《概率论与数理统计》第七章_假设检验
- 格式:doc
- 大小:1.13 MB
- 文档页数:23
《概率论与数理统计》第七章假设检验.第七章假设检验学习⽬标知识⽬标:理解假设检验的基本概念⼩概率原理;掌握假设检验的⽅法和步骤。
能⼒⽬标:能够作正态总体均值、⽐例的假设检验和两个正态总体的均值、⽐例之差的假设检验。
参数估计和假设检验是统计推断的两种形式,它们都是利⽤样本对总体进⾏某种推断,然⽽推断的⾓度不同。
参数估计是通过样本统计量来推断总体未知参数的取值范围,以及作出结论的可靠程度,总体参数在估计前是未知的。
⽽在假设检验中,则是预先对总体参数的取值提出⼀个假设,然后利⽤样本数据检验这个假设是否成⽴,如果成⽴,我们就接受这个假设,如果不成⽴就拒绝原假设。
当然由于样本的随机性,这种推断只能具有⼀定的可靠性。
本章介绍假设检验的基本概念,以及假设检验的⼀般步骤,然后重点介绍常⽤的参数检验⽅法。
由于篇幅的限制,⾮参数假设检验在这⾥就不作介绍了。
第⼀节假设检验的⼀般问题关键词:参数假设;检验统计量;接受域与拒绝域;假设检验的两类错误⼀、假设检验的基本概念(⼀)原假设和备择假设为了对假设检验的基本概念有⼀个直观的认识,不妨先看下⾯的例⼦。
例7.1 某⼚⽣产⼀种⽇光灯管,其寿命X 服从正态分布)200 ,(2µN ,从过去的⽣产经验看,灯管的平均寿命为1550=µ⼩时,。
现在采⽤新⼯艺后,在所⽣产的新灯管中抽取25只,测其平均寿命为1650⼩时。
问采⽤新⼯艺后,灯管的寿命是否有显著提⾼?这是⼀个均值的检验问题。
灯管的寿命有没有显著变化呢?这有两种可能:⼀种是没有什么变化。
即新⼯艺对均值没有影响,采⽤新⼯艺后,X 仍然服从)200 ,1550(2N 。
另⼀种情况可能是,新⼯艺的确使均值发⽣了显著性变化。
这样,1650=X 和15500=µ之间的差异就只能认为是采⽤新⼯艺的关系。
究竟是哪种情况与实际情况相符合,这需要作检验。
假如给定显著性⽔平05.0=α。
在上⾯的例⼦中,我们可以把涉及到的两种情况⽤统计假设的形式表⽰出来。
写在前面:由于答案是一个个复制到word rh,比校耗时耗力,故下载收取5分・希望需要的朋友给予理解和支持!PS网上有一些没经我同总就将我的答案整合、转换成pdf,放在文库里的.虽然是免费的.但是窃取f我的劳动成果,希望有心的朋友支持我一下.下载我的原版答案。
第七章假设检验假设检验的基本談念习题1 样木容fin确定后,在一个假设检验中•给定显著水平为*设此第一类错的概率为。
•则必有()•(A)a+p=l; (B)a+p>l; (C)a+p<l; {D)a+p<2.解答: 应选(D)・当样木容Sn确定后.aQ不能同时都很小.即a变小时,p变大:而P变小时• a变大.理论上,自然希望犯这两类错误的概率都很小・但a*的大小关系不能确定.并且这两类错谋不能同时发生,即a=l且p=l不会发生.故选(D).习題2设总休X^(g,a2b其中02已知,着要检验W需川统计a U=X"-gOa/n,(1)若对敢边检验,统计假设为则拒绝区间为(2)若肌边假设为H0:g=g0,Hl:n<^0,则拒绝区间为. (给定显着性水平为4样木均值为X•,样木容fi 为n,且可记ul・a为标准正态分布的(l・a)分位数).解答:由敢侧检验及拒绝的概念即可御到.习題3 如何理解假设检验所作出的〃拒绝原假设H0"和“接受原假设Hcr的判断解答:拒绝H0是有说服力的,接受H0是没有充分说服力的•因为假设检验的方法是概率性质的反证法.作为反证法就是必然要〃推出矛盾r才能得出"拒绝HO"的结论.这是有说服力的・如果“推不出矛盾化这时只能说〃目前还找不到拒绝H0的充分理由W此“不拒绝H0”或〃接受HCr\这并没有肯定H0—定成立•由于样木观察值是随机的• W此拒绝H0.