拉普拉斯方程
- 格式:doc
- 大小:53.50 KB
- 文档页数:6
拉普拉斯方程,也称为谐波方程和势方程,是一种偏微分方程,最早由法国数学家拉普拉斯提出。
拉普拉斯方程是液体表面曲率和液体表面压力之间关系的公式。
曲面称为曲面。
通常,使用两个相应的曲率半径来描述表面,即在表面上的某个点处绘制垂直于该表面的直线,然后通过该线制作一个平面。
平面和表面的截面是曲线,并且在该点与曲线相切的圆的半径称为曲线的曲率半径R1。
第二剖面线及其曲率半径R2可以通过使第二平面垂直于第一平面并与表面相交来获得。
液面的弯曲可以用R1和R2表示。
如果液体表面弯曲,则液体P1内部的压力将与液体外部的压力P2不同,并且液体表面的两侧之间将存在压力差△P = P1-P2,这称为附加压力。
压力。
其值与液体表面的曲率有关,可以表示为:其中γ是液体的表面张力系数,称为拉普拉斯方程。
在数学公式中拉普拉斯方程是:其中∥是拉普拉斯算子,而这里的拉普拉斯方程是二阶偏微分方程。
在三维情况下,拉普拉斯方程可按以下形式描述。
可以将问题简化为求解对于实变量X,y和Z可二阶微分的实函数φ∇2称为拉普拉斯算子。
拉普拉斯方程的解称为谐波函数。
如果在等号右边是给定的函数f(x,y,z),即:然后将该方程称为泊松方程。
拉普拉斯方程和泊松方程是最简单的椭圆偏微分方程。
偏微分算子(可以在任何维空间中定义)称为拉普拉斯算子。
方程解它称为谐波函数,可以在建立方程的区域进行分析。
如果任何两个函数满足拉普拉斯方程(或任何线性微分方程),则这两个函数的总和(或它们的任何线性组合)也满足上述方程。
这种非常有用的特性称为叠加原理。
根据这一原理,可以将已知的复杂问题的简单特殊解组合起来,以构建具有更广泛适用性的一般解。
拉普拉斯方程拉普拉斯方程(Laplace's equation)又称调和方程、位势方程,是一种偏微分方程,因由法国数学家拉普拉斯首先提出而得名。
[1]拉普拉斯方程表示液面曲率与液体表面压强之间的关系的公式。
中文名拉普拉斯方程外文名Laplace's equation别称调和方程、位势方程提出者拉普拉斯关键词微分方程、拉普拉斯定理涉及领域电磁学、天体物理学、力学、数学目录.1基本概述.▪在数理方程中.▪方程的解.2二维方程.3人物介绍基本概述一个弯曲的表面称为曲面,通常用相应的两个曲率半径来描述曲面,即在曲面上某点作垂直于表面的直线,再通过此线作一平面,此平面与曲面的截线为曲线,在该点与曲线相切的圆半径称为该曲线的曲率半径R1。
通过表面垂线并垂直于第一个平面再作第二个平面并与曲面相交,可得到第二条截线和它的曲率半径R2,用R1与R2可表示出液体表面的弯曲情况。
若液面是弯曲的,液体内部的压强p1与液体外的压强p2就会不同,在液面两边就会产生压强差△P= P1- P2,称附加压强,其数值与液面曲率大小有关,可表示为:,式中γ是液体表面张力系数,该公式称为拉普拉斯方程。
在数理方程中拉普拉斯方程为:,其中∇²为拉普拉斯算子,此处的拉普拉斯方程为二阶偏微分方程。
三维情况下,拉普拉斯方程可由下面的形式描述,问题归结为求解对实自变量x、y、z二阶可微的实函数φ :其中∇²称为拉普拉斯算子。
拉普拉斯方程的解称为调和函数。
如果等号右边是一个给定的函数f(x,y,z),即:则该方程称为泊松方程。
拉普拉斯方程和泊松方程是最简单的椭圆型偏微分方程。
偏微分算子(可以在任意维空间中定义这样的算子)称为拉普拉斯算子,英文是Laplace operator或简称作Laplacian。
方程的解称为调和函数,此函数在方程成立的区域内是解析的。
任意两个函数,如果它们都满足拉普拉斯方程(或任意线性微分方程),这两个函数之和(或任意形式的线性组合)同样满足前述方程。
