法。
【TMD调频质量阻尼器的工作原理】TMD调频质量阻尼器的工作原理是通过质量块的振动响应与结构主体振动响应的相位差来调节结构的振动特性。
在动力荷载作用下,质量块受到激励产生振动,通过弹簧与阻尼器与结构主体相连,使得质量块的振动能量传递到结构主体,达到减震目的。
【TMD调频质量阻尼器的设计方法】TMD调频质量阻尼器的设计方法主要包括以下几个步骤:1.确定设计目标:根据结构特点及使用要求,明确TMD系统的减震目标,如减震效果、频率响应等。
2.选择参数:根据设计目标,选取合适的质量块质量、弹簧刚度和阻尼系数等参数。
3.设计结构形式:结合结构特点,确定TMD系统的结构形式,如悬挂式、支承式等。
4.计算分析:利用振动分析方法,对TMD系统进行计算分析,评估减震效果。
5.调整优化:根据计算结果,对设计参数进行调整优化,直至满足设计目标。
【设计参数及其影响因素】1.质量块质量:质量块质量越大,减震效果越明显,但同时会增加结构自重和造价。
2.弹簧刚度:弹簧刚度越小,减震效果越好,但可能导致系统稳定性降低。
3.阻尼系数:阻尼系数越大,减震效果越好,但会影响系统的运动性能。
4.结构频率:与结构主体频率相近的TMD系统,减震效果更明显。
5.结构形式:不同结构形式的TMD系统,其减震效果和适用范围有所不同。
【设计实例及分析】以某高层建筑为例,根据工程需求,采用悬挂式TMD系统进行设计。
上海中心大厦的阻尼器原理
上海中心大厦的阻尼器采用了TMD(Tuned Mass Damper)原理,即
调谐质量阻尼器。
这是一种结构控制技术,通过在建筑物结构上加
入一个可自由振动的质量体,来抑制地震和风力等外界扰动引起的
建筑物振动。
TMD系统由振动质量、弹簧、阻尼器组成,振动质量通过弹簧与建
筑物相连,通过运动阻力来消耗部分能量,从而抑制建筑物振动。
弹簧和阻尼器都是由调谐系统来确定的,通过对振动频率的调节,
可以使阻尼器得到最大的阻尼作用,从而达到最佳的控制效果。
在上海中心大厦中,共设置了128个TMD,每个TMD的重量在100
吨以上。
它们被安装在建筑物的顶部和底部,并与建筑物结构相连接。
当地震或强风等外界扰动引起建筑物振动时,TMD会自由振动,吸收能量,从而降低建筑物的振动幅度和周期,确保建筑物的安全。
调频质量阻尼器TMD工作原理
调频质量阻尼器(Tuned MassDamper,TMD)系统是结构被动减震控制体系的一种,其工作原理是通过质量块与弹簧用来提供惯性力,以此来控制被控结构的振动,即使在恶劣环境下也能起到减振作用,同时控制结构多阶共振频率的振动,扩大抑制振动的适用范围。
它是由主结构和附加在主结构上的子结构组成,其中子结构包括固体质量(重量)、弹簧减震器和阻尼器等,TMD构造简单、使用方便,轻巧、美观,适应环境面宽,其工作控振原理如下所示:它通过改变质量或者是刚度调整子结构的自振频率,使其接近主结构的基本频率或者是激励频率,使主结构的振动反应衰减并受到控制,子结构在减震控制过程中相当于一个阻尼器,因此,大家把子结构称作“调频质量阻尼器”。
其特点和优势主要有:
一是设有双向定位装置,可以有效防止受到侧向力时出现的左右摇摆和失控倾覆等现象。
二是调频质量阻尼器调谐刚度可以根据需要适当调节,调节范围在±15%左右,根据现场动力特性实例结果来适当改变其调谐频率,消除由于计算或者施工等方面的原因造成的工程实际频率与计算频率不一致的影响,提高系统的实际控制结果。
三是调频质量阻尼器中的粘滞流体阻尼器被设计成可控制型,以
消除阻尼器内摩擦力造成系统振动灵敏度较差而出现滞后的现象。
四、整套系统结构紧凑合理,占用体积小,可控制最大高度,提高空间利用率。