不童味着H0是假的•接受H0也不意味着H0是真的•都存在着错误决策的可能.当原假设H0为真,而作出r拒绝H0的判断,这类决策错谋称为第一类错谋.又叫弃真错洪•显然犯这类错渓的概率为前述的小槪率a:a=P(拒绝HOIHO为真);而原假设HO不真•却作出接受H0的判断•称这类错误为第二类错误,又称取伪错误.它发生的槪率P为P二P(接受HO|H0不真).习題4 犯第一类错误的概率a与犯第二类错谋的概率P之间有何关系一般來说.当样木容g固定时,若减少犯一类错误的槪率.则犯另一类错渓的概率往往会增大•要它们同时减少,只有増加样木容a n.在实际问题中,总是控制犯節一类错误的概率a而使犯第二类错谋的概率尽可能小・a的大小视具体实际问题而定.通常取a弓等tfL 习題5 在假设检验中•如何理解指定的显著水平a 解答:我们希望所作的检验犯两类错谋的槪率尽可能都小・但实际上这是不可能的•当样木容Sn固定时,一般地•减少犯其中一个错谋的槪帑就会增加犯另一个错误的概率• W此,通常的作法是只要求犯第一类错误的概率不大于指定的显著水平6因而根据小概率原理,最终结论为拒绝H0较为可靠,而最终判断力接受H0则不大可靠,«原因是不知道犯第二类错误的概率P处竟有多少.且a小,P就大.所以通常用JW 相容r 〃不拒绝HO"等词语來代替“接受H0".而"不拒绝HO"还包含有再进一步作抽样检验的意思.习题6 在假设检验中•如何确定原假设H0和备择假设H1 解答: 在实际中・通常把那些需要着重考虑的假设视为原假设H0.而与之对应的假设视为备择假设H1.(1)如果问题是要决定新方案是否比原方案好,往往将原方案取假设.而将新方案取为备择假设:(2)若提出一个假设・检验的目的仅仅是为r判断这个假设是否成立.这时直接取此假设为原假设H0即可. 习題7 假设检验的基木步腺有哪些解答:根据反证法的思想和小概率原理•可将假设检验的步骤归纳如下:(1)根据问题的要求.提出原理假设H0和备择假设HL (2)根据检验对紀构造检验统计gT(Xl,X2宀Xn),使肖H0为真时汀有确定的分布.(3)由给定的显著水平6直统计址T所服从的分布表,定出临界值K使P{ 1 T I >A)=a,或P(T>M)=P(T<X2)=a/2,从而求出H0的拒绝域:I T I >入或T>MJ<X2,(4)由样木观察值计算统i|・fi T的观察值t(5)作出判断,将t的值与临界值比较大小作出结论:当tW拒绝域g时,则拒绝H0.否则,不拒绝H0.即认为在显著水平a下,H0与实际悄况差界不显著.习題8 假设检验与区间估il•有何异同解答:假设检验与区间估ii•的提法虽不同,但解决问题的途径是相通的.参数0的a信水平为i・a的a信区间对应于双边假设检验在駄着性水平a下的接受域:参数e的a信水平为1-a的爪侧置信区对应于爪边假设检验在显著性水平a下的接受域.在总休的分布已知的条件下•假设检验与区间估计是从不同的角度回答同一个问題•假设检验是判别原假设H0是否成立,而区间估计解决的是“多少"(或范前者是宦性的.后者是定fi的.习题9 某天开工时,需检验自动包装工作是否正常•根据以往的经验,其装包的质a在正常情况下服从正态分布N(100,仲位:kg).现抽测了9包,其质S为:问这天包装机工作是否正常将这一问题化为假设检验问题.写出假设检验的步驟(am 解答: ⑴提出假设检验问题H0:尸100, Hl:"100;(2)选取检验统il S U:U=X; HO成立时,UW((U);(3)a=,ua/2=,拒绝域W={ 1 u 1 >};(4))f勺I u I =. hM 1 u I <ua/2=,故接受HO,认为包装机.I:作正常.设总休X^(pJbXl,X2/7Xn是取自X的样木.对于假设检验HO:|i=O'Hl:pMO,取显著水平a,拒绝域为W={ i U i >ua/2b其中u=nX-,求:H0成立时,犯第一类错误的槪率aO;(2)十HO不成立时(若"0),犯第二类错的概率p.