拉普拉斯方程极坐标形式拉普拉斯方程是一种描述空间物理现象的数学方程。
在极坐标系下,拉普拉斯方程的形式为:$$\frac{\partial^2u}{\partial r^2}+\frac{1}{r}\frac{\partialu}{\partial r}+\frac{1}{r^2}\frac{\partial^2u}{\partial\theta^2}=0$$其中,$u$是我们要求解的函数,$r$是极径,$\theta$是极角。
这个方程主要描述了空间中的温度分布、电场分布等现象,是物理学中的重要工具。
这个方程的求解可以通过分离变量的方法来得到。
首先假设$u$能够表示为$r$和$\theta$的乘积形式:$$u(r,\theta)=R(r)\Theta(\theta)$$将上式代入拉普拉斯方程中得到:$$\frac{1}{R}\frac{\partial^2R}{\partialr^2}+\frac{1}{rR}\frac{\partial R}{\partialr}+\frac{1}{r^2\Theta}\frac{\partial^2\Theta}{\partial\theta^2}=0$$这个式子中,左侧只依赖于$r$,右侧只依赖于$\theta$。
因此,它们应该等于一个常数,记作$k^2$:$$\frac{1}{R}\frac{\partial^2R}{\partialr^2}+\frac{1}{rR}\frac{\partial R}{\partial r}=k^2$$$$\frac{1}{r^2\Theta}\frac{\partial^2\Theta}{\partial \theta^2}=-k^2$$这两个方程可以分别求解得到$R$和$\Theta$:$$R(r)=c_1\ln(r)+c_2$$$$\Theta(\theta)=a\sin(k\theta)+b\cos(k\theta)$$其中,$c_1$、$c_2$、$a$、$b$为常数。
拉普拉斯方程及其在物理学中的应用拉普拉斯方程,又称为调和方程,是数学中的一个重要方程,其形式为:∇²φ=0其中,φ表示标量场,∇²表示拉普拉斯算子。
在物理学中,拉普拉斯方程有许多应用。
下面我们来探讨一些相关的问题。
1. 电势的分布在电学领域中,物体表面的电势分布往往可以通过拉普拉斯方程来描述。
假设一个电势φ在空间的分布是调和的,则满足拉普拉斯方程。
根据边界条件,可以计算出物体表面的电势分布。
举个例子,假设一个正方体的6面电势相同,其中一个面上有一极板,另一个面上有一个异极板。
如果我们要计算出其他面的电势分布,就可以运用拉普拉斯方程,将其表示为一个调和函数,并使用边界条件来求解。
2. 流体力学在流体动力学中,拉普拉斯方程用于计算流体的速度场。
根据流场在空间中的速度变化,可以得到拉普拉斯方程。
流体的速度场对于飞机和汽车的设计以及无线电和雷达的设计至关重要。
通常来说,求解流场速度场方程是一项十分困难的任务,但是运用计算机来求解可以大大简化问题。
3. 物理学中的热传导在热传导领域中,拉普拉斯方程可以用来描述热点的分布。
热传导是指热量从高温区域向低温区域传递的过程。
当没有热源时,一般会有一个稳态的温度分布,在此情况下,拉普拉斯方程可以用来描述稳态温度分布。
运用边界条件可以求解物体表面温度的分布情况。
4. 气体力学在气体力学中,拉普拉斯方程被用来计算气体分子在空气中的运动。
公式可以表示为以下形式:∂²p/∂x² + ∂²p/∂y² + ∂²p/∂z² = 0其中, p表示气体分子的密度。
