拉普拉斯方程
- 格式:doc
- 大小:63.50 KB
- 文档页数:7
拉普拉斯方程(Laplace'sequation),又名调和方程、位势方程,是一种偏微分方程。
因为由法国数学家拉普拉斯首先提出而得名。
求解拉普拉斯方程是电磁学、天文学和流体力学等领域经常遇到的一类重要的数学问题,因为这种方程以势函数的形式描写了电场、引力场和流场等物理对象(一般统称为“保守场”或“有势场”)的性质。
拉普拉斯方程(Laplace equation)拉普拉斯方程表示液面曲率与液体压力之间的关系的公式。
一个弯曲的表面称为曲面,通常用相应的两个曲率半径来描述曲面,即在曲面上某点作垂直于表面的直线,再通过此线作一平面,此平面与曲面的截线为曲线,在该点与曲线相重合的圆半径称为该曲线的曲率半径R1。
通过表面垂线并垂直于第一个平面再作第二个平面并与曲面相交,可得到第二条截线和它的曲率半径R2,用R1与R2可表示出液体表面的弯曲情况。
若液面是弯曲的,液体内部的压力p1与液体外的压力p2就会不同,在液面两边就会产生压力差△P= P1- P2,其数值与液面曲率大小有关,可表示为:在数理方程中拉普拉斯方程为:△u=d^2u/dx^2+d^2u/dy^2=0,其中△为拉普拉斯算子,此处的拉普拉斯方程为二阶偏微分方程。
三维情况下,拉普拉斯方程可由下面的形式描述,问题归结为求解对实自变量x、y、z二阶可微的实函数φ :其中Δ称为拉普拉斯算子.拉普拉斯方程的解称为调和函数。
如果等号右边是一个给定的函数f(x, y, z),即:则该方程称为泊松方程。
拉普拉斯方程和泊松方程是最简单的椭圆型偏微分方程。
偏微分算子或Δ(可以在任意维空间中定义这样的算子)称为拉普拉斯算子,英文是Laplace operator或简称作Laplacian。
狄利克雷问题拉普拉斯方程的狄利克雷问题可归结为求解在区域D内定义的函数φ,使得在D 的边界上等于某给定的函数。
为方便叙述,以下采用拉普拉斯算子应用的其中一个例子——热传导问题作为背景进行介绍:固定区域边界上的温度(是边界上各点位置坐标的函数),直到区域内部热传导使温度分布达到稳定,这个温度分布场就是相应的狄利克雷问题的解。
拉普拉斯方程,也称为谐波方程和势方程,是一种偏微分方程,最早由法国数学家拉普拉斯提出。
拉普拉斯方程是液体表面曲率和液体表面压力之间关系的公式。
曲面称为曲面。
通常,使用两个相应的曲率半径来描述表面,即在表面上的某个点处绘制垂直于该表面的直线,然后通过该线制作一个平面。
平面和表面的截面是曲线,并且在该点与曲线相切的圆的半径称为曲线的曲率半径R1。
第二剖面线及其曲率半径R2可以通过使第二平面垂直于第一平面并与表面相交来获得。
液面的弯曲可以用R1和R2表示。
如果液体表面弯曲,则液体P1内部的压力将与液体外部的压力P2不同,并且液体表面的两侧之间将存在压力差△P = P1-P2,这称为附加压力。
压力。
其值与液体表面的曲率有关,可以表示为:其中γ是液体的表面张力系数,称为拉普拉斯方程。
在数学公式中拉普拉斯方程是:其中∥是拉普拉斯算子,而这里的拉普拉斯方程是二阶偏微分方程。
在三维情况下,拉普拉斯方程可按以下形式描述。
可以将问题简化为求解对于实变量X,y和Z可二阶微分的实函数φ∇2称为拉普拉斯算子。
拉普拉斯方程的解称为谐波函数。
如果在等号右边是给定的函数f(x,y,z),即:然后将该方程称为泊松方程。
拉普拉斯方程和泊松方程是最简单的椭圆偏微分方程。
偏微分算子(可以在任何维空间中定义)称为拉普拉斯算子。
方程解它称为谐波函数,可以在建立方程的区域进行分析。