(l)X^(H4)/X'MM(g,l/n),故nX'=uMM(O,l). a0=P{ I u I >ua/2 I g=0}=l-P{-ua/2<u<ua/2}=1-[<D(ua/2)-(D(-ua/2)]=l-[(l-a2)-a2]=a,即犯第一类错误的概率是显著水平a.(2)F H0不成立.即PMO时.犯第二类错误的概率为P=P{ I U I 30/2 I E(X)=n}=P{・uct/2<u<ua/2 I E(X)=A}=P{-ua/2<nX'<ua/2 I E(X)=|i}=P{-ua/2-nn<n(X'-n)<ua/2-nn I E(X)=n}=(I)(ua/2-niJi)-®(-ua/2-nn),注1 '^1 H T+8或时,PTO.由此可见.当实际均值H偏离原假设校大时,犯第二类错误的概率很小.检验效果较好.注2!勺卩工0但接近于0时.Pdw.Wa很小.故犯第一娄错误的概率很大.检验效果较差.单正态总体的假设检験习题1 已知某炼铁厂铁水含碳量服从正态分布N,・现在测定r 9炉铁水•其平均含碳虽为•如果估计方差没有变化.可否认为现在生产的饮水平均含碳fi仍为(a=解答^ 木问题是在a二下检验假设HO:ns由r a2=已知,所以可选取统计sU=X •在HO 成立的条件下• UW(OJ),且此检验问题的拒绝域为I U 1 = I X •这里 说明U 没有落在拒绝域中.从而接受H0.即认为现在生产之饮水平均含碳S 仍为•习題2要求一种元件平均便用寿命不斜低于1000小肘,生产者从一批这种元件中随机抽取25件,测御其寿命的 平均值为950小时.已知该种元件寿命服从标准差为0=100小时的正态分布,试在显著性水平(1=卜确定 这批元件是否合格设总体均值为卩川未知.即需检验假设H0:H >1000,H1:H <1000.解答:检验假设 HO :n>1000,Hl :n<1000.这是飛边假设检验问题.由于方差02二,故用U 检验法.对于显着性水平a 二,拒绝域为W={X"-1000a/n<-ua.査标准正态分布表•得 又知n=25X=950,故可计算出x'-1000a/n=950-1000100/25=,因为&故在a=下拒绝H0,认为这批元件不合格.习题3 打包机装糖入包,每包标准重为100kg.毎天开工后,要检验所装糖包的总体期望值是否合乎标准 (100kg)•某日开工后.测御9包糖重如下位:kg):打包机装糖的包得服从正态分布•问该天打包机1:作是否正常(a 二 解答: 木问题是在a 二下检验假设HO:p=100,Hl :"100・由于02未知.所以可选取统讣fi T=X--100S/n,在HO 成立的条件下.W(n-1K 且此检验问題的拒绝域为I T I = 1 X'-lOOS/n I >ta/2(n-l).I t 1 =<=(8),即t 未落在拒绝域中・从而接受H0,即可以认为该天打包工作正常.习題4机器包装食盐.假设毎袋盐的净重服从正态分布•规定毎俊标准含fi 为500g,标准差不斜趙过lOg •某天开 工后•随机抽取9袋.测得浄重如下仲位:g):497, 507, 510, 475, 515, 484, 488, 524, 491,I U I =<=ua/2・这里 t=x"-100s/ns :试在駄著性水平a二下检验假设:HO:n=500,Hl:n#500,解答:x'=499,ss:,n=9,t=(x~-|jiO)sn==,a=, (8)=.Will <(8b故接受HO,认为该天每袋平均质a可视为500g・习«5从清凉饮料自动售货机・随机抽样36杯,其平均含g为219(mL),标准差为/在a二的显I?