拉普拉斯方程在气体物理学中的应用十分广泛,从气体力学模型构建到对飞行器的模拟,都可以使用这个方程来计算气体流动的速度和压力分布。
总结:拉普拉斯方程在物理学中的应用十分广泛,几乎所有领域都可以运用到它。
气体力学、流体动力学、热传导和电学等领域,都需要用到该方程来计算数据分析。
物理学概念知识:拉普拉斯方程和热扩散方程拉普拉斯方程和热扩散方程是物理学中非常重要的两个方程。
它们分别描述了静电场和热传导过程中的物理规律。
在本文中,我们将分别介绍拉普拉斯方程和热扩散方程的定义、物理意义以及数学特性。
同时,我们将讨论这两个方程在实际问题中的应用,以及它们之间的联系和区别。
1.拉普拉斯方程拉普拉斯方程是描述静电场分布的基本方程。
在电磁学中,通过拉普拉斯方程可以求解电荷分布产生的电势分布。
其数学表达式为:∇^2φ = 0其中,∇^2是拉普拉斯算子,φ是电势。
拉普拉斯方程的物理意义是描述电势在无电荷分布的区域内的分布规律。
具体来说,对于一个没有电荷分布的区域,电势满足拉普拉斯方程。
从物理意义上来说,拉普拉斯方程描述了电势的均匀传播和分布规律。
通过求解拉普拉斯方程,可以获得电势在空间内的分布情况,从而更好地了解电场的性质和分布规律。
另外,拉普拉斯方程也在一些其他物理领域有着广泛的应用。
比如在热力学中,拉普拉斯方程可以用来描述温度分布;在流体力学中,可以用来描述速度场的分布。
因此,拉普拉斯方程可以说是物理学中一个非常基础且重要的方程。
2.热扩散方程热扩散方程是描述热传导过程的方程。
在热传导问题中,热扩散方程可以用来描述热量在材料或物体内的传播规律。
其数学表达式为:∂u/∂t = α∇^2u其中,u是温度分布,t是时间,α是热扩散系数,∇^2是拉普拉斯算子。
热扩散方程描述了温度分布随时间的演化规律,可以用来求解材料内部温度的分布情况。
从物理意义上来说,热扩散方程描述了热量在空间内的传导规律。
通过求解热扩散方程,可以获得材料内部温度的分布情况,从而更好地了解热传导的性质和规律。
除了热传导问题,热扩散方程在其他物理领域中也有着广泛的应用。
比如在地球内部热量传导问题中,可以用热扩散方程来描述地球内部温度的分布;在材料工程中,可以用来描述材料内部温度的分布等。
3.拉普拉斯方程和热扩散方程的联系拉普拉斯方程和热扩散方程在数学表达形式上有一定的相似性。
拉普拉斯方程(Laplace's equation)又称调和方程、位势方程,是一种偏微分方程,因由法国数学家拉普拉斯首先提出而得名。
拉普拉斯方程表示液面曲率与液体表面压强之间的关系的公式。
拉普拉斯方程为:,其中∇²为拉普拉斯算子,此处的拉普拉斯方程为二阶偏微分方程。
三维情况下,拉普拉斯方程可由下面的形式描述,问题归结为求解对实自变量x、y、z二阶可微的实函数φ,其中∇²称为拉普拉斯算子。
拉普拉斯方程的解称为调和函数。
拉普拉斯,1749年3月23日生于法国西北部卡尔瓦多斯的博蒙昂诺日,曾任巴黎军事学院数学教授。
1795年任巴黎综合工科学校教授,后又在高等师范学校任教授。
1799年他还担任过法国经度局局长,并在拿破仑政府中任过6个星期的内政部长。
1816年被选为法兰西学院院士,1817年任该院院长。
1827年3月5日卒于巴黎。
拉普拉斯在研究天体问题的过程中,创造和发展了许多数学的方法,以他的名字命名的[4] 拉普拉斯变换、拉普拉斯定理和拉普拉斯方程,在科学技术的各个领域有着广泛的应用。
拉普拉斯曾任拿破仑的老师,所以和拿破仑结下不解之缘。
拉普拉斯在数学上是个大师,在政治上是个小人物、墙头草,总是效忠于得势的一边,被人看不起,拿破仑曾讥笑他把无穷小量的精神带到内阁里。
在席卷法国的政治变动中,包括拿破仑的兴起和衰落,没有显著地打断他的工作。