上述内容仅供参考,了解更多这方面的信息,可咨询专业的生产厂家:南京大德减震科技有限公司进行详细的了解,提供专业的工程减隔震技术咨询、各类减隔震产品的生产、试验、销售、安装、售后服务等一体化服务,拥有专利二十余项,拥有丰富的减震产品研发制造经验,参与过奥林匹克工程多项国家重点工程的方案设计、产品制造、安装、售后等工作。
调谐质量阻尼器定义
调谐质量阻尼器(TMD)是一种被广泛应用于结构振动控制领域的装置。
它通过与结构共振频率相匹配的质量和阻尼特性,有效地减小结构振动的幅值。
TMD通常由一个质量块、弹簧和阻尼器组成,其工作原理基于质量块的惯性和阻尼器的能量耗散。
TMD的主要作用是通过消耗结构振动的能量来减小结构的振动响应。
当结构受到外部激励时,TMD会产生与结构振动方向相反的惯性力,从而减小结构的振动幅值。
同时,阻尼器会吸收和耗散结构振动的能量,进一步减小结构的振动响应。
调谐质量阻尼器的设计需要考虑结构的固有频率、质量比和阻尼比等参数。
通过合理选择这些参数,可以实现最佳的振动控制效果。
在实际应用中,TMD通常被安装在建筑物、桥梁、风力发电机塔等结构中,以减小结构受到的地震、风载等动力负荷引起的振动响应。
总之,调谐质量阻尼器是一种用于结构振动控制的装置,通过消耗振动能量来减小结构振动幅值,提高结构的抗震性能和舒适性。
阻尼器是一种减缓机械振动和消耗动能的装置,主要是利用阻尼的特性进行的。
以前常被用于汽车的悬吊系统及摩托车中,有些脚踏车上也有。
如今的应用更加广泛,航天、航空、枪炮、军工、汽车等行业中也多有涉及,利用各种各样的阻尼器(或减震器)来减振消能。
阻尼器的分类也有很多,包括金属阻尼器、调频质量阻尼器(TMD)等,对于具体分类来说,阻尼器TMD工作原理是怎样的?该系统是结构被动减震控制体系的一种,它由主结构和附加在主结构上的子结构组成。
其中子结构包括固体质量(重量)、弹簀减震器和阻尼器等。
它的控振原理如下:TMD通过改变质量或刚度调整子结构的自振频率,使其接近主结构的基本频率或激励频率,当主结构受激励而振动时,子结构就会产生一个与结构振动方向相反的惯性力作用在结构上,使主结构的振动反应衰减并受到控制。
子结构在减振控制过程中相当于一个阻尼器,所以大家把子结构称作“调频质量阻尼器”。
其特点和优势有:◆设有双向定位装置,可以有效防止受到侧向力时出现的左右摇摆和失控倾覆等现象。
根据现场动力特性实例结果来适当改变其调谐频率,消除由于计算或施工等方面的原因所造成的工程实际频率与计算频率不一致的影响,提高系统的实际控制结果。
◆调频质量阻尼器中的粘滞流体阻尼器被设计成可控制型,以消除阻尼器内摩擦力造成系统震动灵敏度较差而出现滞后现象。
◆整套系统结构紧凑合理,占用体积比较小,可控制高度,提高空间利用率。
上述内容仅供参考,了解更多这方面的信息,可咨询:南京大德减震科技有限公司进行详细的了解,该公司专业从事减隔震产品研发及制造,以市场为导向,提供专业的工程减隔震技术咨询、各类减隔震产品的生产、试验、销售、安装、售后服务等一体化服务,拥有专利二十余项,拥有丰富的减震产品研发制造经验,参与过奥林匹克工程多项国家重点工程的方案设计、产品制造、安装、售后等工作。
标志塔调谐质量阻尼器TMD减振控制分析与应用一、TMD的减振原理TMD是通过与主体结构耦合,引入额外的质量和阻尼来减振的。
其基本原理是通过改变结构的动态特性,减小结构的振幅和响应。
TMD由两个基本部分组成,即质量和阻尼器,其中质量是由一个或多个质量体构成的,阻尼器则通过改变质量体的运动状态来消耗振动能量。
二、TMD的控制分析在TMD的控制分析中,需要确定质量体的质量、位置和阻尼器的阻尼系数。
而这些参数的选择需要根据主体结构的特性和振动特性进行合理的设计。
1.质量的确定:质量的选择需要考虑主体结构的刚度和自振频率,一般来说,TMD的质量应为主体结构的一小部分,以避免对结构的刚度造成过大的影响。