性水平下・试检验假设S HO:A=|I O=222,H1:H<M=222・解答: 设总休X-W(g,a2bX代表自动售货机售出的清凉饮料含S・检验假设H0:n=n0=222(mL), Hl:n<222(mL),由asn=36,査表毎(36・1)弓拒绝域为W={t=x'-nOs/n<-ta(n-l).il•算t值并判断:t=36»习題6 某种寻线的电阻服从正态分布N(x・今从新生产的一批导线中抽取9根・测«电阻•得s=Q,对于a®能否认为这批导线电阴的标准差仍为解答:木问题是在a二下检验假设H0:a2=, Hl:o2匕选取统计fi x2=n-la2S2,在HO成立的条件下,X2^2(n-1),且此检验问題的拒绝域为X2>xa/22(n-l)或x2<xl-a/22(n-l).这里X2==x=,X(8)=,x(8)-落在拒绝域中,从而拒绝HO,即不能认为这批导线电阻的标准差仍为.习题7某厂生产的铜线,要求其折断力的方差不超过16N2.今从某日生产的铜丝中随机抽取容fi为9的样木•测得其折断力如下(飛位:N):289, 286, 285, 286, 285, 284, 285, 286, 298, 292设总体服从正态分布,问该日生产的铜线的折斷力的方差是否符合标准(a二解答: 检验问題为n=9, s2勺X2=8XS216勺am X(8)=・因X2<X(8)s故接受HO,可认为铜丝的折断力的方差不超过16N2.习题8过去经验示.商三学生完成标准考试的时间为一正态变其标准差为6min.若随机样木为20位学生, 其标准差为X,试在显着性水平a= b\检验假设:H0:a>6,Hl:a<6,解答:HO:a>6,Hl:a<6,a=,n-l=19,ssx(19)-拒绝域为W={x2<},i l•算X2值X2=(20-l)x^.因为>■故接受H0,认为a>6.习題9测定某种潯液中的水分・它的10个测定值给出*%,设测定值总体服从正态分布.02为总休方差.02未知,试在a二水平下检验假设:在a= b\拒绝域为W={(n-l)S2a02<xl-a2(9).查X2分布表得X(9)m讣算得(n-l)s2o02=(10-l)x\per)2\per)2^>,未落入拒绝域•故接受H0.取正态总体的假设检越习題1制造厂家宜称•线A的平均张力比线B至少强120N,为证实其说法.在同样情况下测试两种线各50条.线A的平均张力x-=867N,标准差为01=;而线B的平均张力为y・=778N,标准差为o2m在a二的显善性水平下,试检验此制造厂家的说法.解答:H0:nl4l2=120,Hl:pl 屮2<120・am=・W={u=x'-y~-120ol2nl+a22n2<-ua,拒绝域为由x'=867,y'=778,nl=n2=50, 012=2,o22=2,得□=867-778-120250+250^^^,因为&故拒绝H0,认为pl-rx2<120,即厂家的说法不对.习题2 欲知某新血清是否能抑制白血球过多症,选择已患该病的老畝9只•并将其中5只施予此种血清,另外4 只则不热•从实验开始.其存活年限表示如下假设两总体均服从方差相同的正态分布,试在显著性水平a二下检验此种血清是否有效解答^ 设pl- p2分别为老鼠接受和未接受血清的平均存活年限。
.第七章假设检验7.1设总体J〜N(4Q2),其中参数4, /为未知,试指出下面统计假设中哪些是简洁假设,哪些是复合假设:(1) W o: // = 0, σ = 1 ;(2) W o√∕ = O, σ>l5(3) ∕70:// <3, σ = 1 ;(4) % :0< 〃 <3 ;(5)W o :// = 0.解:(1)是简洁假设,其余位复合假设7.2设配么,…,25取自正态总体息(19),其中参数〃未知,无是子样均值,如对检验问题“0 :〃 = 〃o, M :4工从)取检验的拒绝域:c = {(x1,x2,∙∙∙,x25)r∣x-χ∕0∖≥c},试打算常数c ,使检验的显著性水平为0. 05_ Q解:由于J〜N(〃,9),故J~N(",二)在打。