尽管他是个曾染指政治的人,但他的威望以及他
将数学应用于军事问题的才能保护了他,同时也归功于他显示出的一种并不值得佩服的在政治态度方面见风使舵的能力。
拉普拉斯方程泊松方程亥姆霍兹方程波动方程标题:深度解读拉普拉斯方程、泊松方程、亥姆霍兹方程和波动方程在数学和物理学领域中,拉普拉斯方程、泊松方程、亥姆霍兹方程和波动方程是一些重要的偏微分方程,它们在不同领域中扮演着重要的角色。
本文将从深度和广度的角度来探讨这些方程,并分析它们的意义和应用。
一、拉普拉斯方程1.1 拉普拉斯方程的定义拉普拉斯方程是一个偏微分方程,通常用Δu=0表示,其中Δ表示拉普拉斯算子,u是未知函数。
在数学物理学中,拉普拉斯方程是一个重要的调和方程,它描述了没有源项的稳态温度分布、电势分布或流体流动等物理现象。
1.2 拉普拉斯方程的应用拉普拉斯方程在电磁学、热传导、流体力学等领域有着广泛的应用。
通过求解拉普拉斯方程,可以得到电场、温度场和流速场等物理量的分布规律,从而为工程设计和科学研究提供重要的参考依据。
1.3 个人观点和理解对于拉普拉斯方程,我认为它在自然科学和工程领域中都具有重要意义。
通过深入理解和应用拉普拉斯方程,可以更好地理解和解释大量物理现象,为实际问题的求解提供了有力工具。
二、泊松方程2.1 泊松方程的定义泊松方程是一个偏微分方程,通常用Δu=f表示,其中Δ表示拉普拉斯算子,u是未知函数,f是已知函数。
泊松方程是拉普拉斯方程加上一个源项后得到的方程,它描述了包含源项的稳态温度分布、电势分布或流体流动等物理现象。
2.2 泊松方程的应用泊松方程在电磁学、热传导、流体力学等领域同样有着广泛的应用。
通过求解泊松方程,可以得到包含源项的电场、温度场和流速场等物理量的分布规律,从而更准确地反映实际问题的特性。
2.3 个人观点和理解对于泊松方程,我认为它在描述带有源项的物理现象时具有重要意义。
通过对泊松方程的深入理解和求解,可以更准确地预测现实世界中的电场、温度场和流速场等物理量分布规律,为工程设计和科学研究提供了有力工具。
三、亥姆霍兹方程3.1 亥姆霍兹方程的定义亥姆霍兹方程是一个偏微分方程,通常用Δu+k²u=0表示,其中Δ表示拉普拉斯算子,u是未知函数,k是已知常数。
拉普拉斯方程(Laplace's equation)又称调和方程、位势方程,是一种偏微分方程,因由法国数学家拉普拉斯首先提出而得名。
拉普拉斯方程表示液面曲率与液体表面压强之间的关系的公式。
基本概述一个弯曲的表面称为曲面,通常用相应的两个曲率半径来描述曲面,即在曲面上某点作垂直于表面的直线,再通过此线作一平面,此平面与曲面的截线为曲线,在该点与曲线相切的圆半径称为该曲线的曲率半径R1。
通过表面垂线并垂直于第一个平面再作第二个平面并与曲面相交,可得到第二条截线和它的曲率半径R2,用R1与R2可表示出液体表面的弯曲情况。
若液面是弯曲的,液体内部的压强p1与液体外的压强p2就会不同,在液面两边就会产生压强差△P= P1- P2,称附加压强,其数值与液面曲率大小有关,可表示为:,式中γ是液体表面张力系数,该公式称为拉普拉斯方程。
在数理方程中拉普拉斯方程为:,其中∇²为拉普拉斯算子,此处的拉普拉斯方程为二阶偏微分方程。
三维情况下,拉普拉斯方程可由下面的形式描述,问题归结为求解对实自变量x、y、z二阶可微的实函数φ :其中∇²称为拉普拉斯算子。
拉普拉斯方程的解称为调和函数。
如果等号右边是一个给定的函数f(x,y,z),即:则该方程称为泊松方程。
拉普拉斯方程和泊松方程是最简单的椭圆型偏微分方程。
偏微分算子(可以在任意维空间中定义这样的算子)称为拉普拉斯算子,英文是Laplace operator或简称作Laplacian。