如果任何两个函数满足拉普拉斯方程(或任何线性微分方程),则这两个函数的总和(或它们的任何线性组合)也满足上述方程。
这种非常有用的特性称为叠加原理。
根据这一原理,可以将已知的复杂问题的简单特殊解组合起来,以构建具有更广泛适用性的一般解。
拉普拉斯方程拉普拉斯方程(Laplace's equation)又称调和方程、位势方程,是一种偏微分方程,因由法国数学家拉普拉斯首先提出而得名。
[1]拉普拉斯方程表示液面曲率与液体表面压强之间的关系的公式。
中文名拉普拉斯方程外文名Laplace's equation别称调和方程、位势方程提出者拉普拉斯关键词微分方程、拉普拉斯定理涉及领域电磁学、天体物理学、力学、数学目录.1基本概述.▪在数理方程中.▪方程的解.2二维方程.3人物介绍基本概述一个弯曲的表面称为曲面,通常用相应的两个曲率半径来描述曲面,即在曲面上某点作垂直于表面的直线,再通过此线作一平面,此平面与曲面的截线为曲线,在该点与曲线相切的圆半径称为该曲线的曲率半径R1。
通过表面垂线并垂直于第一个平面再作第二个平面并与曲面相交,可得到第二条截线和它的曲率半径R2,用R1与R2可表示出液体表面的弯曲情况。
若液面是弯曲的,液体内部的压强p1与液体外的压强p2就会不同,在液面两边就会产生压强差△P= P1- P2,称附加压强,其数值与液面曲率大小有关,可表示为:,式中γ是液体表面张力系数,该公式称为拉普拉斯方程。
在数理方程中拉普拉斯方程为:,其中∇²为拉普拉斯算子,此处的拉普拉斯方程为二阶偏微分方程。
三维情况下,拉普拉斯方程可由下面的形式描述,问题归结为求解对实自变量x、y、z二阶可微的实函数φ :其中∇²称为拉普拉斯算子。
拉普拉斯方程的解称为调和函数。
如果等号右边是一个给定的函数f(x,y,z),即:则该方程称为泊松方程。
拉普拉斯方程和泊松方程是最简单的椭圆型偏微分方程。
偏微分算子(可以在任意维空间中定义这样的算子)称为拉普拉斯算子,英文是Laplace operator或简称作Laplacian。
方程的解称为调和函数,此函数在方程成立的区域内是解析的。
任意两个函数,如果它们都满足拉普拉斯方程(或任意线性微分方程),这两个函数之和(或任意形式的线性组合)同样满足前述方程。
拉普拉斯方程(Laplace's equation)又称调和方程、位势方程,是一种偏微分方程,因由法国数学家拉普拉斯首先提出而得名。
拉普拉斯方程表示液面曲率与液体表面压强之间的关系的公式。
拉普拉斯方程为:,其中∇²为拉普拉斯算子,此处的拉普拉斯方程为二阶偏微分方程。
三维情况下,拉普拉斯方程可由下面的形式描述,问题归结为求解对实自变量x、y、z二阶可微的实函数φ,其中∇²称为拉普拉斯算子。
拉普拉斯方程的解称为调和函数。
拉普拉斯,1749年3月23日生于法国西北部卡尔瓦多斯的博蒙昂诺日,曾任巴黎军事学院数学教授。
1795年任巴黎综合工科学校教授,后又在高等师范学校任教授。
1799年他还担任过法国经度局局长,并在拿破仑政府中任过6个星期的内政部长。
1816年被选为法兰西学院院士,1817年任该院院长。
1827年3月5日卒于巴黎。
拉普拉斯在研究天体问题的过程中,创造和发展了许多数学的方法,以他的名字命名的[4] 拉普拉斯变换、拉普拉斯定理和拉普拉斯方程,在科学技术的各个领域有着广泛的应用。
拉普拉斯曾任拿破仑的老师,所以和拿破仑结下不解之缘。
拉普拉斯在数学上是个大师,在政治上是个小人物、墙头草,总是效忠于得势的一边,被人看不起,拿破仑曾讥笑他把无穷小量的精神带到内阁里。
在席卷法国的政治变动中,包括拿破仑的兴起和衰落,没有显著地打断他的工作。