成立的条件下,一/3 5cP o(∖ξ-^∖≥c) = P(∖ξ-μJ^∖≥-)=2 1-Φ(y) =0.05Φ(-) = 0.975,-= 1.96,所以c=L176°3 37. 3 设子样。
,乙,…,25取自正态总体,cr:已知,对假设检验%邛=μ0, H2> /J。
,取临界域c = {(X[,w,…,4):片>9)},(1)求此检验犯第一类错误概率为α时,犯其次类错误的概率夕,并争论它们之间的关系;(2)设〃o=0∙05, σ~=0. 004, a =0.05, n=9,求"=0.65 时不犯其次类错误的概率。
解:(1)在儿成立的条件下,F~N(∕o,军),此时a = P^ξ≥c^ = P0< σo σo )所以,包二为册=4_,,由此式解出c°=窄4f+为% ∖∣n在H∣成立的条件下,W ~ N",啊 ,此时nS = %<c°) = AI。
气L =①(^^~品)二①匹%=①(2δξ^历σoA∣-σ+A)-A-------------- y∕n)。
第七章 假设检验学习目标知识目标:理解假设检验的基本概念小概率原理;掌握假设检验的方法和步骤。
能力目标:能够作正态总体均值、比例的假设检验和两个正态总体的均值、比例之差的假设检验。
参数估计和假设检验是统计推断的两种形式,它们都是利用样本对总体进行某种推断,然而推断的角度不同。
参数估计是通过样本统计量来推断总体未知参数的取值范围,以及作出结论的可靠程度,总体参数在估计前是未知的。
而在假设检验中,则是预先对总体参数的取值提出一个假设,然后利用样本数据检验这个假设是否成立,如果成立,我们就接受这个假设,如果不成立就拒绝原假设。
当然由于样本的随机性,这种推断只能具有一定的可靠性。
本章介绍假设检验的基本概念,以及假设检验的一般步骤,然后重点介绍常用的参数检验方法。
由于篇幅的限制,非参数假设检验在这里就不作介绍了。
第一节 假设检验的一般问题关键词:参数假设;检验统计量;接受域与拒绝域;假设检验的两类错误一、假设检验的基本概念(一)原假设和备择假设为了对假设检验的基本概念有一个直观的认识,不妨先看下面的例子。
例7.1 某厂生产一种日光灯管,其寿命X 服从正态分布)200 ,(2μN ,从过去的生产经验看,灯管的平均寿命为1550=μ小时,。
现在采用新工艺后,在所生产的新灯管中抽取25只,测其平均寿命为1650小时。
问采用新工艺后,灯管的寿命是否有显著提高?这是一个均值的检验问题。
灯管的寿命有没有显著变化呢?这有两种可能:一种是没有什么变化。
即新工艺对均值没有影响,采用新工艺后,X 仍然服从)200 ,1550(2N 。
另一种情况可能是,新工艺的确使均值发生了显著性变化。
这样,1650=X 和15500=μ之间的差异就只能认为是采用新工艺的关系。
究竟是哪种情况与实际情况相符合,这需要作检验。
假如给定显著性水平05.0=α。
在上面的例子中,我们可以把涉及到的两种情况用统计假设的形式表示出来。
第一个统计假设1550=μ表示采用新工艺后灯管的平均寿命没有显著性提高。
第二个统计假设1550>μ表示采用新工艺后灯管的平均寿命有显著性提高。
这第一个假设称为原假设(或零假设),记为0H :1550=μ;第二个假设1550>μ称为备择假设,记为1H :1550>μ。
至于在两个假设中,采用哪一个作为原假设,哪一个作为备择假设,要看具体的研究目的和要求而定。
假如我们的目的是希望从子样观察值对某一陈述取得强有力的支持,则把该陈述的否定作为原假设,该陈述本身作为备择假设。
譬如在上例中,我们的目的当然是希望新工艺对产品寿命确有提高,但又没有更多的数据可以掌握。
为此,我们取“寿命没有显著性提高)1550(=μ”作原假设,而以“寿命有显著性提高)1550(>μ”作为备择假设。