方程的解称为调和函数,此函数在方程成立的区域内是解析的。
任意两个函数,如果它们都满足拉普拉斯方程(或任意线性微分方程),这两个函数之和(或任意形式的线性组合)同样满足前述方程。
这种非常有用的性质称为叠加原理。
可以根据该原理将复杂问题的已知简单特解组合起来,构造适用面更广的通解。
二维方程两个自变量的拉普拉斯方程具有以下形式:解析函数的实部和虚部均满足拉普拉斯方程。
人物介绍拉普拉斯,1749年3月23日生于法国西北部卡尔瓦多斯的博蒙昂诺日,曾任巴黎军事学院数学教授。
拉普拉斯方程(Laplace'sequation),又名调和方程、位势方程,是一种偏微分方程。
因为由法国数学家拉普拉斯首先提出而得名。
求解拉普拉斯方程是电磁学、天文学和流体力学等领域经常遇到的一类重要的数学问题,因为这种方程以势函数的形式描写了电场、引力场和流场等物理对象(一般统称为“保守场”或“有势场”)的性质。
拉普拉斯方程(Laplace equation)拉普拉斯方程表示液面曲率与液体压力之间的关系的公式。
一个弯曲的表面称为曲面,通常用相应的两个曲率半径来描述曲面,即在曲面上某点作垂直于表面的直线,再通过此线作一平面,此平面与曲面的截线为曲线,在该点与曲线相重合的圆半径称为该曲线的曲率半径R1。
通过表面垂线并垂直于第一个平面再作第二个平面并与曲面相交,可得到第二条截线和它的曲率半径R2,用R1与R2可表示出液体表面的弯曲情况。
若液面是弯曲的,液体内部的压力p1与液体外的压力p2就会不同,在液面两边就会产生压力差△P= P1- P2,其数值与液面曲率大小有关,可表示为:在数理方程中拉普拉斯方程为:△u=d^2u/dx^2+d^2u/dy^2=0,其中△为拉普拉斯算子,此处的拉普拉斯方程为二阶偏微分方程。
三维情况下,拉普拉斯方程可由下面的形式描述,问题归结为求解对实自变量x、y、z二阶可微的实函数φ :其中Δ称为拉普拉斯算子.拉普拉斯方程的解称为调和函数。
如果等号右边是一个给定的函数f(x, y, z),即:则该方程称为泊松方程。
拉普拉斯方程和泊松方程是最简单的椭圆型偏微分方程。
偏微分算子或Δ(可以在任意维空间中定义这样的算子)称为拉普拉斯算子,英文是Laplace operator或简称作Laplacian。
狄利克雷问题拉普拉斯方程的狄利克雷问题可归结为求解在区域D内定义的函数φ,使得在D 的边界上等于某给定的函数。
为方便叙述,以下采用拉普拉斯算子应用的其中一个例子——热传导问题作为背景进行介绍:固定区域边界上的温度(是边界上各点位置坐标的函数),直到区域内部热传导使温度分布达到稳定,这个温度分布场就是相应的狄利克雷问题的解。
诺伊曼边界条件拉普拉斯方程的诺伊曼边界条件不直接给出区域D边界处的温度函数φ本身,而是φ沿D的边界法向的导数。
从物理的角度看,这种边界条件给出的是矢量场的势分布在区域边界处的已知效果(对热传导问题而言,这种效果便是边界热流密度)。
拉普拉斯方程的解称为调和函数,此函数在方程成立的区域内是解析的。
任意两个函数,如果它们都满足拉普拉斯方程(或任意线性微分方程),这两个函数之和(或任意形式的线性组合)同样满足前述方程。
这种非常有用的性质称为叠加原理。
可以根据该原理将复杂问题的已知简单特解组合起来,构造适用面更广的通解。
二维拉普拉斯方程两个自变量的拉普拉斯方程具有以下形式:函数h (x,y) 为二元函数,h(x,y) 对x的二阶偏导数+ h(x,y)对y的二阶偏导数= 0解析函数解析函数的实部和虚部均满足拉普拉斯方程。