2.位置的确定:质量体的位置对于TMD的减振效果起着重要的作用。
一般来说,质量体应选择在主体结构的振动节点处,以达到最佳的减振效果。
3.阻尼系数的确定:阻尼器的阻尼系数直接影响着TMD的减振效果,过小的阻尼系数会导致无法有效减振,而过大的阻尼系数则会加大阻尼器的负荷。
因此,需要通过数值模拟或试验来确定最佳的阻尼系数。
三、TMD的应用TMD广泛应用于各种建筑和结构物中,包括高层建筑、桥梁、烟囱、标志塔等。
1.高层建筑标志塔:在高层建筑的标志塔中,由于自身的高度和形状造成的风振效应会引起结构的振动。
通过将TMD安装在标志塔的顶部,可以有效地减小风振引起的振动,提高结构的稳定性。
2.桥梁标志塔:桥梁标志塔常常会因为交通荷载和风荷载等环境激励的作用而产生振动。
应用TMD可以通过改变桥梁标志塔的动态特性,减小振幅和振动频率,提高桥梁的稳定性和舒适性。
3.烟囱标志塔:烟囱标志塔作为一个纤细结构,易受到风荷载的影响而产生振动。
通过在烟囱标志塔的适当位置安装TMD可以减小振幅,提高结构的稳定性,同时减少结构对周围环境的振动影响。
以上是对标志塔调谐质量阻尼器(TMD)减振控制分析与应用的详细介绍,TMD作为一种有效的减振装置,在工程实践中具有广泛的应用前景。
减震与隔震理论结课作业:****专业:结构工程学号:9日期:2014/1/15所谓结构振动控制(简称为结构控制)技术,就是指通过采取一定的控制措施以减轻或抑制结构由于动力荷载所引起的反应。
调谐质量阻尼器(Tuned Mass Damper/TMD )作为被动控制技术之一,在生产实践中不断得到应用。
TMD 是在结构物顶部或下部某位置上加上惯性质量,并配以弹簧和阻尼器与主体结构相连。
因其构造简单,易于安装,维护方便,经济实用,并且不需要外力作用,因此在高层建筑风振控制、桥梁及海洋平台振动控制等领域得到重视。
一、TMD 振动控制机理TMD 对结构振动控制的机理可粗略描述如下:原结构体系由于加入了TMD ,其动力特性发生了变化,原结构承受动力作用而剧烈振动时,由于TMD 质量块的惯性而向原结构施加反方向作用力,其阻尼也发挥耗能作用,从而使原结构的振动反应明显衰减。
如图1所示,将TMD 子系统和被控制的主结构系统模型简化为两自由度的质量、弹簧、阻尼系统,并且直接受有简谐激励的作用。
图 1 两自由度力学模型图中:1M 为主结构质量;1K 为结构刚度;1C 为主结构阻尼;d M 为子结构质量;d K 为子结构刚度;d C 为子结构阻尼;()P t 为外激励,且0()sin P t P t ω=的简谐激励;1x 为主结构的位移反应;d x 为子结构的位移反应。
1. 无阻尼子结构的调谐减振控制假设主结构阻尼10C =,子结构0d C =,按图1所示的两自由度体系,可列出运动方程:1111()()d d d m x K K x K x P t ++-= (1) 1()0d d d d m x K x x +-= (2) 为求得主结构和子结构的位移反应1x 和d x ,可采用传递函数解法。
简谐激励为0sin P t ω,频率为ω,则主结构和子结构振动反应的传递函数1()H ω和()d H ω为:11()()()x t H P t ω= ()()()d d x t H P t ω= 主结构和子结构的位移反应为:1110()()()()sin x t H P t H P t ωωω==0()()()()sin d d d x t H P t H P t ωωω==可以表达为:110()()t x t H P e ωω= 0()()t d d x t H P e ωω=把1x 和d x 的传递函数表达式代入(1),经整理归纳得:2122211()()()d