(二)检验统计量假设检验问题的一般提法是:在给定备择假设1H 下对原假设0H 作出判断,若拒绝原假设0H ,那就意味着接受备择假设1H ,否则就接受原假设0H 。
在拒绝原假设0H 或接受备择假设1H 之间作出某种判断,必须要从子样),,,(21n X X X 出发,制定一个法则,一旦子样),,,(21n x x x 的观察值确定之后,利用我们制定的法则作出判断:拒绝原假设0H 还是接受原假设0H 。
那么检验法则是什么呢?它应该是定义在子样空间上的一个函数为依据所构造的一个准则,这个函数一般称为检验统计量。
如上面列举的原假设0H :)1550(00==μμμ,第 3 页 ** 共 23 页 那么子样均值X 就可以作为检验统计量,有时还可以根据检验统计量的分布进一步加工,如子样均值服从正态分布时将其标准化,n X Z /0σμ-=作为检验统计量,简称Z 检验量。
或者在总体方差2σ未知的条件下,n S X t n /0μ-=作为检验量,称为t 检验量。
(三)接受域和拒绝域 假设检验中接受或者拒绝原假设0H 的依据是假设检验的小概率原理。
所谓小概率原理,是指发生概率很小的随机事件在一次实验中几乎是不可能发生的,根据这一原理就可以作出接受或是拒绝原假设的决定。
如,一家厂商声称其某种产品的合格率很高,可以达到99﹪,那么从一批产品(如100件)中随机抽取一件,这一件恰好是次品的概率就非常之小,只有1﹪。
如果把厂商的宣称,即产品的次品率仅为1﹪作为一种假设,并且是真的。
那么由小概率原理,随机抽取一件是次品的情形就几乎是不可能发生的。
如果这种情形居然发生了,这就不能不使人们怀疑原来的假设,即产品的次品率仅为1﹪的假设的正确性,这时就可以作出原假设为伪的判断,于是否定原假设。
接受域和拒绝域是在给定的显著性水平α下,由检验法则所划分的样本空间的两个互不相交的区域。
原假设0H 为真时的可以接受的可能范围称为接受域,另一区域是当原假设0H 为真时只有很小的概率发生,如果小概率事件确实发生,就要拒绝原假设,这一区域称为拒绝域(或否定域)。
落入拒绝域是个小概率事件,一旦落入拒绝域,就要拒绝原假设而接受备择假设。
那么应该确定多大的概率算作小概率呢?这要根据不同的目的和要求而定,一般选择05.0或者01.0,通常用α表示。
它说明用多大的小概率来检验原假设。
显然α愈小愈不容易推翻原假设,而一旦拒绝原假设,原假设为真的可能性就越小。
所以在作假设检验时通常要事先给定显著性水平.α(α-1称为置信水平)。
图7-1所示Z 检验时的拒绝域和接受域。
(四)假设检验中的两类错误由前面已知,假设检验是在子样观察值确定之后,根据小概率原理进行推断的,由于样本的随机性,这种推断不可能有绝对的把握,不免要犯错误。
所犯错误的类型有两类:一类错误是原假设H为真时却被拒绝了。
这类错误称为弃真错误,犯这种错误的概率用α表示,所以也叫α错误或第一类错误。
另一类错误是指原假设H为伪时,却被人们接受而犯了错误。
这是一种取伪的错误,这种0错误发生的概率用β表示,故也称β错误或第二类错误。
在厂家出售产品给消费者时,通常要经过产品质量检验,生产厂家总是假定产品是合格的,但检验时厂家总要承担把合格产品误检为不合格产品的某些风险,生产者承担这些风险的概率就是α,所以α也称为生产者风险。
而在消费者一方却耽心把不合格产品误检为合格品而被接受,这是消费者承担的某些风险,其概率就是β,因此第二类错误β也称为消费者风险。
正确的决策和犯错误的概率可以归纳为表7.1。
自然,人们希望犯这两类错误的概率愈小愈好。
但对于一定的子样容量n,不可能同时做到犯这两类错误的概率都很小。
通常的假设检验只规定第一类错误α,即显著性水平,而不考虑第二类错误β,并称这样的检验为显著性检验。
表7.1 假设检验中各种可能结果的概率第 5 页 ** 共 23 页(五)双边检验和单边检验根据假设的形式,可以把检验分为双边检验和单边检验,单边检验又进一步分为右检验和左检验。