尽管他是个曾染指政治的人,但他的威望以及他
将数学应用于军事问题的才能保护了他,同时也归功于他显示出的一种并不值得佩服的在政治态度方面见风使舵的能力。
拉普拉斯方程泊松方程亥姆霍兹方程波动方程标题:深度解读拉普拉斯方程、泊松方程、亥姆霍兹方程和波动方程在数学和物理学领域中,拉普拉斯方程、泊松方程、亥姆霍兹方程和波动方程是一些重要的偏微分方程,它们在不同领域中扮演着重要的角色。
本文将从深度和广度的角度来探讨这些方程,并分析它们的意义和应用。
一、拉普拉斯方程1.1 拉普拉斯方程的定义拉普拉斯方程是一个偏微分方程,通常用Δu=0表示,其中Δ表示拉普拉斯算子,u是未知函数。
在数学物理学中,拉普拉斯方程是一个重要的调和方程,它描述了没有源项的稳态温度分布、电势分布或流体流动等物理现象。
1.2 拉普拉斯方程的应用拉普拉斯方程在电磁学、热传导、流体力学等领域有着广泛的应用。
通过求解拉普拉斯方程,可以得到电场、温度场和流速场等物理量的分布规律,从而为工程设计和科学研究提供重要的参考依据。
1.3 个人观点和理解对于拉普拉斯方程,我认为它在自然科学和工程领域中都具有重要意义。
通过深入理解和应用拉普拉斯方程,可以更好地理解和解释大量物理现象,为实际问题的求解提供了有力工具。
二、泊松方程2.1 泊松方程的定义泊松方程是一个偏微分方程,通常用Δu=f表示,其中Δ表示拉普拉斯算子,u是未知函数,f是已知函数。
泊松方程是拉普拉斯方程加上一个源项后得到的方程,它描述了包含源项的稳态温度分布、电势分布或流体流动等物理现象。
2.2 泊松方程的应用泊松方程在电磁学、热传导、流体力学等领域同样有着广泛的应用。
通过求解泊松方程,可以得到包含源项的电场、温度场和流速场等物理量的分布规律,从而更准确地反映实际问题的特性。
2.3 个人观点和理解对于泊松方程,我认为它在描述带有源项的物理现象时具有重要意义。
通过对泊松方程的深入理解和求解,可以更准确地预测现实世界中的电场、温度场和流速场等物理量分布规律,为工程设计和科学研究提供了有力工具。
三、亥姆霍兹方程3.1 亥姆霍兹方程的定义亥姆霍兹方程是一个偏微分方程,通常用Δu+k²u=0表示,其中Δ表示拉普拉斯算子,u是未知函数,k是已知常数。
拉普拉斯方程(Laplace's equation)又称调和方程、位势方程,是一种偏微分方程,因由法国数学家拉普拉斯首先提出而得名。
拉普拉斯方程表示液面曲率与液体表面压强之间的关系的公式。
基本概述一个弯曲的表面称为曲面,通常用相应的两个曲率半径来描述曲面,即在曲面上某点作垂直于表面的直线,再通过此线作一平面,此平面与曲面的截线为曲线,在该点与曲线相切的圆半径称为该曲线的曲率半径R1。
通过表面垂线并垂直于第一个平面再作第二个平面并与曲面相交,可得到第二条截线和它的曲率半径R2,用R1与R2可表示出液体表面的弯曲情况。
若液面是弯曲的,液体内部的压强p1与液体外的压强p2就会不同,在液面两边就会产生压强差△P= P1- P2,称附加压强,其数值与液面曲率大小有关,可表示为:,式中γ是液体表面张力系数,该公式称为拉普拉斯方程。
在数理方程中拉普拉斯方程为:,其中∇²为拉普拉斯算子,此处的拉普拉斯方程为二阶偏微分方程。
三维情况下,拉普拉斯方程可由下面的形式描述,问题归结为求解对实自变量x、y、z二阶可微的实函数φ :其中∇²称为拉普拉斯算子。
拉普拉斯方程的解称为调和函数。
如果等号右边是一个给定的函数f(x,y,z),即:则该方程称为泊松方程。
拉普拉斯方程和泊松方程是最简单的椭圆型偏微分方程。