d d d d dK m H K K m K m K ωωωω-=+--- (3) 22211()()()dd d d d dK H K K m K m K ωωω=+---(4) 则主结构和子结构的位移反应最大值为:22011042221()1(1)P f h x H P K hh f f ωμ-==⎡⎤-+++⎣⎦(5) 20042221()1(1)d d P f x H P K h h f f ωμ==⎡⎤-+++⎣⎦(6) 式中01/P K —主结构在外激励下的最大等效静力位移;1ω—主结构固有频率,1ω=d ω—子结构固有频率,d ω=f —子结构与主结构的固有频率比,1/d f ωω=;h —外激励与主结构之频率比,1/h ωω=;μ—子结构与主结构的质量比,1/d m m μ=;式(5)(6)可表达为111Px A K = 01d d Px A K =1A 和d A 为主结构和子结构相对于等效静力位移的位移反应动力放大系数: 22142221(1)f h A h h f f μ-=⎡⎤-+++⎣⎦(7) 242221(1)d f A h h f f μ=⎡⎤-+++⎣⎦(8) 分析(7)及(8),可得出受简谐激励的结构被动调谐减振机理如下:(1)当子结构的固有频率d ω等于主结构的激励频率ω时,即d ωω=,则f h =此时可得:01110P x A K == 001d d dP P x A K K ==- 10()d d x x K P -=- 10x =表明,当主结构直接被简谐激励振动时,使主结构达到最优调谐减振效果(振动消失)的调谐条件是,子结构的固有频率等于直接激励主结构的激励频率。
减震与隔震理论结课作业姓名:刘****专业:结构工程学号:132081402009日期:2014/1/15所谓结构振动控制(简称为结构控制)技术,就是指通过采取一定的控制措施以减轻或抑制结构由于动力荷载所引起的反应。
调谐质量阻尼器(Tuned Mass Damper/TMD )作为被动控制技术之一,在生产实践中不断得到应用。
TMD 是在结构物顶部或下部某位置上加上惯性质量,并配以弹簧和阻尼器与主体结构相连。
因其构造简单,易于安装,维护方便,经济实用,并且不需要外力作用,因此在高层建筑风振控制、桥梁及海洋平台振动控制等领域得到重视。
一、TMD 振动控制机理TMD 对结构振动控制的机理可粗略描述如下:原结构体系由于加入了TMD ,其动力特性发生了变化,原结构承受动力作用而剧烈振动时,由于TMD 质量块的惯性而向原结构施加反方向作用力,其阻尼也发挥耗能作用,从而使原结构的振动反应明显衰减。
如图1所示,将TMD 子系统和被控制的主结构系统模型简化为两自由度的质量、弹簧、阻尼系统,并且直接受有简谐激励的作用。
图 1 两自由度力学模型图中:1M 为主结构质量;1K 为结构刚度;1C 为主结构阻尼;d M 为子结构质量;d K 为子结构刚度;d C 为子结构阻尼;()P t 为外激励,且0()sin P t P t ω=的简谐激励;1x 为主结构的位移反应;d x 为子结构的位移反应。
1. 无阻尼子结构的调谐减振控制假设主结构阻尼10C =,子结构0d C =,按图1所示的两自由度体系,可列出运动方程:1111()()d d d m x K K x K x P t ++-=&& (1)1()0d d d d m x K x x +-=&& (2)为求得主结构和子结构的位移反应1x 和d x ,可采用传递函数解法。