换言之,若z = x + iy,并且那么f(z)是解析函数的充要条件是它满足下列柯西-黎曼方程:f(z)= u(x,y) + iv(x ,y)u 对x的偏导数= v 对y 的偏导数,u 对y 的偏导数= - (v 对x 的偏导数)上述方程继续求导就得到所以u满足拉普拉斯方程。
类似的计算可推得v同样满足拉普拉斯方程。
反之,给定一个由解析函数(或至少在某点及其邻域内解析的函数)f(z)的实部确定的调和函数,若写成下列形式:则等式成立就可使得柯西-黎曼方程得到满足。
上述关系无法确定ψ,只能得到它的微增量表达式:φ满足拉普拉斯方程意味着ψ满足可积条件:所以可以通过一个线积分来定义ψ。
可积条件和斯托克斯定理的满足说明线积分的结果与积分经过的具体路径无关,仅由起点和终点决定。
于是,我们便通过复变函数方法得到了φ和ψ这一对拉普拉斯方程的解。
这样的解称为一对共轭调和函数。
这种构造解的方法只在局部(复变函数f(z))的解析域内)有效,或者说,构造函数的积分路径不能围绕有f(z)的奇点。
譬如,在极坐标平面(r,θ)上定义函数那么相应的解析函数为在这里需要注意的是,极角θ仅在不包含原点的区域内才是单值的。
拉普拉斯方程与解析函数之间的紧密联系说明拉普拉斯方程的任何解都无穷阶可导(这是解析函数的一个性质),因此可以展开成幂级数形式,至少在不包含奇点的圆域内是如此。
这与波动方程的解形成鲜明对照,后者包含任意函数,其中一些的可微分阶数是很小的。
幂级数和傅里叶级数之间存在着密切的关系。
如果我们将函数f在复平面上以原点为中心,R为半径的圆域内展开成幂级数,即将每一项系数适当地分离出实部和虚部那么这便是f的傅里叶级数。
三维情况下拉普拉斯方程可由下面的形式描述,问题归结为求解对实自变量x、y、z二阶可微的实函数φ :上面的方程常常简写作:或其中div表示矢量场的散度(结果是一个标量场),grad表示标量场的梯度(结果是一个矢量场),或者简写作:其中Δ称为拉普拉斯算子.拉普拉斯方程的解称为调和函数。
如果等号右边是一个给定的函数f(x, y, z),即:则该方程称为泊松方程。
拉普拉斯方程和泊松方程是最简单的椭圆型偏微分方程。
偏微分算子或Δ(可以在任意维空间中定义这样的算子)称为拉普拉斯算子,英文是Laplace operator或简称作Laplacian。
拉普拉斯方程的狄利克雷问题可归结为求解在区域D内定义的函数φ,使得在D 的边界上等于某给定的函数。
为方便叙述,以下采用拉普拉斯算子应用的其中一个例子——热传导问题作为背景进行介绍:固定区域边界上的温度(是边界上各点位置坐标的函数),直到区域内部热传导使温度分布达到稳定,这个温度分布场就是相应的狄利克雷问题的解。
拉普拉斯方程的诺伊曼边界条件不直接给出区域D边界处的温度函数φ本身,而是φ沿D的边界法向的导数。
从物理的角度看,这种边界条件给出的是矢量场的势分布在区域边界处的已知效果(对热传导问题而言,这种效果便是边界热流密度)。
拉普拉斯方程的解称为调和函数,此函数在方程成立的区域内是解析的。
任意两个函数,如果它们都满足拉普拉斯方程(或任意线性微分方程),这两个函数之和(或任意形式的线性组合)同样满足前述方程。
这种非常有用的性质称为叠加原理。
可以根据该原理将复杂问题的已知简单特解组合起来,构造适用面更广的通解。
二维拉普拉斯方程两个自变量的拉普拉斯方程具有以下形式:解析函数解析函数的实部和虚部均满足拉普拉斯方程。
换言之,若z = x + iy,并且那么f(z)是解析函数的充要条件是它满足下列柯西-黎曼方程:上述方程继续求导就得到所以u满足拉普拉斯方程。
类似的计算可推得v同样满足拉普拉斯方程。
反之,给定一个由解析函数(或至少在某点及其邻域内解析的函数)f(z)的实部确定的调和函数,若写成下列形式:则等式成立就可使得柯西-黎曼方程得到满足。