偏微分算子(可以在任意维空间中定义这样的算子)称为拉普拉斯算子,英文是Laplace operator或简称作Laplacian。
方程的解称为调和函数,此函数在方程成立的区域内是解析的。
任意两个函数,如果它们都满足拉普拉斯方程(或任意线性微分方程),这两个函数之和(或任意形式的线性组合)同样满足前述方程。
这种非常有用的性质称为叠加原理。
可以根据该原理将复杂问题的已知简单特解组合起来,构造适用面更广的通解。
二维方程两个自变量的拉普拉斯方程具有以下形式:解析函数的实部和虚部均满足拉普拉斯方程。
人物介绍拉普拉斯,1749年3月23日生于法国西北部卡尔瓦多斯的博蒙昂诺日,曾任巴黎军事学院数学教授。
拉普拉斯方程的完整求解△u=0其中△是拉普拉斯算子,表示空间坐标的二阶导数之和。
如果对二维空间来说,拉普拉斯算子可以表示为:△=∂²/∂x²+∂²/∂y²如果对三维空间来说,拉普拉斯算子可以表示为:△=∂²/∂x²+∂²/∂y²+∂²/∂z²接下来我们将分别介绍二维和三维情况下的拉普拉斯方程的求解方法。
一、二维情况下的拉普拉斯方程求解。
在二维空间中,拉普拉斯方程的解可以用解析函数来表示。
由于存在解析函数的特性,我们可以采用分离变量法求解。
假设解为u(x,y)=X(x)Y(y),将其代入方程可得:X''(x)Y(y)+X(x)Y''(y)=0将上式两边同时除以X(x)Y(y),得到:X''(x)/X(x)+Y''(y)/Y(y)=0由于等式两边的第一项仅依赖于x,第二项仅依赖于y,所以它们必须都等于一个常数,记为-k²(k是常数),即:X''(x)/X(x)=-k²Y''(y)/Y(y)=k²对于上面的两个常微分方程,我们可以分别求解。
对第一个方程,可得到:X(x) = Ae^(kx) + Be^(-kx)对第二个方程,可得到:Y(y) = Ccos(ky) + Dsin(ky)将X(x)和Y(y)代回原方程,得到解为:u(x,y) = (Ae^(kx) + Be^(-kx))(Ccos(ky) + Dsin(ky))其中A、B、C、D都是常数,通过边界条件可以确定它们的值。
二、三维情况下的拉普拉斯方程求解。
在三维空间中,拉普拉斯方程的求解方式可以类似于二维情况,通过分离变量法得到解析函数。
假设解为u(x,y,z)=X(x)Y(y)Z(z),将其代入方程可得:X''(x)Y(y)Z(z)+X(x)Y''(y)Z(z)+X(x)Y(y)Z''(z)=0将上式两边同时除以X(x)Y(y)Z(z),得到:X''(x)/X(x)+Y''(y)/Y(y)+Z''(z)/Z(z)=0同样地,等式两边的第一、第二、第三项都只依赖于x、y、z,所以它们必须都等于一个常数,分别记为-k²(k是常数),即:X''(x)/X(x)=-k²Y''(y)/Y(y)=-k²Z''(z)/Z(z)=k²对于上述的三个常微分方程,我们可以分别求解。
拉普拉斯方程式拉普拉斯方程式,也称为二维泊松方程式,是数学物理中的一个偏微分方程。
它描述了一个标量函数在二维空间中的分布情况,该函数满足的方程为拉普拉斯方程式。
拉普拉斯方程式在物理学、工程学和数学等领域都有广泛应用。
拉普拉斯方程式的一般形式是:∇²u = 0其中,∇²表示拉普拉斯算子,u是待求的标量函数,它表示空间中的某个物理量,可以是电势、温度、流体的速度等。
∇²u表示u在各个空间坐标轴上的二阶偏导数之和。
拉普拉斯方程式的解决方法通常是通过求解边界条件来获得。
边界条件是指在所考虑的区域的边界上给定的附加条件,用于确定解的形式。
常见的边界条件包括固定值边界条件、导数边界条件和混合边界条件等。