简谐激励为0sin P t ω,频率为ω,则主结构和子结构振动反应的传递函数1()H ω和()d H ω为:11()()()x t H P t ω= ()()()dd x t H P t ω=主结构和子结构的位移反应为:1110()()()()sin x t H P t H P t ωωω==0()()()()sin d d d x t H P t H P t ωωω==可以表达为:110()()t x t H P e ωω= 0()()td d x t H Pe ωω=把1x 和d x 的传递函数表达式代入(1),经整理归纳得:2122211()()()d d d d d dK m H K K m K m K ωωωω-=+---(3) 22211()()()dd d d d dKH K K m K m K ωωω=+---(4) 则主结构和子结构的位移反应最大值为:22011042221()1(1)P f h x H P K h h f f ωμ-==⎡⎤-+++⎣⎦(5) 20042221()1(1)d d P f x H P K h h f f ωμ==⎡⎤-+++⎣⎦(6) 式中01/P K —主结构在外激励下的最大等效静力位移;1ω—主结构固有频率,1ω=d ω—子结构固有频率,d ω=f —子结构与主结构的固有频率比,1/d f ωω=;h —外激励与主结构之频率比,1/h ωω=;μ—子结构与主结构的质量比,1/d m m μ=;式(5)(6)可表达为111P x A K = 01d d Px AK = 1A 和d A 为主结构和子结构相对于等效静力位移的位移反应动力放大系数:22142221(1)f h A h h f fμ-=⎡⎤-+++⎣⎦ (7) 242221(1)d f A h h f fμ=⎡⎤-+++⎣⎦ (8) 分析(7)及(8),可得出受简谐激励的结构被动调谐减振机理如下:(1)当子结构的固有频率d ω等于主结构的激励频率ω时,即d ωω=,则f h =此时可得:01110P x A K == 001d d d P P x A K K ==- 10()d d x x K P -=- 10x =表明,当主结构直接被简谐激励振动时,使主结构达到最优调谐减振效果(振动消失)的调谐条件是,子结构的固有频率等于直接激励主结构的激励频率。
调频质量阻尼器(Tuned MassDamper,TMD)系统是结构被动减震控制体系的一种,其工作原理是通过质量块与弹簧用来提供惯性力,以此来控制被控结构的振动,即使在恶劣环境下也能起到减振作用,同时控制结构多阶共振频率的振动,扩大抑制振动的适用范围。
它是由主结构和附加在主结构上的子结构组成,其中子结构包括固体质量(重量)、弹簧减震器和阻尼器等,TMD构造简单、使用方便,轻巧、美观,适应环境面宽,其工作控振原理如下所示:
它通过改变质量或者是刚度调整子结构的自振频率,使其接近主结构的基本频率或者是激励频率,使主结构的振动反应衰减并受到控制,子结构在减震控制过程中相当于一个阻尼器,因此,大家把子结构称作“调频质量阻尼器”。
其特点和优势主要有:
一是设有双向定位装置,可以有效防止受到侧向力时出现的左右摇摆和失控倾覆等现象。
二是调频质量阻尼器调谐刚度可以根据需要适当调节,调节范围在±15%左右,根据现场动力特性实例结果来适当改变其调谐频率,消除由于计算或者施工等方面的原因造成的工程实际频率与计算频率不一致的影响,提高系统的实际控制结果。
三是调频质量阻尼器中的粘滞流体阻尼器被设计成可控制型,以消除阻尼器内摩擦力造成系统振动灵敏度较差而出现滞后的现象。
四、整套系统结构紧凑合理,占用体积小,可控制最大高度,提高空间利用率。
上述内容仅供参考,了解更多这方面的信息,可咨询专业的生产厂家:南京大德减震科技有限公司进行详细的了解,提供专业的工程减隔震技术咨询、各类减隔震产品的生产、试验、销售、安装、售后服务等一体化服务,拥有专利二十余项,拥有丰富的减震产品研发制造经验,参与过奥林匹克工程多项国家重点工程的方案设计、产品制造、安装、售后等工作。