上述关系无法确定ψ,只能得到它的微增量表达式:φ满足拉普拉斯方程意味着ψ满足可积条件:所以可以通过一个线积分来定义ψ。
可积条件和斯托克斯定理的满足说明线积分的结果与积分经过的具体路径无关,仅由起点和终点决定。
于是,我们便通过复变函数方法得到了φ和ψ这一对拉普拉斯方程的解。
这样的解称为一对共轭调和函数。
这种构造解的方法只在局部(复变函数f(z))的解析域内)有效,或者说,构造函数的积分路径不能围绕有f(z)的奇点。
譬如,在极坐标平面(r,θ)上定义函数那么相应的解析函数为在这里需要注意的是,极角θ仅在不包含原点的区域内才是单值的。
拉普拉斯方程与解析函数之间的紧密联系说明拉普拉斯方程的任何解都无穷阶可导(这是解析函数的一个性质),因此可以展开成幂级数形式,至少在不包含奇点的圆域内是如此。
这与波动方程的解形成鲜明对照,后者包含任意函数,其中一些的可微分阶数是很小的。
幂级数和傅里叶级数之间存在着密切的关系。
如果我们将函数f在复平面上以原点为中心,R为半径的圆域内展开成幂级数,即将每一项系数适当地分离出实部和虚部那么这便是f的傅里叶级数。
在流场中的应用设u、v分别为满足定常、不可压缩和无旋条件的流体速度场的x和y方向分量(这里仅考虑二维流场),那么不可压缩条件为:无旋条件为:若定义一个标量函数ψ,使其微分满足:那么不可压缩条件便是上述微分式的可积条件。
积分的结果函数ψ称为流函数,因为它在同一条流线上各点的值是相同的。
ψ的一阶偏导为:无旋条件即令ψ 满足拉普拉斯方程。
ψ的共轭调和函数称为速度势。
柯西-黎曼方程要求所以每一个解析函数都对应着平面内的一个定常不可压缩无旋流场。
解析函数的实部为速度势函数,虚部为流函数。
在电磁学中的应用根据麦克斯韦方程组,二维空间中不随时间变化的电场(u,v)满足:和其中ρ为电荷密度。
第一个麦克斯韦方程便是下列微分式的可积条件:所以可以构造电势函数φ使其满足第二个麦克斯韦方程即:这是一个泊松方程。
三维拉普拉斯方程基本解拉普拉斯方程的基本解满足其中的三维δ函数代表位于的一个点源。
由基本解的定义,若对u作用拉普拉斯算子,再把结果在包含点源的任意体积内积分,那么由于坐标轴旋转不改变拉普拉斯方程的形式,所以基本解必然包含在那些仅与到点源距离r相关的解中。
如果我们选取包含点源、半径为a的球形域作为积分域,那么根据高斯散度定理求得在以点源为中心,半径为r的球面上有所以经过类似的推导同样可求得二维形式的解格林函数格林函数是一种不但满足前述基本解的定义,而且在体积域V的边界S上还满足一定的边界条件的基本解。
譬如,可以满足现设u为在V内满足泊松方程的任意解:且u在边界S上取值为g,那么我们可以应用格林公式(是高斯散度定理的一个推论),得到un和Gn分别代表两个函数在边界S上的法向导数。
考虑到u和G满足的条件,可将上式化简为所以格林函数描述了量f和g对(x',y',z')点函数值的影响。
格林函数在半径为a的球面内的点上得值可以通过镜像法求得(Sommerfeld, 1949):距球心ρ的源点P的通过球面的“反射镜像”P'距球心需要注意的是,如果P在球内,那么P'将在球外。
于是可得格林函数为式中R表示距源点P的距离,R'表示距镜像点P'的距离。
从格林函数上面的表示式可以推出泊松积分公式。
设ρ、θ和φ为源点P的三个球坐标分量。
此处θ按照物理学界的通用标准定义为坐标矢径与竖直轴(z轴)的夹角(与欧洲习惯相同,与美国习惯不同)。
于是球面内拉普拉斯方程的解为:式中这个公式的一个显见的结论是:若u是调和函数,那么u在球心处的取值为其在球面上取值的平均。
于是我们可以立即得出以下结论:任意一个调和函数(只要不是常函数)的最大值必然不会在其定义域的内部点取得。