在中心扩展下,可以考虑一个圆形区域内的拉普拉斯方程式。
假设在某个圆形区域内,物理量u满足拉普拉斯方程式,即∇²u = 0。
如果在圆心处有一个点源,即一个特定的初始条件,可以通过求解拉普拉斯方程式来确定圆形区域内的物理量分布。
通过求解拉普拉斯方程式,可以得到物理量u在圆形区域内的解析解。
解析解是指可以用一种或多种数学函数表达的解,它能够给出物理量在整个区域内的分布情况。
解析解的优点是计算简单、精度高,但是在实际问题中往往很难得到解析解。
在实际问题中,常常需要使用数值方法来求解拉普拉斯方程式。
数值方法通过将区域离散化成网格,将偏导数转化为差分近似,然后利用代数方程组求解方法来获得物理量在各个网格点上的数值解。
数值方法的优点是适用范围广、灵活性高,但是计算量较大,需要计算机的支持。
在中心扩展下,拉普拉斯方程式可以描述许多实际问题。
例如,在电磁学中,可以使用拉普拉斯方程式来描述电势在空间中的分布情况;在热传导中,可以使用拉普拉斯方程式来描述温度在物体内部的分布情况;在流体力学中,可以使用拉普拉斯方程式来描述流体速度场的分布情况等。
拉普拉斯方程式是一个重要的偏微分方程,广泛应用于数学物理中。
拉普拉斯方程的完整求解拉普拉斯方程是数学中的一种偏微分方程,常用于描述物理学中的一些现象,如电势、热传导等。
它的完整求解可以为我们提供有关这些现象的详细信息,帮助我们深入了解其规律和特点。
在物理学中,拉普拉斯方程可以用来描述电势的分布。
电势是电场的一种性质,它体现了空间中各点的电荷分布情况。
拉普拉斯方程告诉我们,在没有电荷分布的情况下,电势在空间中满足一定的规律。
具体来说,拉普拉斯方程可以用以下形式表示:∇²φ = 0其中,∇²是拉普拉斯算子,φ表示电势。
这个方程告诉我们,电势的二阶导数在空间中的各点都为零。
换句话说,电势在空间中的分布是均匀的,没有任何偏离或集中的趋势。
拉普拉斯方程的完整求解可以通过数学方法来实现。
常见的方法有分离变量法、格林函数法等。
这些方法可以根据具体的边界条件和初值条件,求解出电势在空间中的具体分布情况。
例如,考虑一个简单的情况,一个无限大的导体平面上没有电荷分布,那么根据拉普拉斯方程的解,我们可以得到电势在空间中的分布情况。
在这种情况下,电势在导体平面上是均匀的,而在平面的两侧则呈线性分布。
拉普拉斯方程的完整求解不仅可以用于描述电势分布,还可以用于描述热传导等现象。
例如,考虑一个热传导问题,我们可以通过拉普拉斯方程的求解来确定空间中的温度分布。
在没有热源和热损失的情况下,根据拉普拉斯方程的解,温度在空间中呈现均匀分布的规律。
拉普拉斯方程的完整求解可以为我们提供有关电势、温度等现象的详细信息。
通过数学方法求解这个方程,我们可以深入了解这些现象的规律和特点,从而为相关问题的研究提供重要的理论基础。
通过对拉普拉斯方程的研究,我们可以更好地理解自然界中的各种现象,为实际问题的解决提供有力支持。
[整理]拉普拉斯方程拉普拉斯方程求助编辑百科名片拉普拉斯方程拉普拉斯方程(Laplace'sequation),又名调和方程、位势方程,是一种偏微分方程。
因为由法国数学家拉普拉斯首先提出而得名。
求解拉普拉斯方程是电磁学、天文学和流体力学等领域经常遇到的一类重要的数学问题,因为这种方程以势函数的形式描写了电场、引力场和流场等物理对象(一般统称为“保守场”或“有势场”)的性质。