tmd桥梁阻尼器工作原理你们有没有注意过那些又长又大的桥梁呀?它们可了不起了呢。
不过呀,有时候风啊、车啊或者其他的力量会让桥梁晃来晃去的,这可有点危险呢。
这时候啊,就有一个超级厉害的东西来帮忙啦,它就是桥梁阻尼器。
咱们就把桥梁想象成一个大大的秋千。
当有人用力推这个秋千的时候,秋千就会晃得很厉害,对吧?桥梁在受到各种力量的时候,就像这个被用力推的秋千。
而桥梁阻尼器呢,就像是一个能拉住秋千,让它不要晃得太厉害的小助手。
我给你们讲个小故事吧。
有一座很有名的桥,有一次刮了特别特别大的风。
那风就像一个大力士,想把桥给吹得晃个不停。
桥一开始就像一个害怕的小孩子,开始摇摇晃晃的。
可是呀,这座桥装了阻尼器呢。
阻尼器就开始发挥它的本事啦。
阻尼器里面有一些很神奇的东西。
它有点像一个小盒子里装着的弹簧和油。
当桥梁开始晃动的时候,就像有人在拉那个弹簧。
弹簧呢,就会抵抗这种拉动,就像我们拉橡皮筋的时候,橡皮筋也会有一股力量往回拉我们一样。
而且呀,那个油也会让这个过程变得更慢更稳。
比如说,我们在泥地里走路就会觉得很费劲,走得很慢。
阻尼器里的油就有点像泥地,它会让那些晃动的力量在里面走得很慢很慢。
这样呢,桥梁晃动的幅度就会越来越小啦。
再想象一下,你在玩一个超级大的积木塔。
如果有个调皮的小朋友一直撞这个塔,塔就可能倒掉。
但是如果我们在塔的旁边装了一个像阻尼器一样的东西,当小朋友撞塔的时候,这个东西就会把撞击的力量慢慢消化掉,塔就不会那么容易倒掉啦。
桥梁阻尼器就是这样,一直在默默地保护着桥梁。
不管是大风呼呼地吹,还是很多很多车在桥上跑来跑去,它都在那里努力工作。
它就像桥梁的小卫士,让桥梁能够安安稳稳地待在那里,让我们可以安全地从桥上走过,也让那些汽车啊、火车啊都能顺利地通过桥梁呢。
调频质量阻尼器减振原理及设计方法一、减振原理及TMD构造一、减振原理应用范围:桥梁(主梁、塔)、高层建筑、高耸结构、输电线(防振锤)调频质量阻尼器系统由固体质量、弹簧和阻尼元件组成,它将阻尼器系统自身的振动频率调整到结构振动的主要频率附近,通过TMD与主结构间的相互作用,可实现能量从主结构向调频质量阻尼器系统的转移,达到减小主结构振动的目的。
模态质量、模态刚度和频率一、基本构造-竖向TMD1、阻尼单元-提供TMD系统必要的阻尼2、质量导向系统-保证质量块沿设计的方向运动3、质量块-提供TMD系统的质量4、弹簧系统-提供TMD系统必要的刚度5、支座系统-将TMD与主结构相连低频结构的静伸长问题一、基本构造-水平TMD1、阻尼单元-提供TMD系统必要的阻尼2、质量导向系统-保证质量块沿设计的方向运动3、质量块-提供TMD系统的质量4、弹簧系统-提供TMD系统必要的刚度5、支座系统-将TMD与主结构相连一、基本构造-水平摆式TMD 复摆单摆L m d θt t=0u d u L g d /=ωu L m d u+u l u+u l +u d L g d 2/=ω!!25,1.0m L Hz f d ==mL Hz f d 5.12,1.0==一、TMD的基本形式一、TMD组成部分质量块——质量块。
调频质量阻尼器中使用的质量块可以是混凝土块、装铅的钢箱等,质量可达数百吨。
质量块的大小由质量比μ确定,一般选取0.01<μ<0.05。
阻尼器——阻尼一般由油阻尼器、黏滞阻尼器或黏弹性阻尼器提供;在使用黏弹性阻尼器时,应尽量避免阻尼器的刚度显著改变调频质量系统的振动频率。
目前另外一种应用较多的阻尼实现方式是电涡流阻尼,电涡流阻尼器由永磁体和导电板组成电涡流阻尼原理导体以速度V通过磁场而引起的电涡流,F=CV理想黏滞阻尼一、TMD组成部分弹簧——功能是提供恢复力维持质量块振动,钢丝螺旋弹簧,单摆和弹性悬臂梁都可以作为TMD的弹簧。