1、双边检验例如,检验的形式为:0H :0μμ=1H :0μμ≠由于我们在这里提出的原假设是μ等于某一数值0μ,所以只要0μμ>或0μμ<二者之中有一个成立,就可以否定原假设,这种假设检验称为双边检验,它的拒绝域分为两个部分,有两个临界值,在给定显著性水平α下,每个拒绝域的面积为2/α。
双边检验如图7.2所示。
2、单边检验在有些情况下,我们关心的假设问题带有方向性。
例如产品的次品率则要求愈低愈好,它不能高于某一指标,当高于某一指标,就要拒绝原假设,这就是单边检验。
这时拒绝域的图形在右侧,就称作单边右检验。
检验的形式可以写为:0H :0μμ≤,1H :0μμ>。
又例如,灯管的使用寿命,药物的有效成分这类产品质量指标是愈高愈好,它不能低于某一标准,当低于某一标准时就要拒绝原假设,这时拒绝域的图形在左侧,就称为单边左检验。
检验的形式为:0H :0μμ≥,1H :0μμ<。
二、假设检验的一般步骤一个完整的假设检验过程,一般包括五个主要步骤:(一)提出原假设和备择假设确定是双边检验还是单边检验,例如双边检验为:0H :0μμ=, 1H :0μμ≠。
单边左检验为:0H : 0μμ≥,1H :0μμ<。
单边右检验为:0H : 0μμ≤,1H :0μμ>。
(二)建立检验统计量建立检验统计量是假设检验的重要步骤。
譬如上例中,在总体X 服从正态分布)200 ,(2μN 的假定下,当原假设0H :1550=μ成立时,建立检验统计量n X Z /2001550-=,那么Z 就服从标准正态分布)1 ,0(N 。
在具体问题里,选择什么统计量作为检验统计量,需要考虑的因素与参数估计相同。
例如,用于进行检验的样本是大样本还是小样本,总体方差是已知还是未知等等,在不同条件下应选择不同的检验统计量。
第 7 页 ** 共 23 页(三)规定显著性水平α,确定0H 的拒绝域例如,当原假设0H :0μμ=成立时,检验统计量U 服从标准正态分布)1 ,0(N ,那么给定显著性水平α()10<<α,按双边检验,在标准正态分布表中查得临界值2αz ,使得αα=≥}{2z Z P ,或者ααα-=≤≤-1}{22z Z z P 。
若由子样),,,(21n X X X 的一组观察值),,,(21n x x x 算得统计量Z 的值z 落在) ,(2αz --∞或) ,(2∞αz 时,则拒绝或否定0H ,) ,(2αz --∞及) ,(2∞αz 组成0H 的拒绝域,称2αz 为临界值。
(四)计算实际检验量在例7.1中,5.225/20015501650/0=-=-=n X z σμ。
(五)判断将实际检验量的数值与临界值比较,以确定接受或拒绝0H 。
在本例中,645.105.0==u z α。
实际检验量u 之值大于临界值645.1,即落入拒绝域,故拒绝0H :1550=μ,接受假设1H :1550>μ,即可认为采用新工艺后日光灯管的平均寿命有显著性提高。
第二节 正态总体的参数检验 关键词:总体均值的检验; 总体比例的检验;单边右检验;单边左检验;两个总体均值之差;两个总体比例之差一、一个正态总体的参数检验(一)总体均值的检验1、正态总体且方差2σ已知例7.2 某厂生产一种耐高温的零件,根据质量管理资料,在以往一段时间里,零件抗热的平均温度是12500C ,零件抗热温度的标准差是1500C 。
在最近生产的一批零件中,随机测试了100个零件,其平均抗热温度为12000C 。
该厂能否认为最近生产的这批零件仍然符合产品质量要求,而承担的生产者风险为0.05。
解:从题意分析知道,该厂检验的目的是希望这批零件的抗热温度高于12500C ,而低于12500C 的应予拒绝,因此这是一个左边检验问题。
(1)提出假设:0H : ,1250≥μ1H :1250<μ。