目录拉普拉斯方程(Laplace equation)在数理方程中狄利克雷问题诺伊曼边界条件拉普拉斯方程的解二维拉普拉斯方程解析函数三维情况下二维拉普拉斯方程解析函数在流场中的应用在电磁学中的应用三维拉普拉斯方程基本解格林函数在流场中的应用拉普拉斯人物介绍展开拉普拉斯方程(Laplace equation)在数理方程中狄利克雷问题诺伊曼边界条件拉普拉斯方程的解二维拉普拉斯方程解析函数三维情况下二维拉普拉斯方程解析函数在流场中的应用在电磁学中的应用三维拉普拉斯方程基本解格林函数在流场中的应用拉普拉斯人物介绍展开编辑本段拉普拉斯方程(Laplace equation)拉普拉斯方程表示液面曲率与液体压力之间的关系的公式。
一个弯曲的表面称为曲面,通常用相应的两个曲率半径来描述曲面,即在曲面上某点作垂直于表面的直线,再通过此线作一平面,此平面与曲面的截线为曲线,在该点与曲线相重合的圆半径称为该曲线的曲率半径R1。
通过表面垂线并垂直于第一个平面再作第二个平面并与曲面相交,可得到第二条截线和它的曲率半径R2,用 R1与R2可表示出液体表面的弯曲情况。
若液面是弯曲的,液体内部的压力p1与液体外的压力p2就会不同,在液面两边就会产生压力差?P= P1- P2,其数值与液面曲率大小有关,可表示为:?p=γ(1/R1+1/R2)式中γ是液体表面张力。
该公式成为拉普拉斯方程。
在数理方程中拉普拉斯方程为:Δu=d^2u/dx^2+d^2u/dy^2=0,其中Δ 为拉普拉斯算子,此处的拉普拉斯方程为二阶偏微分方程。
拉普拉斯方程及其解法拉普拉斯方程是一个经典的偏微分方程,它的形式为:∇²u=0其中,u表示待求的函数,∇²表示Laplace算子,表示二阶偏导数的和。
拉普拉斯方程在各个领域中都有着重要的应用,如电场、热传导、流体力学等。
在数学上,对于二维或三维函数的拉普拉斯方程,其解法有许多种,其中最常用的为分离变量法与格林函数法。
一、分离变量法分离变量法在解决二维及三维拉普拉斯方程中具有广泛的适用性,它的基本思想是将多维问题化为一系列单变量问题的组合。
假设拉普拉斯方程的解可以表示为三维函数的乘积形式:u(x,y,z)=X(x)Y(y)Z(z)则将这个表达式代入拉普拉斯方程中,可以得到以下三个方程:X''(x)/X(x)+Y''(y)/Y(y)+Z''(z)/Z(z)=0由于每个方程都与坐标变量无关,因此可以将它们分别表示为常微分方程的形式:X''(x)/X(x)=λ1,Y''(y)/Y(y)=λ2,Z''(z)/Z(z)=λ3上述三个方程中的参数λ1、λ2、λ3为方程的本征值,它们的取值将直接影响到解的形式。
当λ1、λ2、λ3为常数时,可以将三个方程的通解写成以下形式:X(x)=Acos(α1x)+Bsin(α1x),Y(y)=Ccos(α2y)+Dsin(α2y),Z(z)=Ecos(α3z)+Fsin(α3z)其中,A、B、C、D、E、F为任意常数,α1、α2、α3为根据本征值计算出来的常数。
将上述三个方程的通解带入原式,经过简单分析、代数变换,可以得到二维或三维拉普拉斯方程的解。
二、格林函数法另一种常用的解法为格林函数法。
在一定条件下,基于格林函数的方法能够得到更加简单和结构精细的解,因此在应用中有着广泛的应用。
假设存在格林函数G(x,y),它有以下特性:①G(x,y)满足拉普拉斯方程,即∇²G(x,y)=δ(x-x0,y-y0)。
满足拉普拉斯方程
满足拉普拉斯方程(Laplace's equation)的函数是指在某个区
域内,其二阶偏导数的和为零的函数。
形式上,拉普拉斯方程可以表达为:
∇²f = 0
其中,∇²是拉普拉斯算子(Laplace operator),表示函数 f 的
二阶偏导数之和。
拉普拉斯方程是一种重要的偏微分方程,它在物理学、电学、热传导等领域有广泛应用。