TMD振动控制结构的发展及应用防灾减灾工程:吴维舟近年来,结构控制的理论与实践应用得到了飞速发展,调谐质量阻尼器(tuned mass damper,TMD)作为被动控制技术之一,在生产实践中不断地得到应用。
调谐质量阻尼器是最常用的一种被动控制系统,它是在结构物顶部或上部某位置上加上惯性质量,并配以弹簧和阻尼器与主体结构相连。
TMD作为一种被动控制方式,因其构造简单,易于安装,维护方便,经济实用,并且不需外力作用,有着其他方式无法比拟的优点,因此在高层建筑风振控制、桥梁及海洋平台振动控制等领域得到重视。
1TMD吸振原理为了说明TMD的减振原理,将TMD子系统和被控制的主结构系统模型简化为二自由度的质量、弹簧、阻尼系统,如图1所示。
并且将激振力简化为频率为ω正弦力。
根据文献,当F2=0时,通过适当的选取参数m2、c2和k2,可以达到有效降低质量1振幅的目的。
也就是利用共振原理,对主体结构某些振型(通常是第一振型)的动力响应加以控制。
主要是通过调整TMD系统与主体结构的质量比、频率比和TMD系统的阻尼比等参数,使系统能吸收更多的振动能量,从而大大减轻主体结构的振动响应。
这就是TMD吸振原理.2 TMD的发展2.1TMD的早期应用其典型应用可追溯到1902年安装于德国邮船上的Frahm防摇水箱。
传统的结构设计依靠结构强度和耗能能力来抵抗重型机器荷载、暴风、强地震等动力作用。
1909年Frahm首次提出用调谐质量阻尼器(TMD),即动力吸振器,作为控制和减小动力系统振动的一种方法。
此后,各国的研究工作者在被动TMD控制的理论和应用方面做了大量的工作。
美国最早开始进行制振理论的研究并将TMD装置应用到了高层建筑,如纽约的Citicorp Center,波士顿的对John Hancock Building,获得了令人满意的效果。
2.2TMD的演化TMD的演化可以分为3个阶段。
第1个阶段主要对单个TMD系统的研究,多集中于对结构控制效果和最优控制参数的理论研究。
阻尼器是一种减缓机械振动和消耗动能的装置,主要是利用阻尼的特性进行的。
在生活的各个方面都会利用各种各样的阻尼器(或减震器)来减振消能。
它的分类也有很多,包括金属阻尼器、调频质量阻尼器(TMD)等,根据具体分类,接下来给大家简单介绍一下它的工作原理。
该系统是结构被动减震控制体系的一种,它由主结构和附加在主结构上的子结构组成。
其中子结构包括固体质量(重量)、弹簀减震器和阻尼器等。
它的控振原理如下:
TMD通过改变质量或刚度调整子结构的自振频率,使其接近主结构的基本频率或激励频率,当主结构受激励而振动时,子结构就会产生一个与结构振动方向相反的惯性力作用在结构上,使主结构的振动反应衰减并受到控制。
子结构在减振控制过程中相当于一个阻尼器,所以大家把子结构称作“调频质量阻尼器”。
其特点和优势有:
◆设有双向定位装置,可以有效防止受到侧向力时出现的左右摇摆和失控倾覆等现象。
根据现场动力特性实例结果来适当改变其调谐频率,消除由于计算或施工等方面的原因所造成的工程实际频率与计算频率不一致的影响,提高系统的实际控制结果。
◆调频质量阻尼器中的粘滞流体阻尼器被设计成可控制型,以消除阻尼器内摩擦力造成
系统震动灵敏度较差而出现滞后现象。
◆整套系统结构紧凑合理,占用体积比较小,可控制高度,提高空间利用率。
上述内容仅供参考,了解更多这方面的信息,可咨询:南京大德减震科技有限公司进行详细的了解,该公司专业从事减隔震产品研发及制造,以市场为导向,提供专业的工程减隔震技术咨询、各类减隔震产品的生产、试验、销售、安装、售后服务等一体化服务,拥有专利二十余项,拥有丰富的减震产品研发制造经验,参与过奥林匹克工程多项国家重点工程的方案设计、产品制造、安装、售后等工作。