满足拉普拉斯方程的函数具有一些特点,例如它们在区域内部是光滑且无奇点的。
常见的满足拉普拉斯方程的函数有:
1. 常数函数:f(x, y) = C,其中 C 是常数。
2. 线性函数:f(x, y) = ax + by + c,其中 a、b、c 是常数。
3. 二次函数:f(x, y) = ax² + bxy + cy² + dx + ey + f,其中 a、b、
c、d、e、f 是常数。
4. 谐函数:f(x, y) = Re[z],其中 z 是复数。
5. 某些特定的分析函数,如正弦函数、余弦函数等。
需要注意的是,拉普拉斯方程是线性偏微分方程,因此满足拉普拉斯方程的函数之和仍然满足拉普拉斯方程。
此外,在不同的区域内,满足拉普拉斯方程的函数可能存在差异。
拉普拉斯方程
拉普拉斯方程又名调和方程、位势方程,是一种偏微分方程。
因为由法国数学家拉普拉斯首先提出而得名。
求解拉普拉斯方程是电磁学、天文学和流体力学等领域经常遇到的一类重要的数学问题,因为这种方程以势函数的形式描写了电场、引力场和流场等物理对象(一般统称为“保守场”或“有势场”)的性质。
拉普拉斯方程表示液面曲率与液体压力之间的关系的公式。
一个弯曲的表面称为曲面,通常用相应的两个曲率半径来描述曲面,即在曲面上某点作垂直于表面的直线,再通过此线作一平面,此平面与曲面的截线为曲线,在该点与曲线相重合的圆半径称为该曲线的曲率半径R1。
通过表面垂线并垂直于第一个平面再作第二个平面并与曲面相交,可得到第二条截线和它的曲率半径R2,用 R1与R2可表示出液体表面的弯曲情况。
若液面是弯曲的,液体内部的压力p1与液体外的压力p2就会不同,在液面两边就会产生压力差△P= P1- P2,其数值与液面曲率大小有关,可表示为:▽p=γ(1/R1+1/R2)式中γ是液体表面张力。
该公式成为拉普拉斯方程。
在数理方程中
拉普拉斯方程拉普拉斯方程为:Δ
u=d^2u/dx^2+d^2u/dy^2=0,其中Δ为拉普拉斯算子,此处的拉普拉斯方程为二阶偏微分方程。
三维情况下,拉普拉斯方程可由下面的形式描述,问题归结为求解对实自变量x、y、z二阶可微的实函数φ:其中Δ称为拉普拉斯算子.
拉普拉斯方程的解称为调和函数。
如果等号右边是一个给定的函数f(x, y, z),即:
则该方程称为泊松方程。
拉普拉斯方程和泊松方程是最简单的椭圆型偏微分方程。
偏微分算子或Δ(可以在任意维空间中定义这样的算子)称为拉普拉斯算子,英文是 Laplace operator或简称作Laplacian。
狄利克雷问题
拉普拉斯方程的狄利克雷问题可归结为求解在区域D内定义的函数φ,使得在D的边界上等于某给定的函数。
为方便叙述,以下采用拉普拉斯算子应用的其中一个例子——热传导问题作为背景进行介绍:固定区域边界上的温度(是边界上各点位置坐标的函数),直到区域内部热传导使温度分布达到稳定,这个温度分布场就是相应的狄利克雷问题的解。
诺伊曼边界条件
拉普拉斯方程拉普拉斯方程的诺伊曼边界条件不直接给出区域D边界处的温度函数φ本身,而是φ沿D的边界法向的导数。
从物理的角度看,这种边界条件给出的是矢量场的势分布在区域边界处的已知效果(对热传导问题而言,这种效果便是边界热流密度)。
拉普拉斯方程的解
拉普拉斯方程的解称为调和函数,此函数在方程成立的区域内是解析的。
任意两个函数,如果它们都满足拉普拉斯方程(或任意线性微分方程),这两个函数之和(或任意形式的线性组合)同样满足前述方程。
这种非常有用的性质称为叠加原理。
可以根据该原理将复杂问题的已知简单特解组合起来,构造适用面更广的通解。
二维拉普拉斯方程
两个自变量的拉普拉斯方程具有以下形式:
函数h (x,y) 为二元函数,h(x,y) 对x的二阶偏导数+ h(x,y)对y的二阶偏导数 = 0
解析函数
解析函数的实部和虚部均满足拉普拉斯方程。
换言之,若
z= x+ iy,并且
那么f(z)是解析函数的充要条件是它满足下列柯西-黎曼方程:f (z) = u(x,y) + iv(x ,y)
u 对x的偏导数 = v 对y 的偏导数, u 对y 的偏导数 = - (v 对 x 的偏导数)
上述方程继续求导就得到
所以u满足拉普拉斯方程。
类似的计算可推得v同样满足拉普拉斯方程。
反之,给定一个由解析函数(或至少在某点及其邻域内解析的函数)f(z)的实部确定的调和函数,若写成下列形式:
则等式成立就可使得柯西-黎曼方程得到满足。
上述关系无法确定ψ,只能得到它的微增量表达式:
φ满足拉普拉斯方程意味着ψ满足可积条件:
所以可以通过一个线积分来定义ψ。
可积条件和斯托克斯定理的满足说明线积分的结果与积分经过的具体路径无关,仅由起点和终点决定。
于是,我们便通过复变函数方法得到了φ和ψ这一对拉普拉斯方程的解。
这样的解称为一对共轭调和函数。
这种构造解的方法只在局部(复变函数f(z))的解析域内)有效,或者说,构造函数的积
分路径不能围绕有f(z)的奇点。
譬如,在极坐标平面(r,θ)上定义函数
那么相应的解析函数为
在这里需要注意的是,极角θ仅在不包含原点的区域内才是单值的。
拉普拉斯方程与解析函数之间的紧密联系说明拉普拉斯方程的任何解都无穷阶可导(这是解析函数的一个性质),因此可以展开成幂级数形式,至少在不包含奇点的圆域内是如此。
这与波动方程的解形成鲜明对照,后者包含任意函数,其中一些的可微分阶数是很小的。
幂级数和傅里叶级数之间存在着密切的关系。
如果我们将函数f 在复平面上以原点为中心,R为半径的圆域内展开成幂级数,即将每一项系数适当地分离出实部和虚部
那么
这便是f的傅里叶级数。
三维情况下
拉普拉斯方程可由下面的形式描述,问题归结为求解对实自变量x、y、z二阶可微的实函数φ:
上面的方程常常简写作:
或
其中div表示矢量场的散度(结果是一个标量场),grad表示标量场的梯度(结果是一个矢量场),或者简写作:
其中Δ称为拉普拉斯算子.
拉普拉斯方程的解称为调和函数。
如果等号右边是一个给定的函数f(x, y, z),即:
则该方程称为泊松方程。
拉普拉斯方程和泊松方程是最简单的椭圆型偏微分方程。
偏微分算子或Δ(可以在任意维空间中定义这样的算子)称为拉普拉斯算子,英文是Laplace operator或简称
作Laplacian。
拉普拉斯方程的狄利克雷问题可归结为求解在区域D内定义的函数φ,使得在D的边界上等于某给定的函数。
为方便叙述,以下采用拉普拉斯算子应用的其中一个例子——热传导问题作为背景进行介绍:固定区域边界上的温度(是边界上各点位置坐标的函数),直到区域内部热传导使温度分布达到稳定,这个温度分布场就是相应的狄利克雷问题的解。
拉普拉斯方程的诺伊曼边界条件不直接给出区域D边界处的温度函数φ本身,而是φ沿D的边界法向的导数。
从物理的角度看,这种
边界条件给出的是矢量场的势分布在区域边界处的已知效果(对热传导问题而言,这种效果便是边界热流密度)。
拉普拉斯方程的解称为调和函数,此函数在方程成立的区域内是解析的。
任意两个函数,如果它们都满足拉普拉斯方程(或任意线性微分方程),这两个函数之和(或任意形式的线性组合)同样满足前述方程。
这种非常有用的性质称为叠加原理。
可以根据该原理将复杂问题的已知简单特解组合起来,构造适用面更广的通解。